Archivo de la categoría: Minerales y rocas

Mucho más que granitos…

Raíces de carbonato. Calcretas y clima

En algunas paredes del laberinto de Villaflor podemos observar un patrón de líneas blancas. Son en realidad láminas de carbonato cálcico que han sido cortadas por la incisión de la red de drenaje.

Estas láminas se formaron gracias a la actividad de raíces de plantas en simbiosis con microorganismos y hongos, y es lo que conocemos como calcretas.

En un clima semiárido los nutrientes y el agua son bienes muy preciados y los vegetales desarrollaron estas estructuras para ayudar a retenerlos cerca de sus raíces.

Así, la presencia de estas láminas nos habla de unas condiciones climáticas concretas, de aridez y temperaturas suaves o cálidas hace millones de años.

Calcretas laminares en la pared de un canal del laberinto. En realidad son láminas de carbonato cálcico expuestas al ser cortadas por el “cuchillo” de la red de drenaje. Imagen de Javier Pérez Tarruella.
Calcretas laminares en la pared de un canal del laberinto. En realidad son láminas de carbonato cálcico expuestas al ser cortadas por el “cuchillo” de la red de drenaje. Imagen de Javier Pérez Tarruella.

Cuando las calcretas se presentan en forma de láminas entrecruzadas y no como grandes capas, nos indican que la sedimentación era puntual y esporádica: en determinados eventos de tormenta se producía sedimentación, que provocaba la muerte de la lámina activa y la formación de nuevas láminas, que cortan a las anteriores.

Carbono para arriba, Carbono para abajo

Las rocas en las que están desarrolladas las calcretas de Villaflor no contienen carbonato, el carbonato era aportado en parte por el polvo en suspensión (como el de las invasiones de polvo del Sáhara que sufrimos actualmente).

Las calcretas fijan carbono en la corteza terrestre, así que tienen su papel en el ciclo del CO2 .

Las plantas absorben CO2 para convertirlo en hojas, madera y raíces, pero al morir la planta, estos elementos se oxidan y el carbono vuelve a la atmósfera. Sin embargo, el carbono fijado en la calcreta no se oxida, se fija y pasa a formar parte de la litosfera, hasta que la meteorización lo disuelva y vuelva a formar parte de la atmósfera.

Este es uno de los contenidos del Geolodía 22 de Ávila en Villaflor.

La prueba del ácido

Cuando echamos ácido clorhídrico en la calcreta para comprobar su contenido en carbonato cálcico, estos compuestos reaccionan y forman agua, CO2 que escapa formando burbujas y cloruro de calcio, que se disuelve en el agua.

Así, en este gesto devolvemos a la atmósfera Carbono que había sido retenido en la corteza terrestre durante millones de años.

Este es uno de los contenidos del Geolodía 2022 de Ávila.

Aprende más sobre las calcretas laminares de La Moraña

Cómo se forma el petróleo

La mayor parte del petróleo que conocemos se forma fundamentalmente a partir de zooplancton y fitoplancton marino que murió y se sedimentó junto con arcillas en los fondos marinos en unas condiciones de falta de oxígeno (anoxia).

Esto hace que la materia orgánica de estos organismos no se descomponga y que sea enterrada gradualmente al continuar la sedimentación en estas cuencas marinas.

Zooplancton. Especie no identificada de copepoda. Imagen de Uwe Kils – English Wikipedia. CC BY-SA 3.0

Presión y temperatura

Con el enterramiento aumentan también la presión y la temperatura. Los sedimentos arcillosos que contienen la materia orgánica se trasforman en una roca que llamamos lutita.

Hay que imaginarse que esto en algunas ocasiones se ha producido a escala planetaria y ha generado capas de decenas o centenares de metros de espesor con porcentajes de materia orgánica que pueden superar el 10%.

Capas de lutitas y margas de origen marino con contenidos altos de materia orgánica. Cuenca de Jaca, Pirineo Oscense. Imagen de Javier Elez.
Capas de lutitas y margas de origen marino con contenidos altos de materia orgánica. Cuenca de Jaca, Pirineo Oscense. Imagen de Javier Elez.

En ocasiones, estos mismos procesos se han dado en lagos de gran tamaño, que atraparon cantidades importantes de materia orgánica en los sedimentos de su fondo, generando condiciones similares (más reducidas en tamaño) a las producidas en las cuencas marinas.

Cuando los contenidos en materia orgánica son altos y la roca es capaz de generar hidrocarburos, se la suele denominar informalmente roca madre (hot shale o black shale en terminología anglosajona).


El incremento de presión, pero sobre todo el de temperatura, hace que la materia orgánica (CHONP) se transforme en petróleo.


Esto ocurre en una ventana de temperaturas pequeña que va desde los 50 a los 150ºC, ya que:

  • Por encima (175º C), el petróleo termina desnaturalizándose y transformándose primero en gas y después en carbono.
  • Y por debajo de 50ºC no existe transformación.
Sondeo para la explotación de petróleo. El testigo recuperado está teñido de negro por el crudo. Imagen cedida por Israel Polonio.

Como ves, las condiciones ambientales globales y geológicas para que se formen esas rocas que contienen tanta cantidad de materia orgánica son complejas:

  • Anoxia en los océanos (poco oxígeno).
  • Alta productividad biótica (mucha vida).
  • Sedimentación de arcillas.
  • Enterramiento.
  • Incremento de presión y temperatura.

Sin embargo, estas situaciones las hemos tenido reiteradas veces a lo largo de la evolución del planeta (en repetidas ocasiones durante los periodos Paleozoico, Mesozoico y Cenozoico).

Las condiciones para la formación de petróleo se han dado repetidas veces a lo largo de la historia de la Tierra, en el Paleozoico, Mesozoico y Cenozoico. Descubre cuánto abarcan estas eras en la Tabla Cronoestratrigráfica Internacional.

Y en ocasiones han afectado a gran parte del planeta al mismo tiempo; por eso hay petróleo en tantos lugares diferentes del mundo.

Las condiciones ambientales globales y geológicas favorables para la formación del petróleo se han dado muchas veces a escala planetaria. En este gráfico se puede ver la producción de petróleo en todo el mundo en el año 2019, lo que da una idea de su distribución global. Fuente de los datos: BP Statistical Review of World Energy; gráfico: https://ourworldindata.org/fossil-fuels.

Petróleo de origen vegetal

En menor cantidad también hay una serie de hidrocarburos que vienen derivados del enterramiento de materia orgánica de origen vegetal continental (árboles y similares).

El ejemplo típico: en zonas de desembocadura de ríos en deltas en las que el rio arrastra la vegetación y la acumula en zonas preferentes junto con los sedimentos del delta. Sabemos que este proceso, aunque tiene un alcance geográfico menor, también se ha producido innumerables ocasiones a lo largo de la historia del planeta.

¿En cuánto tiempo se forma el petróleo?

Es difícil saber cuánto tiempo se necesita para que tenga lugar la transformación de la materia orgánica en petróleo, ya que el tiempo geológico es un elemento que no podemos simular en un laboratorio. Pero habitualmente hablamos de cientos de miles a millones de años.


Los otros «relojes de arena». Método de datación por OSL

Texto y gráficos – Ana Isabel Casado Gómez

Los clásicos relojes de arena cronometran el tiempo en función de lo que tarda en pasar la arena que contienen por su estrecha cintura. Pero existe otro tipo de «relojes en la arena» que nos permiten contar el tiempo gracias a su estructura cristalina y a la luz, proporcionándonos un práctico método de datación: la Luminiscencia Ópticamente Estimulada u OSL.

El método de datación por OSL, por su acrónimo en inglés (Optically Stimulated Luminescence), se emplea principalmente en materiales sedimentarios detríticos (como la arena y los limos de las dunas de La Moraña).

Este método tiene un rango de aplicación de entre 6 y 800.000 años, aunque no para de optimizarse y se han llegado a datar sedimentos de 1,5 Ma (Bartz et al., 2019).

Esta técnica se desarrolló ante la necesidad de datar de manera directa los sedimentos, sin utilizar materia orgánica a la que aplicarle la datación por Carbono-14, ya que no siempre se encuentran restos biológicos en los sedimentos. Además, el límite de datación del Carbono-14 es menor (60.000 años) y es a veces insuficiente.

Cómo funciona

Para la datación por OSL se utiliza el cuarzo. Esto supone una gran ventaja frente a otras técnicas ya que el cuarzo es uno de los minerales más duros, resistentes y abundantes de la superficie terrestre.

Con el método de luminiscencia ópticamente estimulada se data el último momento en que un material de origen sedimentario estuvo expuesto a la luz solar, el momento de su sedimentación y enterramiento.

¿Qué le sucede al cuarzo cuando recibe luz solar? ¿Y cuando se entierra y deja de recibir esa luz?

Cuando los sedimentos se encuentran en la superficie, la radiación solar visible «limpia» el cuarzo eliminando cualquier electrón que pudiera encontrarse atrapado en su estructura, esto se conoce como blanqueamiento. (Figs. 1.A).

Al enterrarse el sedimento y dejar de estar radiado por el Sol, el cuarzo comienza a recibir un débil flujo de partículas radiactivas (alfa α, beta β y gamma γ) provenientes de elementos radiactivos que forman parte de otros minerales del propio sedimento (como el torio, el uranio y el potasio-40 de la biotita, la circonita, el apatito o el esfeno, o el potasio-40 de los feldespatos blancos y rosas).

La consecuencia de esta radiación natural propia del sedimento es la acumulación progresiva de electrones en trampas dentro de la estructura cristalina de los cuarzos: cuanto más tiempo permanezcan los cuarzos enterrados y protegidos de la luz, más electrones acumularán en su estructura (Figs. 1.B).

Fig. 1. Esquema de los procesos radiactivos que tienen lugar en los sedimentos, tanto a macroescala como a microescala. A) Cuando el cuarzo es radiado por la luz solar y su estructura está libre de electrones. B) Cuando el cuarzo queda enterrado y afectado por otras radiaciones que no son la solar, acumulando electrones en su estructura cristalina.

¿Cómo se recogen las muestras en el campo?

Para poder emplear este método con éxito, es necesaria una recogida muy meticulosa de las muestras en el campo. Para ello:

  1. Se introduce un tubo metálico dentro del sedimento (Fig. 2A) para proteger la muestra de la luz, y evitar así la pérdida de los electrones acumulados en los cuarzos. El tubo se coloca perpendicular a la superficie del afloramiento y se introduce en el sedimento. Se extrae un testigo dejando un agujero cilíndrico en el sedimento.
  2. Posteriormente, con un taladro de corona circular (Fig. 2B), se extrae el sedimento que hay alrededor de la muestra para hacer medidas sobre este sedimento en el laboratorio.
  3. Por último, se introduce un dosímetro en el agujero y se toman medidas de radiación gamma (γ) in situ (Fig. 2C).
Fig. 2. Fotografías del proceso de recogida de muestras para datación por OSL. A) Detalle de la extracción de la muestra. Una persona sujeta el tubo metálico mientras que otra lo golpea con una maza hasta conseguir introducirlo en el sedimento y extraer la muestra protegida de la luz. B) Recogida del sedimento colindante a la muestra para medir la humedad, los elementos radiactivos y la radiación beta (β) del sedimento. C) Dosímetro midiendo la radiación gamma (γ) en el interior del sedimento. Fotografías: AI Casado.

¿Y qué hacemos con las muestras en el laboratorio?

Una vez en el laboratorio, los granos de cuarzo se separan del resto de minerales. Esto se hace en un cuarto oscuro (como los de revelado de fotografías en papel) empleando una tenue luz roja cuya radiación no interfiere con los electrones atrapados en la estructura del cuarzo (Figs. 3A).

Separados los cuarzos, se exponen a una radiación visible controlada semejante a la radiación visible solar. Al iluminar los cuarzos, los electrones que habían quedado atrapados en su estructura durante su enterramiento emiten una señal luminiscente que permite contabilizar cuántos electrones se han acumulado (esta cantidad de electrones se conoce como paleodosis) (Figs. 3B).

Fig. 3. Esquema de los procesos radiactivos que tienen lugar en los sedimentos, tanto a macro como a microescala, en el laboratorio. A) Cuando el cuarzo es radiado por una tenue luz roja. B) Cuando se radia con una luz similar a la solar, permitiendo contabilizar los electrones atrapados en su estructura cristalina.

La datación

¿Y cómo sabemos cuántos años suponen los electrones contabilizados?

Como cada sedimento es diferente, hay que evaluar en el laboratorio cuál es la dosis de radiación natural del sedimento tomado alrededor de la muestra (Fig. 2B) conociendo la radiación gamma (γ) y midiendo la humedad, los elementos radiactivos y las partículas beta (β).

Con todos estos datos, se puede evaluar cuántos electrones puede generar cada muestra en un año (dosis anual).

Al dividir la dosis acumulada en la muestra de manera natural, la paleodosis, (que se ha obtenido contabilizando los electrones atrapados en el cuarzo en el paso anterior) entre la dosis anual obtenida experimentalmente, se puede conocer cuántos años hace que se produjo la sedimentación de la muestra.

  • De esta forma, si los cuarzos han recibido poca dosis cada año (dosis anual) y han acumulado muchos electrones (paleodosis), la edad es alta.
  • Si la dosis anual que recibían los cuarzos era muy grande, aunque haya acumulados muchos electrones tendrán una edad baja.

Por eso es necesario medir la dosis anual de cada muestra.

Resumiendo…

La datación por OSL o datación por Luminiscencia Ópticamente Estimulada se emplea para conocer la edad del momento de sedimentación de un depósito que contenga granos de cuarzo (Fig. 4).

La radiación solar mantiene los cuarzos superficiales «limpios» de cualquier otra radiación que pudieran acumular durante la erosión y el transporte.

Cuando se produce la sedimentación, los cristales de cuarzo enterrados que ya no reciben radiación solar comienzan a recibir una radiación débil procedente de elementos radiactivos de los minerales que los rodean, y acumulan electrones en su estructura.

Los cristales de cuarzo se «llenan» de electrones de manera gradual, a un ritmo constante en el tiempo (dosis anual).

Y es el contaje de esos electrones lo que determina la paleodosis, con lo que se puede calcular cuánto tiempo ha pasado desde que quedaron enterrados y dejaron de recibir luz solar.

Cuando se iluminan de nuevo esos cuarzos con una radiación visible similar a la solar, los electrones atrapados en el cuarzo se liberan emitiendo una señal luminiscente.

Midiendo esos electrones y la dosis anual del sedimento, se puede saber cuántos electrones estaban atrapados en el cuarzo y calcular la edad en que se produjo la sedimentación.

Fig. 4. Gráfica resumen de la acumulación de radiación beta (β) en el cuarzo en función del tiempo y de las condiciones de exposición a la luz (modificado de Aitken, 1998)

¿Sabías que… el feldespato también tiene la capacidad de albergar electrones en trampas de su estructura cristalina, por el mismo proceso que el cuarzo? Para la datación con feldespatos el procedimiento es similar al OSL, pero se emplea radiación infrarroja para estimular la luminiscencia. En ese caso, se denomina IRSL o Luminiscencia estimulada por infrarrojos.

Referencias

La Luna tiene colores: ¡Los de su geología!

¿De qué color es la Luna?

La respuesta parece fácil: Blanca, con zonas grises quizá… Aparentemente este es su aspecto, en «blanco y negro» como en la retransmisión del Apolo 11. Pero la tecnología de imagen actual, incluso una cámara de fotos réflex de aficionado, nos permite descubrir que en realidad no es así.

Sí tiene colores, pero son muy débiles, con muy poca saturación. Sin saturación cualquier color se convierte en un tono de gris. Además, el hecho de que veamos la Luna de noche, habitualmente con poca luz y en contraste con el cielo oscuro, hace que percibamos menos los colores. A oscuras los «conos» (las células de la retina receptoras del color) no funcionan bien, y son los «bastones» (receptores de luz) los que nos proporcionan la mayor parte de la información.

Gracias a la información que puede recoger el sensor de una cámara a través de un telescopio, podemos vislumbrar los colores que en realidad esconde nuestro satélite. Y por supuesto… ¡El resultado nos cuenta su propia historia geológica!

Fotografía lunar, con su coloración exagerada unas 30 veces. @jpereztar

Antes de seguir leyendo, es recomendable conocer la historia geológica de la Luna «en blanco y negro» y así entender su aspecto general.

La historia de la Luna: 4.500 Millones de años en 5 minutos

Los colores de la Luna

Los colores que más destacan son dos: El azul y el naranja de los maria lunares, que además son complementarios y hacen que nuestro satélite vaya muy bien conjuntado.

Los maria están formados por basaltos de las erupciones volcánicas del periodo Ímbrico y su color depende de la proporción de hierro y titanio en sus minerales.

Las zonas con mayor cantidad de titanio son más oscuras y azules, pues abunda el mineral ilmenita.

Las zonas con menor proporción de titanio (mayor de hierro) son anaranjadas, por la mayor proporción de piroxeno y olivinos de tipo fayalita. Esta división por colores permite deducir diferentes fases del relleno de basalto que cubre los cráteres gigantes de la Luna.

La zona más azulada, el «Mare Tranquilitatis» tiene una concentración de titanio 10 veces superior (hasta un 13%) a la mayor hallada en la Tierra. Esto lo convierte en un candidato ideal para el establecimiento de un asentamiento lunar, pues de la ilmenita podría extraerse hierro, titanio y oxígeno.

Recorte donde se observa el color azul vivo del Mare Tranquilitatis, las distintras fases de relleno del Mare Imbrium (izquierda) y el brillo de los impactos meteoríticos más recientes.

Las zonas de las tierras altas, con más cantidad de feldespato plagioclasa, tienen un color más claro, rosado-verdoso.

Mientras que los cráteres de impactos meteoríticos más recientes y sus eyectas aparecen como manchas realmente blancas, pues la roca que funden al impactar se convierte en un vidrio muy reflectante, que se va tornando opaco y oscuro con el paso del tiempo.

Actividades docentes relacionadas

PRÁCTICA RECOMENDADARealizar un mapa mineralógico de la Luna a partir de una fotografía.

Referencias

VÍDEO | La montaña vaciada. El abanico aluvial de candeleda (ávila)

Cráteres de impacto: Las cicatrices que dejan los meteoritos en nuestro planeta y cómo encontrarlas

En nuestro planeta existen cerca de 200 estructuras confirmadas como cráteres de impacto, es decir, cráteres producidos por el impacto de un meteorito. Parecen pocos comparados con los miles que plagan la superficie lunar. Sin embargo la Tierra ha recibido muchos más impactos que su satélite por su mayor gravedad y tamaño.

La mayor parte han sido borrados por los efectos de la meteorización y la tectónica de placas, otros han quedado sepultados por rocas sedimentarias y algunos siguen expuestos en superficie conservando su estructura original, o no.

Pero… ¿Cómo saber que un cráter ha sido producido por un meteorito y no por una erupción volcánica u otro proceso?

A la izquierda, el cráter de impacto Barringer, también conocido como «Meteor Crater», fue la primera estructura de impacto confirmada en nuestro planeta. A la derecha la caldera volcánica del Tambora. Fuente: NASA Image Gallery.

El impacto y sus consecuencias

Un impacto meteorítico se produce a una gran velocidad, entre 20 y 60 km/s aproximadamente. La naturaleza explosiva de un contacto a más de 100.000 Km/h hace que la forma de los cráteres sea casi perfectamente circular, a pesar de que los impactos pueden producirse con ángulos bajos y no siempre perpendiculares a la superficie terrestre.

Este contacto genera una gran explosión y una gran compresión de la roca impactada (basamento). Se estima que el impacto que acabó con los dinosaurios ( Chicxulub), producido por un meteorito de 10-15 Km, generó momentáneamente una cavidad de 40 Km de profundidad en la corteza terrestre, suponiendo una energía igual a 7.000 millones de bombas de Hiroshima.

Inmediatamente después se produce la descompresión, un rebote elástico del terreno que es el que genera la mayor parte de la eyecta (material impulsado violentamente a la atmósfera) en los grandes impactos, lo que sería la metralla de estas explosiones cósmicas. La eyecta está compuesta por:

  • Roca fundida (tectitas), ya que se alcanzan más de 2000 ºC durante el impacto.
  • Aerosoles producto de la vaporización total de las rocas que han alcanzado una presión de más de 100 Gpa (1.000.000 atm) durante el impacto.
  • Fragmentos de la roca impactada (depositada en forma de brecha).
  • Y en menor medida fragmentos del propio meteorito.

Evidencias del impacto

Fue en 1960 cuando se produjo la primera confirmación de una estructura de impacto en nuestro planeta, la del Cráter Barringer por parte del geólogo Eugene Shoemaker, quien revolucionó las ciencias planetarias. Hasta entonces se asumía un origen volcánico de la mayoría de cráteres, incluso se planteaba para los de la Luna.

Una de las evidencias principales del impacto suele ser la eyecta, que puede encontrarse en la zona del cráter o incluso a miles de kilómetros de distancia en los grandes impactos. Ésta puede estar formada por pequeños fragmentos de roca alterada por el calor y la presión del impacto: fundidos vítreos (tectitas), esférulas de carbono, agregados de restos minerales pulverizados y otras partículas como cuarzo chocado o nanodiamantes .

Por otra parte existen unas estructuras muy comunes en el basamento llamadas conos astillados (shatter cones) que son también habituales evidencias de impacto.

A) Esférula de Carbono microscópica (Wittke et al. 2013); B) Conos astillados en muestra de mano (Johannes Baier); C) Cuarzo chocado visto en lámina delgada al microscopio óptico (Martin Schmieder); D) Tectitas en muestra de mano (BrokenInAGlory).

La geoquímica también puede ser clave para identificar un impacto meteorítico. Así, concentraciones anómalas de elementos raros en zonas de la superficie terrestre o en las rocas sedimentarias como Platino, Iridio u Oro han servido para constatar impactos meteoríticos, incluso cuando su estructura original ha desaparecido por completo.

No todos los cráteres son iguales

A grandes rasgos, existen dos tipos principales de cráteres de impacto:

  • Cráteres simples: Es el primero que nos imaginamos, con forma de cuenco y con los bordes elevados sobre el terreno circundante. De este tipo son los cráteres de pequeño tamaño, pueden tener desde metros hasta pocos kilómetros. El famoso «Meteor Crater» o Cráter Barringer de Arizona es de este tipo.
  • Cráteres complejos: En los cráteres complejos existe, al menos, una elevación central producida por la descompresión y rebote elástico posteriores al impacto, lo que en los cráteres lunares se bautizó como «central peak«. De este tipo son los grandes cráteres del planeta y los más vistosos de la Luna (Tycho y Copernicus). Su estructura puede ser mucho más compleja y a veces presentan varios anillos de elevaciones además de la elevación central, sistemas de fallas y otras estructuras de deformación frágil y dúctil.
Ilustración: Javier Pérez Tarruella

¡Explora nuestro mapa de cráteres de impacto en la Tierra!

En este mapa puedes encontrar más de 80 estructuras de impacto confirmadas. Haciendo clic en ellas encontrarás curiosidades sobre su formación, su descubrimiento o las consecuencias que tuvieron. Algunos cambiaron por completo la vida en nuestro planeta. Los marcados en azul son los que consideramos más interesantes, ¡pero merece la pena explorarlos todos!

Sabías qué… Las cenizas de Eugene Shoemaker, geólogo pionero de las Ciencias Planetarias, descansan en un cráter cerca del polo Sur de la Luna llamado cráter Shoemaker. Son los únicos restos humanos que hay en nuestro satélite. Existe otro gran cráter en Australia llamado Shoemaker en su honor. Eugene no sólo demostró y destacó la importancia de los impactos meteoríticos en la historia de nuestro planeta, también estudió asteroides y cometas, siendo el descubridor principal del cometa Shoemaker-Levy 9, que en julio de 1994 impactó contra Júpiter, un suceso que es considerado el evento astronómico más importante del siglo XX.

Si quieres saber mucho más sobre Cráteres de impacto

En esta charla en directo te cuento muchas más curiosidades!

Referencias

  • French B.M. (1998). Traces of Catastrophe: A Handbook of Shock-Metamorphic Effects in Terrestrial Meteorite Impact Structures. 119pp. Lunar and Planetary Institute. Houston.
  • Grieve R.A.; Shoemaker, E.M. (1994). The Record of Past Impacts on Earth in Hazards due to Comets and Asteroids, T. Gehrels, Ed.; University of Arizona Press, Tucson, AZ, pp. 417–464.
  • Wittke, J. H., Weaver, J. C., Bunch, T. E., Kennett, J. P., Kennett, D. J., Moore, A. M. T., … Firestone, R. B. (2013). Evidence for deposition of 10 million tonnes of impact spherules across four continents 12,800 y ago. Proceedings of the National Academy of Sciences, 110(23)
  • NASA Image Gallery

Actualismo: el método científico que alumbró la geología moderna

Autor – Gabriel Castilla

Uno de los grandes problemas a los que se enfrenta la ciencia es el llamado pensamiento mágico, es decir, el razonamiento erróneo que hunde sus raíces en la religiosidad dogmática y la superstición. Es difícil conseguir que un individuo cambie de opinión sobre un tema, especialmente cuando éste forma parte de su sistema de valores, y es por ello que pocas personas cambian de equipo de fútbol, pensamiento político o confesión religiosa a lo largo de la vida. Esto se debe a que de manera natural nuestro cerebro filtra la información que le llega, prestando atención solo a aquella parte que confirma sus creencias y opiniones.

Los psicólogos llaman a este autoengaño selectivo sesgo cognitivo de confirmación, que explica, entre otras muchas cosas, por qué somos fieles a la línea editorial de un periódico o preferimos las tertulias de una determinada cadena de televisión. Este es, en esencia, el mecanismo mental que lleva a algunas personas a defender contra toda evidencia científica sus opiniones, aunque éstas les lleven a creer que la Tierra es plana o que el origen de los seres humanos en el marco de la teoría de la evolución es una falacia.

El hecho de que la historia de la Tierra y el origen de la humanidad aparezca relatada en la Biblia supuso un gran obstáculo para el desarrollo de las ciencias naturales, pues durante siglos numerosos pensadores intentaron acomodar sus observaciones con las revelaciones divinas del libro del Génesis.

La superación del sesgo de confirmación en las ciencias naturales

El primer científico que concibió una metodología capaz de liberar la geología de este yugo especulativo fue el naturalista de origen escocés James Hutton, que en su libro Teoría de la Tierra (1788) asumió que no se debe recurrir o inventar ninguna causa desconocida, fantástica o extraordinaria si los procedimientos lógicos disponibles pueden ser suficientes para explicar un fenómeno natural. O dicho de otro modo: el estudio de la naturaleza se debe abordar partiendo únicamente de hechos demostrados y verificables, pues solo razonando así es posible encontrar soluciones a problemas que antes eran inabordables. Además de fiabilidad, este método le otorga a la ciencia geológica la capacidad de hacer predicciones, o sea, la posibilidad de entender el futuro partiendo del pasado.

Fue otro naturalista de origen escocés, Charles Lyell (Figura 1), quien supo ver en esta conexión temporal la semilla de una nueva forma de pensar, el actualismo. Ante los ojos de Lyell los relieves de la corteza terrestre son consecuencia de la acción de procesos análogos a los que observamos en la actualidad (ríos, glaciares, el viento, volcanes, terremotos, etc.), de ahí el término actualismo. Desarrolló esta idea en el libro Principios de Geología (1830-1833) y la condensó en una sola frase: La clave del pasado está en el presente; estableciendo así una conexión entre los cambios experimentados por la tierra a lo largo del tiempo.

Figura 1. Calotipo de Charles Lyell hacia 1843-47. Fuente: Colección del Metropolitan Museum of Art en Internet Archive. Imagen procesada por el autor a partir del archivo original.

La idea de evolución temporal de la corteza, entendida como sinónimo de cambio, influyó decisivamente en Charles Darwin, quien tomó la obra de Lyell como libro de cabecera durante el viaje alrededor del mundo a bordo del Beagle.

Pocos años después, en 1847, se presentó en España la primera traducción al castellano de mano del geólogo Joaquín Ezquerra del Bayo, quien fue capaz de destilar la esencia de una obra científica de 650 páginas en unas pocas frases:

Grande ha sido la revolución que Lyell ha hecho en esta ciencia, aun cuando tal vez no sea suya la primera idea (…); cuasi la totalidad de los fenómenos que se observan en la corteza de nuestro globo, tanto con respecto al trastorno de las rocas que la constituyen, como con respecto a los restos de seres organizados que en ellas hay encerrados, se explican muy bien por la marcha natural de las mismas causas que están obrando en la actualidad; lo mismo que pasa ahora ha estado pasando hace muchísimo tiempo. La Geología ha perdido todo lo que tenia de fabuloso y de inconcebible, adquiriendo una sencillez que, no por eso deja de ser más admirable y más sorprendente.

Por aquella misma época, hacia 1843, el pionero de la fotografía William Henry Fox Talbot registraba la primera imagen de una investigación geológica de campo. Bajo el título The Geologists (los geólogos) muestra a un hombre y una mujer analizando un afloramiento de roca caliza en Chudleigh (Devon, Reino Unido). Todo apunta a que los protagonistas son el investigador Henry De La Beche y la naturalista autodidacta Mary Anning, primera geóloga de la historia (Figura 2).

El actualismo metodológico y la geología

Hoy, casi 180 años después de que se tomara esta fotografía (el nombre técnico es calotipo), geólogos y geólogas de todo el mundo desarrollamos nuestro trabajo en el contexto del llamado actualismo metodológico, que podemos resumir así: las causas que actúan modelando el planeta en la actualidad ya actuaron en el pasado, e incluso los procesos catastróficos (impactos de asteroides, cambios climáticos globales, etc.) deben entenderse como sucesos normales ocurridos en el pasado, que pueden suceder en el presente y que con toda probabilidad sucederán también en el futuro.

Figura 2. The Geologists calotipo realizado por William Henry Fox Talbot en 1843. Fuente: National Media Museum / Science & Society Picture Library. Imagen procesada por el autor a partir del archivo original.

Pero tal y como planteamos al principio, uno de los problemas a los que se enfrenta la ciencia moderna es el pensamiento que niega la realidad de los hechos verificables; un desafío para la razón que solo puede ser contestado desde la divulgación y la alfabetización científica de la sociedad. Para hacerlo posible es necesario disponer de herramientas didácticas que faciliten la enseñanza y el aprendizaje de las ciencias a cualquier edad, pues la única forma de aprender a razonar por analogía es practicando. Y es en este sentido donde los pinares que cubren los campos de dunas de La Moraña abulense nos ofrecen un inesperado recurso didáctico: su resina.

La resina y el ámbar como recurso didáctico

Figura 3. Mosquito siendo atrapado por la resina de un pino en las inmediaciones de El Oso (Ávila), inicio del complejo proceso de ambarización. A la derecha vemos una muestra de ámbar que contiene un mosquito fosilizado en su interior. Fuente: Gabriel Castilla y Wikipedia.

Como podemos ver en la Figura 3, la resina líquida puede atrapar todo tipo de partículas en su interior, como es el caso de este mosquito, cuyo aspecto es similar al que podemos observar en el interior de una muestra de ámbar. El ámbar es precisamente resina procedente de coníferas que ha experimentado un lento proceso de endurecimiento y enterramiento hasta su transformación en un fósil hace millones de años.

El ámbar es un tesoro para la ciencia debido a la enorme cantidad de información que podemos encontrar en su interior, pero también porque el proceso de ambarización es químicamente muy complejo y requiere que la resina sobreviva al proceso de degradación al que naturalmente se ve sometido por efecto del calor, la humedad y la descomposición por parte de bacterias y hongos. Es por ello que el ámbar es un mineral escaso en todo el mundo y se reconoce su valor ornamental desde la Edad del Bronce (2500-1500 a.C.), cuando la demanda debió ser tan elevada que incluso se han detectado falsificaciones realizadas con resina de pino en ajuares funerarios.

¿Significa esto que los autores de la falsificación establecieron por analogía una relación entre la resina y el ámbar? Probablemente sí. ¿Implica esto que aquellas personas llegaron a intuir la noción de actualismo, entendida como relación entre el presente (resina) y el pasado (ámbar)? Difícil saberlo.

Ver cómo quedan atrapados los insectos en la resina y alcanzar a comprender cómo logra ésta transformarse en un mineral requiere entender y manejar nociones abstractas como mineralización, fosilización y tiempo geológico.

Para comprender el concepto de actualismo son necesarios ejemplos tan claros como el que acabamos de ver, pues nos permite visualizar un proceso natural complejo de forma intuitiva y sencilla. Un paseo por La Moraña puede ser una experiencia didáctica inesperada si caminamos despacio y escuchamos con atención las historias que nos susurran sus árboles.

Fuentes de consulta

Las calcretas laminares de Viñegra de Moraña

Texto y gráficos – Alberto Martín. Imágenes – Gloria Martín Alonso

En regiones semiáridas, como lo fue La Moraña durante épocas pasadas, las plantas necesitan desarrollar mecanismos especiales para acumular nutrientes. Cuando las capas superficiales del suelo son permeables, el sustento que las plantas necesitan se acumula en los primeros metros, por lo que las raíces tratan de ocupar la mayor cantidad de superficie posible para conseguir alimento y agua.

En ocasiones podemos ver vestigios de cómo esos vegetales llevaron a cabo sus tácticas de supervivencia. En la localidad de Viñegra de Moraña encontramos un excepcional ejemplo.

Figura 1. Corte en la vía del tren donde se ven calcretas laminares.
Figura 1. Corte en la vía del tren.
Figura 2. Calcretas laminares.
Figura 2. Calcretas laminares.

En la segunda imagen se observan unas líneas blancas que se disponen de manera paralela al suelo. Son la evidencia que dejaron las raíces de las plantas que allí vivieron: los vegetales necesitaron disponer sus raíces de forma que ocuparan la máxima extensión posible; en este caso lo hicieron en forma de mallas para así impedir que los nutrientes escaparan tierra abajo.

Durante la vida de la planta, su raíz y los microorganismos asociados ayudan a la acumulación de carbonato en el entorno de la raíz y también en sus células. El proceso puede seguir después de la muerte de la planta. Esta acumulación de carbonato cálcico da lugar a lo que se conoce como calcretas.

Para ser más precisos, en el caso de Viñegra de Moraña hablamos de calcretas laminares (láminas de carbonato cálcico).

Si viéramos el corte donde se tomaron las fotografías de cerca, podríamos observar que alrededor de las calcretas principales aparecen unos hilos blanquecinos de menor tamaño. Esto indica que las raíces tenían una actividad fúngica a su alrededor. Estos hongos juegan un papel clave a la hora de fijar en las raíces el carbonato cálcico presente en el suelo.

Figura 3. Proceso de formación de calcretas.

Indicadores paleoclimáticos

Podemos encontrarnos calcretas con otras formas en la naturaleza, como nodulares, pulvurentas o muy compactas.

En regiones áridas, el polvo y las escasas precipitaciones realizan el aporte del carbonato cálcico. Por tanto, una calcreta es un excelente indicador paleoclimático, debido a que casi siempre se van a formar en zonas con precipitaciones muy bajas.

¿SABÍAS QUE…? El tiempo para que se forme un perfil de calcreta (sucesión vertical completa de los distintos horizontes o capas morfológicamente diferentes) depende de muchos factores: vegetación, clima y estadio de madurez. Puede darse una variación tan grande que pueden tardar entre 3.000 y 1 millón de años.

Para saber más sobre otros indicadores paleoclimáticos: Estudio de la evolución paleoclimática a partir de las turberas.

Actividades docentes relacionadas

RECURSO DIDÁCTICOA web tutorial for the petrographic analysis of carbonate rocks

Bibliografía

Reconstruyendo el paisaje a partir de un puñado de arena

Autores – Gabriel Castilla y Davinia Díez Canseco

Cuando nos detenemos a contemplar un paisaje, ya sea en el campo o en una fotografía, hay una pregunta que surge casi de manera espontánea: ¿cómo se formó el relieve que observamos? Intuimos que las llanuras, valles y montañas debieron originarse por la acción lenta pero continuada durante mucho tiempo del agua, el hielo o el viento; agentes que pueden arrancar materiales de un sitio para reubicarlos en otros. La experiencia nos induce a pensar que las rocas que configuraban el relieve primordial fueron disueltas o arrancadas, trituradas y transportadas lejos de allí.

La siguiente pregunta también surge por sí misma: ¿dónde fueron a parar todos estos materiales? Podemos deducir que viajaron hasta un lugar tranquilo donde el agua, el hielo o el viento perdieron su energía, depositándolos en forma de sedimentos (arcilla, limo, arena o grava) en una depresión del terreno o tal vez en el mar.

Y así, razonando paso a paso, construimos las nociones de erosión, transporte y sedimentación.

Figura 1. Cárcavas del río Adaja cerca de Blascosancho. En esta imagen se aprecian los tres procesos básicos que han modelado el paisaje: erosión, transporte y sedimentación. Foto: Gabriel Castilla.

Pero estas nociones son tan generales que apenas nos permiten conocer detalles sobre el tipo de rocas que formaban el relieve desaparecido, los procesos geológicos que actuaron o la distancia que recorrieron las partículas o clastos (minerales, fragmentos de roca y fósiles) antes de sedimentar. Para aclarar cómo se formó el paisaje y dónde fueron a parar los materiales que faltan es preciso detenerse antes en dos conceptos clave: selección y madurez.

Proceso de selección de materiales

Existe una relación directa entre los clastos que encontramos en un sedimento y la roca de la que proceden. En el caso del granito, la roca más abundante de la provincia de Ávila, tres son los minerales que lo constituyen: cuarzo, feldespato y mica.

Para saber más sobre el granito y su composición: Qué es el granito y cómo se forma.

Los tres minerales son liberados cuando el granito se ve alterado por procesos químicos (como la hidrólisis del feldespato) y físicos (fracturación por cambios de presión y temperatura).

Descubre más sobre la alteración del granito en: La formación de los suelos.

En los continentes la reubicación de estos minerales la realizan fluidos como el agua (ya sea líquida o en forma de hielo) y el viento. El viaje entre el lugar donde se produce la erosión y la zona de sedimentación puede ser muy agresivo, por lo que algunos minerales se pueden romper y alterar químicamente hasta desaparecer.

Figura 2. Arena próxima a la laguna de El Ejido, formada por la erosión del granito y el transporte del sedimento. Foto: Gabriel Castilla.

Los agentes de transporte realizan un doble proceso de selección:

  1. El primero tiene que ver con la composición, pues el agua altera y degrada químicamente el feldespato y la mica mientras que mantiene el cuarzo (por ser químicamente estable y mecánicamente resistente).
  2. El segundo es una selección por tamaños, pues cuanto más baja es la energía o la densidad del fluido (como el aire) su capacidad de erosión y carga es menor, por lo que solo puede transportar clastos de unos milímetros de grosor. Sin embargo, cuando la energía y densidad del fluido es alta (como le sucede al agua líquida, al hielo o al barro), su capacidad de transportar material de todos los tamaños es mayor. 
Figura 3. Tipos de selección en función de la capacidad de carga y del medio de transporte. La selección del viento es alta (dunas) mientras que la de los ríos es más baja. Gráfico tomado de Corbí, H. y Martínez-Martínez, J. (2015).

Madurez de los materiales

Los geólogos llamamos arena al sedimento formado por clastos de rocas disgregadas cuyo tamaño oscila entre los 0,06 y los 2 milímetros de diámetro.

Cuando el viaje de la arena ha sido largo solo sobreviven las partículas más duras, cuyos bordes se van desgastando. Podemos decir entonces que:

  • Una arena es madura cuando está formada por granos de cuarzo que presentan forma redondeada y un tamaño similar entre ellos.
  • Por el contrario, diremos que una arena es poco madura cuando contiene minerales blandos (micas y feldespatos), de aspecto anguloso y con tamaños muy desiguales.

Figura 4. El grado de redondez que muestran los granos de cuarzo son un indicador del desgaste que han experimentado durante su transporte. Gráfico extraído de Carta de sorting estándar. Australian Government, Geoscience Australia (www.ga.gov.au).

¿Qué información podemos deducir del estudio de la madurez de un sedimento?

  • Una arena madura nos habla de un relieve montañoso lejano, de llanuras y zonas tectónicamente tranquilas, de un transporte largo e intenso en el que pueden haber participado muchos procesos geológicos, entre ellos el viento.
  • Una arena poco madura nos habla de un relieve montañoso cercano y de un transporte enérgico pero corto, propio de zonas montañosas tectónicamente activas, donde son frecuentes los torrentes y pueden ocurrir episodios de alta energía como las llamadas «vejigas» (deslizamientos de ladera en zonas de alta pendiente).

Para saber más sobre las llamadas «vejigas» : Reconciliando la tradición oral de las “vejigas” con la geología y el estudio de los riesgos naturales parte 1 y parte 2 (el caso concreto de Venero Claro).

Figura 5. Muestra de arena, sobre papel milimetrado, tomada en una duna al Noroeste de El Oso. Podemos apreciar una selección media-alta con partículas finas, pero también cantos de unos 2 mm tanto de cuarzo redondeado como de feldespato anguloso. Podemos comparar esta muestra con arena del desierto del Sáhara que presenta clastos redondeados y sedimento con clastos angulosos de un río seco de Black Mountain en Alberta (Canadá). Foto: Gabriel Castilla.

De dónde viene la arena de las dunas de La Moraña

Las dunas de La Moraña están formadas por cuarzo (62,5%), feldespato (35%) y fragmentos de roca y micas (2,5%).  En algunas encontramos arena de grano muy fino y bien seleccionadas, mientras que en otras las arenas son más gruesas y están peor seleccionadas. Esto significa que el viento formó las dunas movilizando clastos de dos áreas de origen muy distintas:

  1. Las arenas maduras que se encontraban en las terrazas y llanuras de inundación de los ríos de la cuenca del Duero.
  2. Y los sedimentos menos maduros formados por la erosión rápida de relieves montañosos del Sistema Central.
Figura 6. Grano de cuarzo de una duna de la Moraña visto al microscopio electrónico de barrido (MEB) a diferentes escalas. Podemos apreciar bordes redondeados, escamas en la superficie y el “piqueteo” formado por el continuo choque con otros granos de cuarzo.
Fotos realizadas por Jaime Cuevas González en el MEB de la Universidad de Alicante.

Como hemos podido ver la arena tiene historias que contarnos, relatos que han quedado escritos en la composición, forma y selección de los granos que la conforman. Además, al observar detalladamente un grano de cuarzo de una de las dunas de La Moraña con un microscopio electrónico de barrido (MEB), podemos apreciar en su superficie rasgos producidos por la acción prolongada del viento que nos hablan de las condiciones climáticas de extrema aridez que azotaron esta región hace 11.600 años.

Para saber más sobre la evolución climática de La Moraña: Youger Dryas: cambios climáticos que condicionaron el paisaje abulense y la vida humana.

Completa lo que sabes sobre las dunas de La Moraña en: Un mar de dunas en La Moraña y Descubrir los cinturones de dunas de Ávila.

Fuentes de consulta