Archivo de la etiqueta: Edad de la Tierra

Dataciones uranio-plomo con circones: una ventana al pasado remoto de la Tierra

Autores – Gabriel Castilla Cañamero, Iván Martín-Méndez y Enrique Merino Martínez

Allí donde se manifiesta el mineral, la eternidad habla.

Michel Onfray. Estética del Polo Norte, 2015

A finales de febrero de 1896, el químico Henri Becquerel realizó un experimento curioso: colocó un paquete de sales de uranio junto a una placa fotográfica envuelta en papel negro y las guardó en el cajón de un escritorio. Días después, descubrió que las sales habían dejado unas manchas borrosas en la placa, como si algún tipo de rayo invisible capaz de atravesar los objetos hubiera dejado su huella (Figura 1). Intrigado por la naturaleza de este fenómeno, compartió el hallazgo con una investigadora de doctorado de origen polaco llamada Marie. En junio de 1903, Marie defendió su tesis doctoral titulada: Investigaciones sobre sustancias radiactivas, en la que demostraba que ciertos elementos, como el uranio, emiten energía de forma constante. Pocos meses después, Bequerel, Marie y su esposo Pierre Curie fueron galardonados con el Premio Nobel de Física por el descubrimiento de la radiactividad espontánea.

Figura 1. Plancha fotográfica de Henri Becquerel que fue expuesta a la radiación emitida por el uranio a finales de febrero de 1896. Este tipo de descubrimiento, totalmente casual pero de gran valor científico, se conoce como serendipia. En la imagen se aprecia la forma de una cruz de Malta que se encontraba guardada en el mismo cajón, entre la placa fotográfica y las sales de uranio. Fuente: Archivo Becquerel/Wikipedia Commons.

Apenas un año después, el físico Ernest Rutherford descubrió que los elementos químicos radiactivos se transforman en otros a lo largo del tiempo: el uranio (U), por ejemplo, se convierte lentamente en plomo (Pb). Esta transformación, denominada desintegración radiactiva, ocurre a velocidad constante y predecible (Figura 2). Rutherford sugirió al químico Bertram Boltwood una idea revolucionaria: la posibilidad de usar esta descomposición radiactiva para calcular la edad de una roca midiendo la proporción de los dos elementos presentes en ella. En 1907, Boltwood aplicó por primera vez este principio al binomio uranio-plomo en una serie de muestras de rocas y estimó que algunas de ellas podían tener hasta 2.200 millones de años de antigüedad. Así, en apenas una década, el estudio de la radiactividad dio origen al método de datación radiométrica y permitió cuantificar el tiempo geológico con precisión numérica.

La imagen muestra una gráfica con fondo amarillo claro que representa cómo cambia la cantidad de un elemento radiactivo con el tiempo. El eje vertical indica la velocidad del proceso, mientras que el eje horizontal representa el tiempo.

Sobre la gráfica hay una curva descendente de color naranja, que empieza alta y desciende con una pendiente cada vez más suave. Esta curva representa un proceso de descomposición radiactiva de tipo exponencial, en el que la cantidad de sustancia radiactiva se reduce con el tiempo.

A lo largo de la curva hay cuatro cuadrados que simbolizan la proporción de elemento radiactivo restante:

Al inicio, el cuadrado está totalmente rojo: representa el 100 % del elemento radiactivo.

Más adelante, un segundo cuadrado aparece dividido en dos mitades, una roja y una blanca, indicando que queda el 50 % del material radiactivo. Este punto está marcado como “Vida media”, que es el tiempo que tarda en desintegrarse la mitad del material.

Luego aparece un cuadrado con solo una cuarta parte en rojo: indica que queda el 25 % del elemento.

Finalmente, un cuadrado con una pequeña porción roja representa el 12,5 % restante.

La gráfica muestra visualmente que al principio la desintegración es rápida, pero después se vuelve más lenta. Aunque nunca llega exactamente a cero, la cantidad de material radiactivo se reduce progresivamente a lo largo del tiempo.

Figura 2. Como se puede apreciar en la gráfica, la descomposición radiactiva es un proceso de tipo exponencial. En rojo tenemos la cantidad de elemento radiactivo presente en cada momento: primero disminuye muy rápido y luego más lentamente hasta llegar a cero. La vida media o período de semidesintegración es el tiempo que tarda un conjunto de átomos en quedar reducido a la mitad. Como podemos ver en la Tabla I, algunas desintegraciones son tan lentas que tienen vidas medias más largas que la vida del Universo. Adaptado de Anguita (1988).

La idea era prometedora, pero…  

Pese a la promesa del método, los pioneros de la datación tuvieron que salvar tres grandes obstáculos:

1º. Falta de conocimiento sobre los isótopos: Rutherford y Boltwood desconocían la existencia de los neutrones en el núcleo de los átomos y por tanto el papel que juegan los isótopos en el proceso de desintegración.

2º. Dudas sobre lo que se databa exactamente: Existían serias dudas sobre si las dataciones obtenidas señalaban la edad de cristalización de los minerales, la edad de formación de las rocas, o simplemente la antigüedad de los elementos químicos que los forman. Tampoco estaba claro si se podía aplicar este método a rocas ígneas, metamórficas y sedimentarias por igual.

3º. Limitaciones técnicas: A los problemas de índole teórico, había que sumarle las dificultades técnicas; aislar y medir con suficiente precisión pequeñas cantidades de elementos en las rocas requería de instrumentos que aún no existían.

El papel de los isótopos.

Los elementos químicos están formados por átomos, los cuales, a su vez, están compuestos por electrones, protones y neutrones. Sin embargo, estos últimos no fueron descubiertos hasta 1932, cuando el físico James Chadwick los identificó. En los elementos químicos, el número de protones define su identidad; el número de neutrones, en cambio, puede variar. Hoy sabemos que muchos elementos químicos poseen isótopos, es decir: variantes de un mismo elemento que difieren en el número de neutrones presentes en el núcleo. En la naturaleza existen dos tipos de isótopos: los estables y los inestables (o radiactivos), y son estos últimos los que se pueden emplear en las dataciones.

En el caso del uranio, la Tabla Periódica de los Elementos indica que su número atómico es 92, lo que significa que en estado natural posee 92 electrones y 92 protones, además de un número variable de neutrones que define sus tres isótopos:

1.- El Uranio-234 (234U) con 92 protones y 142 neutrones.

2.- El Uranio-235 (235U), que tiene 92 protones y 143 neutrones.

3.- El Uranio-238 (238U), que posee 92 protones y 146 neutrones.

En términos prácticos, esto quiere decir que en 1 gramo de uranio están presentes los tres isótopos en distinta proporción. El más abundante en la naturaleza es el 238U que representa el 99,2 % de la masa de cualquier muestra que tomemos al azar, y le siguen el 235U con un 0,7 % y el 234U con menos de un 0,1 %.

Los tres isótopos de Uranio (U) son radiactivos, pero los dos primeros se usan comúnmente en geocronología porque se desintegran a isótopos estables de plomo (Pb): el 238U se transmuta por descomposición radiactiva en 206Pb, un proceso cuya vida media es de  4.470 millones de años (Figura 3), mientras que el 235U se transforma en 207Pb en un tiempo medio de 700 millones de años.

La imagen muestra un diagrama en forma de red de recuadros conectados por flechas, que representa la serie radiactiva de desintegración del uranio-238 hasta llegar al plomo-206, pasando por diversos elementos intermedios.

Los elementos están organizados en un eje con dos dimensiones:

En sentido horizontal, se indica el número atómico (de 81 a 92), con los nombres de los elementos correspondientes (como talio, plomo, bismuto, uranio, etc.).

En sentido vertical, se representa el peso atómico, de mayor a menor.

Cada recuadro contiene el símbolo químico del elemento seguido de un número en superíndice, que indica el isótopo (por ejemplo, U²³⁸ para el uranio-238 o Pb²⁰⁶ para el plomo-206).
Las flechas negras entre recuadros indican la dirección de la desintegración de un isótopo en otro.

El proceso comienza con el uranio-238 (U²³⁸), que se desintegra en torio-234 (Th²³⁴), y este a su vez en protactinio-234 (Pa²³⁴), y continúa pasando por radio (Ra²²⁶), radón (Rn²²²), polonio (Po²¹⁸, Po²¹⁴, Po²¹⁰), bismuto (Bi²¹⁴, Bi²¹⁰), talio (Tl²¹⁰) y diferentes isótopos de plomo (Pb²¹⁴, Pb²¹⁰), hasta llegar finalmente al plomo-206 (Pb²⁰⁶), que es estable y marca el fin de la cadena de desintegración.

Entre los elementos intermedios destaca el polonio-214 (Po²¹⁴), señalado en el pie de figura como el más inestable de todos, ya que tiene una vida media de menos de un segundo. El nombre "polonio" fue elegido por Marie Curie en homenaje a su país natal, Polonia.

En conjunto, la figura muestra cómo, a lo largo del tiempo, un elemento radiactivo como el uranio se transforma de forma espontánea en otros elementos, liberando radiación en el proceso, hasta convertirse finalmente en un elemento estable.

Figura 3. Secuencia de trasmutaciones que llevan del uranio-238 al plomo-210. El polonio-214 (que debe su nombre a la tierra natal de Marie Curie)  es el isótopo más inestable de la serie, con una vida media de menos de un segundo. Adaptado de Anguita (1988).

El triunfo de la datación mediante uranio-plomo

El binomio uranio-plomo es ideal para datar rocas antiguas debido a su larga vida media. De hecho fue empleado por el geólogo norteamericano Clair Patterson para alcanzar uno de los hitos más importantes en geología: establecer por primera vez la edad absoluta de la Tierra.

¿Cómo lo hizo?

A su director de tesis, el geoquímico Harrison Brown, se le ocurrió la idea de que, en lugar de centrarse en medir la cantidad de uranio presente en una roca antigua, sería más sencillo detectar la presencia de isótopos de plomo acumulado como producto de su desintegración. Esta técnica, conocida hoy como método de acumulación o datación plomo-plomo, permitió abordar el problema desde una nueva perspectiva, evitando errores debido a la pérdida o ganancia de uranio.  Pero, ¿dónde encontrar muestras de roca a priori tan antiguas como la propia Tierra? Patterson asumió acertadamente que los planetas se formaron como resultado de un proceso de acreción de partículas a partir de una nebulosa de gas y de polvo, y que los meteoritos que en la actualidad impactan contra la Tierra son los escombros supervivientes de aquel proceso. O sea: se propuso datar estos “ladrillos sobrantes” para estimar cuándo comenzó a formarse la edad del “edificio planetario”.

Aislar una suficiente cantidad de minerales presentes en meteoritos (rocas de origen extraterrestre y, por tanto, ya de por sí escasas), que contuvieran algo de uranio, pero sobre todo plomo, fue una tarea ardua. Además, debía asegurarse que estas muestras no estuvieran contaminadas por agentes externos, como el plomo procedente de la combustión de gasolina. Este desafío requirió siete años de meticuloso trabajo y llevó al diseño y a la creación  del primer laboratorio de geoquímica esterilizado del mundo (hoy en día denominados “Salas Blancas” – Figura 4-).

La imagen en color muestra a un hombre mayor, descalzo, sin camisa y con los pantalones remangados hasta media pantorrilla, limpiando el suelo de un laboratorio con una mopa o escurridor de goma. Se trata del científico Clair Patterson, reconocido por su trabajo sobre la datación de la Tierra y por alertar sobre la contaminación por plomo.

El laboratorio tiene un aspecto ordenado, con muebles de madera clara, una campana de extracción a la derecha, y varias tuberías y cables visibles bajo la encimera. Encima de un dispensador de papel, hay una caja azul y amarilla con la etiqueta "Saran Wrap" (una marca de film plástico). En el suelo parece haber una película plástica transparente que el científico está limpiando cuidadosamente.

Esta escena refleja el nivel extremo de limpieza que Patterson mantenía en su laboratorio para evitar cualquier mínima contaminación externa, especialmente de plomo, ya que su trabajo requería mediciones ultrasensibles. Gracias a estas medidas, fue pionero en establecer uno de los primeros laboratorios de ambiente limpio (clean room) en el mundo.

Figura 4. Clair Patterson limpiando su laboratorio para evitar la contaminación. Fuente: Archivos y Colecciones Especiales del Instituto Tecnológico de California (Caltech Archives CCP145.5-7).

Finalmente, en 1953, las muestras fueron analizadas con la ayuda de un (entonces novedoso) espectrómetro de masas, un instrumento que permite separar con mucha precisión los elementos que constituyen un mineral. ¿El resultado? Patterson calculó la edad de la Tierra en 4.550 millones de años, con un margen de error de más o menos unos 70 millones de años, (¡menor del 2% a pesar de los medios disponibles en ese momento!). En líneas generales este valor continúa siendo válido en la actualidad.

El circón: una trampa para el uranio

A medida que avanzaba el conocimiento sobre la vida media de las transmutaciones radiactivas de los isótopos y mejoraba la precisión de la espectrometría de masas, surgieron nuevos métodos de datación radiométrica, útiles para datar diferentes tipos de rocas y minerales (Tabla I). A pesar de ello, el método uranio-plomo sigue siendo el más fiable para calcular la edad de rocas muy antiguas, y la principal razón es que hoy disponemos de una técnica mucho más depurada gracias al papel que desempeña un mineral con propiedades extraordinarias: el circón. 

La tabla presenta cuatro métodos de datación radiométrica utilizados para determinar la antigüedad de las rocas. Está organizada en cuatro columnas:

Elemento padre (el isótopo radiactivo original),

Elemento hijo (el producto estable tras la desintegración),

Vida media (tiempo que tarda en desintegrarse la mitad del elemento padre), y

Observaciones sobre su uso geológico.

Los datos incluidos son los siguientes:

Samario-147 se desintegra en Neodimio-143, con una vida media de 106 000 millones de años. Se utiliza principalmente en rocas metamórficas antiguas.

Rubidio-87 se convierte en Estroncio-87, con una vida media de 47 000 millones de años. Este método puede aplicarse a cualquier tipo de roca.

Uranio-238 se transforma en Plomo-206, con una vida media de 4 510 millones de años. Es considerado el método más preciso para datar rocas.

Potasio-40 se desintegra en Argón-40, con una vida media de 1 300 millones de años, y es el método más comúnmente usado.

Esta tabla permite comparar la aplicabilidad y precisión de distintos métodos de datación radiométrica, clave para entender la historia geológica de la Tierra.

El circón (silicato de zirconio: ZrSiO4) es un mineral accesorio de pequeño tamaño que cristaliza  a partir de magmas procedentes del manto superior o de la base de la corteza terrestre, por lo que es un mineral muy común en rocas ígneas, como el granito (Figura 5). Durante su formación tiende a incorporar diversos elementos que reemplazan parcialmente el circonio (Zr) en su estructura cristalina, tales como uranio, torio, titanio y elementos de las tierras raras; pero rechaza fuertemente el plomo durante su crecimiento. Una vez cristalizado, retiene estos elementos, principalmente el uranio, del que puede llegar a tener entre 100 y 1000 ppm (partes por millón). Y puesto que rechazó el plomo durante la cristalización, cualquier plomo que aparezca posteriormente dentro de su estructura se debe exclusivamente a la desintegración radiactiva. Es decir, se puede asumir que todo el 206Pb y 207Pb presentes cuando se analiza una muestra tiene su origen en la descomposición radiogénica del uranio.

La imagen está dividida en dos partes.
A la izquierda, se muestra una fotografía en color de una roca ígnea, de aspecto rugoso y granular. Es un granito procedente de Pakistán. En su superficie se observan cristales alargados y brillantes de color rojo oscuro, señalados con flechas blancas. Estos cristales son circones de tamaño centimétrico, minerales extremadamente duros y resistentes que suelen contener pequeñas cantidades de uranio y plomo, lo que los hace muy valiosos para la datación geológica.

A la derecha, se presenta una imagen en blanco y negro aumentada de un solo cristal de circón visto con lupa o microscopio. El cristal tiene forma alargada y ligeramente achatada, con bordes irregulares y una superficie que muestra zonas oscuras y claras, indicando variaciones internas en su estructura. Este ejemplar es mucho más pequeño que los de la izquierda, con un tamaño submilimétrico.

La comparación entre ambas imágenes muestra cómo los circones pueden variar en tamaño, desde algunos milímetros hasta varios centímetros, y resalta su utilidad tanto en observaciones macroscópicas como en estudios microscópicos.

Figura 5. Circones centimétricos (flechas) cristalizados en un granito procedente de Paquistán (izquierda) y aspecto de un ejemplar de tamaño submilimétrico visto con una lupa (derecha). Fuente: colección Gabriel Castilla y Wikipedia Commons.

Además, el circón es durísimo y resiste altas temperaturas, presiones y procesos geológicos como el metamorfismo o la erosión, lo que le permite conservar su firma isotópica incluso después de miles de millones de años. Puede crecer (recristalizar) en rocas metamórficas en condiciones de alta presión y hasta 900 ºC de temperatura, permitiendo datar el evento (o los eventos) en el que volvió a integrar uranio en su estructura (que posteriormente volverá a transformarse en plomo). Igualmente, su gran dureza le permite sobrevivir intacto a ciclos de erosión, transporte y sedimentación, manteniéndose “químicamente estable” en forma de grano detrítico en el interior de rocas sedimentarias, y permitiendo datar la edad máxima de deposición de esas rocas.

La imagen está dividida en dos partes.
En la parte superior aparece un texto informativo sobre el hecho de que la roca más antigua de la Tierra podría haberse encontrado en la Luna.

El texto explica que en 2019 se anunció que una muestra traída por la misión Apolo 14 de la NASA contenía un fragmento de la antigua corteza terrestre. Los científicos creen que esta roca se formó a unos 160 km de profundidad en la Tierra y que fue expulsada al espacio por el impacto de un asteroide, aterrizando finalmente en la Luna. La muestra, que pesa casi 9 kilos, es un tipo de roca llamado brecha, compuesta por fragmentos de diferentes rocas fundidas y compactadas por el calor de los impactos que moldearon la superficie lunar.

La datación de los cristales de circón contenidos en la muestra indica que esta roca se formó hace 4.011 millones de años. Aunque se han encontrado cristales de circón más antiguos (de hasta 4.374 millones de años) en la Tierra, esos se han preservado en rocas erosionadas, mientras que esta muestra lunar conserva el contexto original.

En la parte inferior del cartel se muestra una fotografía en blanco y negro de la roca lunar, etiquetada como “14321,46”. Es una roca rugosa, de color oscuro, y se encuentra sobre una superficie lisa. A la izquierda, una escala vertical marca 2 centímetros. Una flecha blanca apunta a un fragmento incrustado en la roca, señalado como el clasto (trozo) que se habría formado originalmente en la Tierra.

Fuente de la imagen: JPL-NASA.

Receta para analizar un circón

1º. Se realiza un estudio de campo y se recolectan las muestras de roca de interés.

2º. Las rocas son molidas y tamizadas. El polvo grueso de roca obtenido es lavado y separado por gravedad para concentrar los minerales más pesados.

3º. Los concentrados de minerales pesados se seleccionan y extraen con un separador magnético.

4º. La purificación final se logra separando a mano cada circón. Como no miden más de 1mm esta tarea se realiza con ayuda de una lupa binocular y pinzas finas.

5º. Los circones se pegan en cinta de doble cara y se montan en moldes, que son rellenados con una resina.

6º Cuando la resina ya está consolidada, se pule para que la parte central de los minerales quede expuesta y se pueda analizar.

En la actualidad los circones se analizan química e isotópicamente mediante varias técnicas derivadas de la espectrometría de masas, principalmente dos:

(1) La microsonda iónica de alta resolución (Super High-Resolution Ion Micro-Probe, también conocida como SHRIMP).

(2) El espectrómetro de masas de plasma acoplado inductivamente y ablación láser (LA-ICP-MS, siglas de Laser Ablation Inductively Coupled Plasma Mass Spectrometer).

Estas técnicas permiten estudiar con gran precisión partes muy concretas de un cristal, vaporizan los átomos de uranio y plomo que surgen de un punto seleccionado (Figura 7). Los datos que se obtienen se procesan y se corrigen para ser usados en los cálculos de relaciones isotópicas de U-Pb (y Th) y estimación final de edades.

Figura 7. Circón procedente del gneis de Acasta (Canadá). Los pequeños círculos que se observan fueron producidos por haces de iones que vaporizaron partes del cristal para establecer la relación de uranio y plomo en esos puntos concretos. Ha sido datado en unos 4.000 millones de años. Adaptado de York (1993).

Una gráfica para datarlos a todos

Cuando se forma un circón (cristaliza por debajo de los 900 º C), el sistema uranio-plomo se reinicia. A medida que pasa el tiempo los isótopos de plomo creados por la descomposición radiactiva del uranio quedan atrapados y se concentran. Si nada lo perturba, datarlo es muy sencillo: solo habrá que situar las concentraciones de plomo respecto al uranio inicial sobre una gráfica, la llamada curva de concordia, que se construye relacionando las cantidades de isótopos de plomo que se forman a partir de los dos principales isótopos de uranio (Figura 8a).

La imagen muestra una gráfica científica conocida como curva de concordia, utilizada en geocronología para fechar rocas mediante la comparación de las proporciones de isótopos de uranio y plomo.

El eje horizontal representa la relación entre Plomo-207 y Uranio-235, mientras que el eje vertical representa la relación entre Plomo-206 y Uranio-238.

Ambos sistemas se basan en la desintegración radiactiva natural del uranio en plomo a lo largo del tiempo.

La curva que recorre la gráfica comienza en el origen (punto inferior izquierdo, marcado como “HOY” en rojo) y asciende hacia la derecha hasta alcanzar el punto más alto a la derecha, marcado como “ORIGEN” en rojo (correspondiente a una antigüedad de 4.5 Ga, es decir, 4.500 millones de años).

A lo largo de esta curva hay varios puntos negros marcados con etiquetas de edad, como:

1.5 Ga (1.500 millones de años),
2 Ga, 2.5 Ga, 3 Ga, 3.5 Ga, 4 Ga, hasta 4.5 Ga.

Estos puntos representan proporciones de isótopos que corresponden a edades concretas, calculadas a partir de las vidas medias conocidas de los isótopos U-235 (más rápida) y U-238 (más lenta). Por ejemplo:

A los 704 millones de años, la cantidad de Uranio-235 se ha reducido a la mitad, por lo que la relación Pb/U es 1.

A los 1.408 millones de años, solo queda una cuarta parte del Uranio-235, así que la relación Pb/U es 3, y así sucesivamente.

Esta gráfica permite comparar las proporciones de isótopos medidos en una muestra y deducir su edad, siempre que no haya habido pérdida de elementos. Si un punto medido cae fuera de la curva, puede indicar que el sistema ha sido alterado.

Figura 8a. Curva de concordia para el sistema uranio-plomo. El hecho de conocer con precisión las vidas medias de los dos principales isótopos del uranio nos permite construir una gráfica con proporciones plomo/uranio muy concretas para los 4.550 millones de años de historia de la Tierra. En una roca de 704 millones de años, el 235U está en su vida media por lo que habrá una relación Pb/U = 1. En una roca de 1.408 millones de años solo quedará un átomo de 235U por cada tres átomos de 207Pb, por lo que la relación Pb/U = 3, y así sucesivamente. En el caso del 238U la descomposición es más lenta, por eso en ese eje de la gráfica las relaciones adoptan valores menores que 1. Los puntos negros sobre la curva señalan las edades para esas proporciones en giga años (Ga), es decir miles de millones de años (1Ga = 1000.000.000 años).

Es muy raro que a lo largo de los miles de millones de años de la historia de la Tierra un circón no se vea alterado por cambios de presión y temperatura en su entorno. Cuando esto sucede, pueden escapar isótopos de plomo, por lo que las dataciones ya no caerán exactamente sobre la curva de concordia. Es decir, se abre y distorsiona el sistema isotópico. Es aquí cuando toma sentido datar muchos circones con el fin de establecer diversos niveles de pérdida de plomo y con ellos establecer una recta de discordia, recta que cortará la curva de concordia en dos puntos, lo que proporcionará información sobre la edad del circón y sobre el supuesto momento en que se produjo el episodio de metamorfismo que alteró la química del mineral (Figura 8b).

La imagen muestra un diagrama de concordia, como el de la Figura 8a, utilizado en geocronología para fechar rocas a partir de la desintegración radiactiva del uranio en plomo.

El eje horizontal indica la proporción entre Plomo-207 y Uranio-235.

El eje vertical muestra la proporción entre Plomo-206 y Uranio-238.

La curva de concordia (línea verde) representa las proporciones que se obtendrían si una muestra no ha perdido ni ganado material desde su formación.

En este gráfico, aparecen además tres puntos azules marcados como M1, M2 y M3, que representan tres muestras distintas de cristales de circón procedentes de una misma roca antigua. Estos tres puntos no caen sobre la curva, sino que están alineados sobre una línea recta azul más clara llamada recta de discordia.

Esta recta de discordia se traza cuando una roca ha sufrido algún proceso que ha modificado sus proporciones originales de plomo y uranio, por ejemplo, un episodio de metamorfismo (aumento de presión y temperatura que no llega a fundir la roca).

La recta intersecta la curva de concordia en dos puntos clave:

El punto superior, marcado como 3.2 Ga (3.200 millones de años), indica la edad original de formación de la roca que contiene los circones.

El punto inferior, marcado como 2 Ga (2.000 millones de años), señala el momento en que se produjo la alteración metamórfica, que causó una pérdida de plomo en los cristales.

Este tipo de análisis permite reconstruir la historia térmica de una roca y saber tanto cuándo se formó como cuándo fue modificada por eventos posteriores.

Fuente: Adaptado de York (1993) y elaboración propia.

Figura 8b. Diagrama de concordia para tres muestras de circones (M1, M2 y M3) de una roca antigua que ha experimentado una alteración por metamorfismo (cambio de presión y temperatura pero sin llegar a fundir). La recta de discordia intersecta la curva “por arriba” en 3.2 Ga, revelando la edad de la roca que contiene las tres muestras, y “por abajo” en 2 Ga, señalando el momento en que se produjo el episodio de alteración metamórfica que desencadenó la pérdida de plomo. Adaptado de York (1993) y elaboración propia.

La imagen muestra un recuadro de fondo gris con texto blanco que aborda el tema:
¿Cuál es el circón más antiguo?

El texto informa que en 2007 se anunció el descubrimiento de circones detríticos, es decir, granos de circón que han sobrevivido a la erosión de las rocas originales que los contenían. Estos granos, similares a los granos de cuarzo en arena de playa, fueron hallados en Jack Hills, Australia Occidental, y tienen una antigüedad estimada de 4.252 millones de años.

Se explica que estos circones son los microdiamantes naturales más antiguos conocidos en la Tierra. Sin embargo, este récord fue superado en 2014, cuando se anunció el hallazgo de un circón Hádico (del eón Hádico, el más antiguo de la historia terrestre), con una antigüedad de aproximadamente 4.400 millones de años.

El texto plantea una pregunta clave:

“¿Por qué se conservan los granos más resistentes pero no las rocas a las que pertenecieron?”

Esta cuestión subraya la importancia de los circones como testigos de las primeras etapas de la historia geológica de la Tierra, ya que no se han conservado rocas completas de ese periodo, pero sí estos cristales extremadamente resistentes que permiten reconstruir parte de esa historia temprana.

Nuevos avances en datación U-Pb

El circón sigue siendo el mineral insignia para la datación geocronológica, por su resistencia y fiabilidad. Sin embargo, los nuevos avances en la precisión de los métodos instrumentales y analíticos han permitido que, además del circón, actualmente se pueden datar otros minerales mediante el método uranio-plomo. Algunos de los más utilizados son:

Monacita (CePO4): rica en uranio y torio, y común en rocas metamórficas y graníticas. Es menos resistente al metamorfismo que el circón, pero muy útil en geología regional para datar procesos metamórficos.

Xenotima (YPO4): similar a la monacita pero con itrio en lugar de cerio. También incorpora uranio y se encuentra en rocas ígneas y metamórficas.

Titanita (o esfena, CaTiSiO5): contiene uranio en cantidades moderadas, siendo más susceptible a pérdidas de Pb que el circón. Se emplea en rocas ígneas y metamórficas, siendo importantes en rocas pobres en circón.

Baddeleyita (ZrO2): se encuentra en basaltos y gabros antiguos, y rocas mantélicas donde el circón es raro o ausente.

Bibliografía consultada.

Allégre, C.J.; Manhès, G. y Göpel, C. (1995). The age of the Earth. Geochimica et Cosmochimica Acta, Vol. 59 (8), pp.1445-1456.

Anguita, F. (1988). Origen e Historia de la Tierra. Editorial Rueda.

Bellucci, J.J. et al. (2019). Terrestrial-like zircon in a clast from an Apollo 14 breccia. Earth and Planetary Science Letters 510, pp. 173-185.

Bryson, B. (2003). Una breve historia de casi todo. Edición especial ilustrada. RBA Editores.

Casado, M. J. (2006). Las damas del laboratorio. Editorial Debate.

Greshko, M. (2019). La posible roca más antigua de la Tierra se recogió en la Luna. National Geographic. Versión on-line.

Guo, J-L. et al. (2000). Significant Zr isotope variations in single zircon grains recording magma evolution history. Proceedings of the National Academy of Sciences, Vol. 117 (35), pp. 21125-21131.

Harley, L. y Kelly, N.M. (2007). Zircon- Tyny but Timely. Elements, 3 (1).

Mennekem, M. et al. (2007). Hadean diamonds in zircon from Jack Hills, Western Australia. Nature 448 (7156), pp. 917-920.

Naipauer, M. (2021). Circones, los relojes de la Tierra. Ciencia Hoy, Vol. 30, n. 176, pp. 51-57.

Patterson, C. (1956). Age of meteorites and the Earth. Geochimica et Cosmochimica Acta, Vol. 10, pp.230-237.

Valley. J. W. et al. (2014). Hadean age for a post-magma-ocean zircon confirmed by atom-probe tomography. Nature Geoscience 7, pp. 219-223.

Wilde, S.A.; Valley, J.W.; Peck, W.H. y Graham, C.M. (2001). Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago. Nature, 409 (6817), pp.175-178.

York, D. (1993). Protohistoria de la Tierra. Investigación y Ciencia, 198 (marzo), pp.40-47.