Archivo de la categoría: La Moraña

comarca de La Moraña y Tierra de Arévalo, que corresponde geológicamente con la cuenca sedimentaria del Duero. Un paisaje llano de campos de cultivo infinitos con algunos cerros testigo y lagunas endorreicas dispersas.

GEOLODÍA 23. Cuando el río suena… ¿Cuánta agua lleva?

En Arévalo tienen su encuentro el río Adaja y su afluente el Arevalillo. Entre ambos drenan un área de casi 2.000 km2, pero sin la interacción con el subsuelo acabarían totalmente secos tras apenas dos días sin precipitaciones. La participación de las aguas subterráneas, la Geología, la evapotranspiración de las plantas o la presencia de embalses y lagunas condicionan el volumen de agua que acaba saliendo por el río y a qué ritmo lo hace.

Los Modelos Digitales del Terreno (MDT) son archivos que contienen datos de elevación de la superficie en un mapa de píxeles, estos nos permiten hacer una radiografía completa de estas cuencas de drenaje gracias a las diferencias de altitud entre píxeles. En la figura 1 vemos cómo cada punto de la red se ha coloreado en función del área drenada, es decir, en función del número de píxeles que llegan a él desde una altitud mayor. El Adaja recibe la mayor parte de sus aportes aguas arriba de la ciudad de Ávila, además en sus cursos altos las precipitaciones son mucho mayores, así que la mayor parte del caudal proviene de estas zonas.

Si cada gota de lluvia que cayese sus cuencas de drenaje acabase en los ríos, en Arévalo el Arevalillo llevaría un caudal medio de 9 m3/s y el Adaja de 25 m3/s ¡El caudal medio del Tormes en Salamanca!. Sin embargo, sin la interacción con el subsuelo estos caudales serían muy irregulares, muy elevados los días de lluvia, y con los cauces secos los días sin lluvia. La evaporación y evapotranspiración reduce el caudal del Adaja en un 75%. En el Arevalillo esta reducción es mucho más acusada, y es que es una cuenca muy particular, con zonas donde la red de drenaje no se ha organizado y existen cuencas endorreicas desconectadas del río, como es el caso de la Laguna de El Oso.

Las modelizaciones combinando los MDTs con la información climática, como la precipitación máxima diaria, nos permite, por ejemplo, calcular el peligro de inundación simulando lluvias torrenciales sobre este terreno. Como vemos en el mapa de la figura 2, en Arévalo este peligro no se traduce en un riesgo importante para la población, ya que las zonas expuestas al peligro no están pobladas ni forman cuentan con actividad económica.

Este contenido forma parte del Geolodía 2023 de Ávila en Arévalo, Ávila (España).

GEOLODÍA 23. Las terrazas colgadas del Adaja

Para que una corriente de agua erosione un valle fluvial se necesita un tiempo de evolución. En ese tiempo:

  1. Primero comienza a tallar la roca y predomina la erosión vertical.
  2. Después se van dibujando en el terreno los canales secundarios que conforman el área de drenaje de esa corriente.
  3. Y así sucesivamente, hasta llegar a sus interfluvios, los límites de la cuenca hidrográfica.

En una fase inicial, predomina la erosión vertical, pero los factores tectónicos o climáticos pueden hacer que esto cambie.

Cuando la energía de transporte no es suficiente para evacuar toda la carga, se colmata (se rellena) el cauce con sedimentos, formando así llanuras aluviales.

Mientras que en los períodos de mayor energía, la erosión excava en esos sedimentos encajando cada vez más el lecho del río. 

El resultado en el paisaje son terrazas colgadas adosadas a los márgenes, quedando topográficamente por encima las más antiguas sobre las más modernas.

Esquema de las 'terrazas colgantes' del río Adaja que se pueden observar desde el Mirador de Arévalo.
Esquema de las ‘terrazas colgantes’ del río Adaja que se pueden observar desde el Mirador de Arévalo.

Este contenido forma parte del Geolodía 2023 de Ávila en Arévalo, Ávila (España).

GEOLODÍA 23. Desliza para saber más

Autor: Pablo Melón

Los riesgos geológicos siempre están presentes en nuestras vidas, en ocasiones por causas naturales y en otras debido a una mala ordenación del territorio. 

Para saber más sobre riesgos geológicos puedes consultar: Los riesgos geológicos y la vida moderna

Uno de los riesgos más habituales en zonas escarpadas es el deslizamiento de ladera o deslizamiento rotacional

Este tipo de movimiento de materiales en masa se produce debido a diversos factores entre los que destacan:

  • La erosión a favor de zonas de debilidad en la roca.
  • La inclinación del terreno.
  • La vibración provocada por los terremotos.
  • La saturación del suelo al acumularse el agua de lluvia.
  • O la acción de los seres humanos.

Al desplazarse el suelo o la roca se produce un deslizamiento en forma de arco que desplaza toda la masa ladera abajo.

El deslizamiento que podemos observar en Arévalo probablemente haya estado activo durante varios años y se mueva ligeramente en periodos de lluvia intensa. Resulta evidente el riesgo que esto implica para las construcciones que hay sobre la ladera.

Gráfico de deslizamiento rotacional o de ladera. Gráfico de Pablo Melón.
Gráfico de deslizamiento rotacional o de ladera. Gráfico de Pablo Melón.

La disminución de estos riesgos implica hacer estudios de estabilidad y una planificación adecuada del territorio para evitar la construcción en zonas con alto riesgo de deslizamiento.

Este contenido forma parte del Geolodía 2023 de Ávila en Arévalo, Ávila (España).

GEOLODÍA 23. Hotel de insectos

Autoría: María González Martín y Thibauld M. Béjard

La concienciación ambiental y el aumento del interés social por el cambio climático propicia la aparición de técnicas alternativas para mantener la biodiversidad. Una de ellas es la aparición de hoteles de insectos en diferentes puntos de la península, como en Arévalo (provincia de Ávila, Castilla y León). Un hotel de insectos es una estructura con diferentes secciones, tamaños y huecos que sirven de refugio a numerosos organismos, como abejas, saltamontes y diversos insectos polinizadores. Hoy en día se utilizan tanto para incrementar la biodiversidad local, tanto como forma ecológica de controlar plagas e invasiones en plantaciones y huertos. Actualmente, se considera que los insectos son unos de los grupos con mayor diversidad y éxito evolutivo, por lo que su impacto en los ecosistemas es muy importante. Pero, ¿ha sido siempre así? ¿Cuándo aparecieron por primera vez estos organismos? ¿En qué momento de la historia de la Tierra han un tenido su mayor éxito evolutivo?

Aparición de los insectos y características principales

El género Insecta apareció casi simultáneamente con las plantas terrestres, hace alrededor de 480 millones de años (Ma), durante el periodo Ordovícico. Estudios recientes muestran que los primeros insectos (por ejemplo, abejas y hormigas actuales) evolucionaron a partir de un grupo de crustáceos (como cangrejos y gambas). Hoy en día, hay alrededor de 1 millón de especies descritas, y se estima que podría haber entre 1.5-1.8 millones de especies en total, lo que representa el 90% de los organismos del planeta

Figura 1. Repartición de las especies del reino animal en función de si son vertebrados o invertebrados.

El cuerpo de los insectos se puede separar de manera sencilla en 3 partes: cabeza, tórax y abdomen. Una de sus características principales son sus 6 patas repartidas en 3 pares. De un punto de vista de su anatomía interna, destaca su sistema respiratorio: el aire entra a través de aperturas externas llamadas espiráculos, y se reparte a través del cuerpo por una red de tubos llamados tráqueas. En este sistema, el oxígeno se transporta directamente a las células del organismo, pero el aparato respiratorio no transporta los gases ni participa en la respiración de los tejidos, por lo que cualquier cambio en la concentración de oxígeno atmosférico tiene un impacto importante para lo insectos.

A lo largo de la historia de la Tierra, la diversidad y morfología de los insectos ha variado considerablemente en función de factores como la temperatura, la concentración de oxígeno en la atmósfera, la disponibilidad de alimento y la presencia de depredadores.

El Carbonífero y el Pérmico, los periodos de los insectos gigantes

El Carbonífero se desarrolló hace 358 a 298 Ma aproximadamente. Se caracteriza por unas temperaturas relativamente elevadas y una gran humedad. Estas condiciones favorecieron la aparición de los famosos bosques y pantanos del Carbonífero, un entorno favorable al desarrollo de la fauna y flora.

Durante este periodo, los insectos lograron una gran diversidad y tamaños gigantes. Entre otros, aparecieron los primeros insectos alados, como las cucarachas y las libélulas. En particular, dos especies: Meganeura monyi y americana (parecidas a las libélulas actuales) alcanzaron envergaduras de hasta 70cm, lo que las convierte en los mayores insectos voladores de la historia de la Tierra.

Comparativa del tamaño de insectos.
Figura 2. Comparación de la mayor libélula actual (Anax junius) con el mayor insecto volador de la historia (Meganeura monyi) y con una persona de estatura media.

Estos organismos llegaron a desarrollar tamaños tan grandes debido a la concentración en oxígeno en la atmósfera: 35%, en lugar de un 20% actual, la mayor concentración registrada hasta la actualidad; pero también debido a la ausencia de depredadores.

Durante el Pérmico, desde hace 298 a 250 Ma, aparecieron los primeros escarabajos, moscas y mariquitas. Este periodo representa el de mayor abundancia de insectos, donde su éxito evolutivo fue mayor, especialmente los blatoideos (cucarachas).

Al final del Pérmico, sucedió la mayor extinción registrada en la Tierra, la crisis del Pérmico-Triásico, donde casi 90% de todas las especies se extinguieron, sin embargo, “sólo” 30% de las especies de insectos desaparecieron.

El Jurásico y el Cretácico, aparición de las aves y disminución del tamaño

En el Jurásico (200 a 150 Ma), al igual que en el Carbonífero, el clima era cálido y húmedo. En este periodo, las aves comienzan a desarrollarse, siendo el fósil de Archaeopteryx la primera evidencia de la aparición de estos organismos. Los insectos voladores se ven ahora sometidos a la presión de los depredadores y en el registro fósil se observa un gran incremento de especies de insectos no voladores como escarabajos y cucarachas.

Figura 3. Fósil de archeopteryx, la primera ave descrita, en el museo de historia natural de Berlín. Fuente: https://www.museumfuernaturkunde.berlin

En el Cretácico (150 a 66 Ma), cuyo clima seguía siendo cálido y húmedo, las aves han desarrollado técnicas de vuelo especializadas, haciendo de ellas depredadores más eficaces. Estudios recientes muestran que el registro fósil presenta especies e individuos cada vez más pequeños y hasta extinciones localizadas de insectos voladores durante este periodo, aunque la concentración de oxígeno atmosférico haya aumentado. 

A partir de este periodo, la concentración en oxígeno o la temperatura ya no van a ser los factores principales que van a controlar la distribución de los insectos, ahora tienen depredadores.

Al terminar el Cretácico, vuelve a suceder… una extinción: la extinción del Cretácico-Terciario. Aunque haya sido menos extrema, es más conocida, pues es la responsable de la desaparición de los dinosaurios. 

Figura 4. Comparación de los mayores insectos voladores y no voladores actuales.

El Paleógeno, aparición de los géneros modernos

El Paleógeno (66 a 23 Ma) se conoce principalmente por su clima tropical y por la diversificación de los mamíferos. La aparición de las plantas con flores modernas propició la expansión de insectos polinizadores. La mayoría de insectos que conocemos actualmente, así como su distribución y abundancia, tienen su origen en este periodo.

Los insectos, a pesar de aparecer hace más de 400 millones de años, sobrevivir a dos extinciones masivas (y un sinfín de pequeños eventos extintivos) y aguantar la aparición de aves depredadoras, siguen siendo la clase con mayor biodiversidad del planeta. Su rápido ciclo reproductivo, así como su capacidad evolutiva hace pensar que va a seguir siendo así en el futuro. Desde libélulas de 70 cm de envergadura, a escarabajos peloteros, pasando por abejas y mosquitos, un hotel de insectos siempre encontrará huéspedes, ¡en cualquier periodo geológico, año, mes, o día de la semana!

Bibliografía

  • Barrientos, J.A., Abelló, P., 2004. Curso práctico de entomología. Universitat Autònoma de Barcelona ; CIBIO, Centro Iberoamericano de la Biodiversidad ; Asociación Española de Entomología, Bellaterra, Alicante, [S.l.]. ISBN: 978-84-490-2383-5.
  • Grimaldi, D.A., Engel, M.S., 2005. Evolution of the insects. Cambridge University Press, Cambridge [U.K.] ; New York. ISBN: 978-0-521-82149-0.
  • Kjer, K.M., Simon, C., Yavorskaya, M., Beutel, R.G., 2016. Progress, pitfalls and parallel universes: a history of insect phylogenetics. J. R. Soc. Interface. 13, 20160363. https://doi.org/10.1098/rsif.2016.0363
  • Wipfler, B., Letsch, H., Frandsen, P.B., Kapli, P., Mayer, C., Bartel, D., Buckley, T.R., Donath, A., Edgerly-Rooks, J.S., Fujita, M., Liu, S., Machida, R., Mashimo, Y., Misof, B., Niehuis, O., Peters, R.S., Petersen, M., Podsiadlowski, L., Schütte, K., Shimizu, S., Uchifune, T., Wilbrandt, J., Yan, E., Zhou, X., Simon, S., 2019. Evolutionary history of Polyneoptera and its implications for our understanding of early winged insects. Proc. Natl. Acad. Sci. U.S.A. 116, 3024–3029. https://doi.org/10.1073/pnas.1817794116

Este contenido forma parte del Geolodía 2023 de Ávila en Arévalo, Ávila (España).

GEOLODÍA 23. La influencia de la geología en la arquitectura histórica

Al observar las edificaciones históricas de cada región vemos cómo la geología ha jugado un papel fundamental como proveedora de materiales de construcción.

Cuando en la Antigüedad se planteaban construir edificios que tenían que perdurar en el tiempo, como las iglesias o los castillos, se servían de las rocas del entorno por ser materiales resistentes y duraderos.

Pero en la zona de Arévalo las únicas piedras disponibles son las calizas rajuela, que por su tendencia a romperse formando lascas no pueden utilizarse para la fabricación de sillares pero sí como bloques aglomerados en una argamasa de arena y cal.

El arte mudéjar

Traer piedra de otras zonas de Ávila, como los granitos del sur de la provincia, supondría un coste grandísimo imposible de asumir para las comunidades que vivían en la zona de La Moraña. Esta situación agudizó el ingenio de quienes habitaban en la zona hasta el punto de desarrollar un estilo arquitectónico exclusivo de nuestra península: el arte mudéjar.

El elemento principal de la arquitectura mudéjar es el ladrillo y éste se fabrica a partir de arenas y arcillas.

Todo el entorno de Arévalo consiste en este tipo de depósitos, como podemos ver a lo largo del paseo fluvial. Y prueba de su uso para la construcción es el nombre del Puente de los Barros, ya que ‘barros’ era la manera coloquial de referirse al material con el que se fabricaban los ladrillos.

Detalle de ladrillos utilizados en la construcción de monumentos históricos de Arévalo. Imagen: Gabriel Castilla.
Detalle de ladrillos utilizados en la construcción de monumentos históricos de Arévalo. Imagen: Gabriel Castilla.
Detalle de piedra utilizada en los monumentos de Arévalo. Imagen Gabriel Castilla.
Detalle de piedra utilizada en los monumentos de Arévalo. Imagen Gabriel Castilla.

Este contenido forma parte del Geolodía 2023 de Ávila en Arévalo, Ávila (España).

GEOLODÍA 23. Los daños del terremoto de Lisboa en el interior de la península ibérica

Si lo prefieres, puedes escuchar este post aquí:


A pesar de que en el centro-oeste de la península (Ávila incluida) apenas hay terremotos que hayan generado daños -casi todos han sido de intensidades pequeñas-, sí hay un evento que provocó daños generalizados en gran parte del patrimonio histórico de muchos de nuestros municipios y ciudades.

Me refiero al terremoto de Lisboa de 1755, ese evento catastrófico que golpeó gran parte de la costa atlántica de la península y norte de África, causando daños muy importantes en Portugal y que provocó cerca de 100.000 víctimas mortales. Solo en España murieron más de 1200 personas por causas asociadas al tsunami causado por el terremoto .

El terremoto de Lisboa sucede en 1755 y aún no tenemos claro ni su origen -qué falla fue la que se disparó-, aunque sabemos que el epicentro se sitúa en el mar al suroeste del cabo de San Vicente, en Portugal. Ni tampoco su magnitud (probablemente en torno a 9, una de las mayores registradas en los últimos siglos).

Grabado de 1755 que muestra las ruinas de la ciudad en llamas y un maremoto arrollando los barcos del puerto tras el gran terremoto.
Grabado de 1755 que muestra las ruinas de la ciudad de Lisboa en llamas y un maremoto arrollando los barcos del puerto tras el gran terremoto. Autor desconocido. Dominio público. Obtenida de Wikipedia.

Pero sí conocemos la distribución de daños que generó en superficie. Esto es, su intensidad.

Si no conoces la diferencia entre magnitud e intensidad de un terremoto, aquí te lo explicamos: Magnitud e intensidad en los terremotos

En este mapa puedes ver la distribución de intensidades del terremoto de Lisboa, desde la máxima X hasta IV, que afectó a toda la península ibérica.

Salamanca, Segovia, Ávila, Madrid o Toledo quedan dentro de la zona de intensidad V, en la cual ya se producen ciertos daños. Aunque la incidencia en esta zona está muy lejos de la destrucción enorme provocada en Lisboa o en la costa atlántica de la península, por supuesto.

Mapa de distribución de intensidades, desde la máxima X hasta IV. Salamanca, Segovia, Ávila, Madrid o Toledo quedan dentro de la zona de intensidad V, en la cual ya se producen ciertos daños.
Mapa tomado de Silva y colaboradores (2023).

Grietas en los muros

Sin embargo, este fenómeno natural de proporciones enormes dejó un registro de daños muy característico en la zona central de la península ibérica.

Son visibles en iglesias, palacios, monasterios y murallas construidas con anterioridad a 1755 y muchas veces pasan desapercibidas: las grietas que en ocasiones tienen un calado importante que rompe la continuidad de muros. Muchas de ellas reparadas en su momento, como esta en la calle de Tentenecio, en Salamanca.

Grieta provocada por el terremoto de Lisboa en la calle Tentenecio, Salamanca.

Claves caídas

Otra de las huellas más comunes que podemos observar en el patrimonio es la caída de las claves en los arcos, muy visibles también en pórticos de palacios e iglesias como esta en la Iglesia de Santo Domingo de Silos en Arévalo.

La sacudida sísmica hace que todo el conjunto del edifico se mueva (A) y la clave hace su trabajo de fijación del arco bajando (C), de manera que cuando el terremoto cesa ésta queda atrapada en esa posición más baja de la que originalmente tenía. La cotidianidad de su vista hace que nos habituemos a la presencia de estos elementos y no nos fijemos en su existencia.

Esquema tipo de un arco (A) con la clave antes (B) y después (C) de un terremoto. Típicamente, la clave se mueve por gravedad y se queda encajada en una posición más baja que la original.
Esquema tipo de un arco (A) con la clave antes (B) y después (C) de un terremoto. Típicamente, la clave se mueve por gravedad y se queda encajada en una posición más baja que la original.

¿Qué es la Arqueosismología?

Estos daños en el patrimonio sirven también para estudiar las características del terremoto que las generó. En geología hay una disciplina que estudia la intensidad de los terremotos antiguos a partir de los daños en el patrimonio histórico y arqueológico.

Se denomina Arqueosismología y permite definir parámetros de estos fenómenos naturales que sucedieron hace siglos o milenios de forma muy precisa.

Como curiosidad, en España se han encontrado incluso evidencias de estructuras megalíticas afectadas por terremotos, con lo que podemos descifrar la actividad sísmica a pesar del tiempo transcurrido.

Este contenido forma parte del Geolodía 2023 de Ávila en Arévalo, Ávila (España).

Bibliografía

Pablo G. Silva, Javier Elez, Raúl Pérez-López, Jorge Luis Giner-Robles, Pedro V. Gómez-Diego, Elvira Roquero, Miguel Ángel Rodríguez-Pascua, Teresa Bardají, 2023. The AD 1755 Lisbon Earthquake-Tsunami: Seismic source modelling from the analysis of ESI-07 environmental data. Quaternary International, 651, 6-24, ISSN 1040-6182.

GEOLODÍA 23. El Patrimonio Geológico como herencia y su conservación

Autor: Jaime Cuevas

Si lo prefieres, puedes escuchar este artículo aquí:

Cualquier forma de terreno natural que no haya sido modificada por la acción humana se ha formado o configurado por procesos geológicos. Tanto las discretas lomas en campo abierto como una imponente montaña tienen detrás procesos y materiales geológicos que generalmente se remontan a cientos, miles o millones de años.

Imagen de Monument Valley, Arizona, USA. Foto de Iván Pérez.
Monument Valley (Arizona, USA). Imagen de Iván Pérez.

La lentitud de estos procesos, junto con la profundidad del tiempo geológico, crea una abrumadora relación de escala comparada con la percepción humana del tiempo.

Para saber más sobre el tiempo geológico: Cómo se entiende el tiempo en geología.

Por esta razón, la destrucción de un fósil o la modificación del relieve por expansión de infraestructuras u obtención de recursos deja una sensación de proceso irreversible: si desaparece una forma o elemento del paisaje, sin duda los procesos geológicos la podrán repetir, pero probablemente no esté ya la humanidad para observarlo.

Por ello, tenemos la responsabilidad de cuidar y valorar una herencia de formas y elementos geológicos, para trasmitirla a futuras generaciones y que también puedan observarlas, estudiarlas o simplemente disfrutarlas. La idea de herencia entre generaciones es uno de los enfoques más claros para entender el concepto de Patrimonio Geológico.

¿Qué es el Patrimonio Geológico?

Bajo el marco de Patrimonio Geológico se hace referencia a aquellos lugares u objetos naturales de origen geológico que tienen valores científicos, culturales o educativos, tales como rocas, minerales, fósiles o paisajes.

Debido al largo tiempo necesario para formarse, estos objetos naturales contienen fragmentos de información sobre procesos del pasado que ayudan a comprender la historia de la Tierra, de la Vida e incluso del Universo.

Los avances tecnológicos actuales permiten llegar a un nivel de resolución muy preciso sobre esa información, pero obviamente esta resolución irá aumentando con futuras técnicas analíticas aún no desarrolladas.

Esta es otra buena razón para conocer, cuidar y mantener en las mejores condiciones posibles la herencia geológica que hemos recibido y que dejaremos a las futuras generaciones.

Evolución de la geoconservación

Las primeras iniciativas de geoconservación de lugares o elementos geológicos en España las promueve y coordina el Instituto Geológico y Minero de España (IGME).

Con la elaboración durante las décadas de los 70 y 80 del Mapa Geológico Nacional por parte del IGME se pone en marcha el Inventario Nacional de Puntos de Interés Geológico, un primer catálogo donde se recogen lugares emblemáticos desde el punto de vista geológico.

En la década de los 90 hay un creciente interés general por la geoconservación y surgen distintas iniciativas de catalogación por parte de algunas Comunidades Autónomas, pero con una cobertura muy desigual del territorio.

Hacia el final del siglo XX la UNESCO y la Sociedad Geológica Internacional (IUGS) promueven el proyecto Global Geosites, un catálogo de lugares de interés geológico que sigue unos criterios específicos para justificar su relevancia mundial.

Lógicamente, hay muchos otros lugares que no alcanzan ese grado de singularidad global, aunque no por ello sean menos interesantes y merecedores de una catalogación y puesta en valor.

Inventario Español de Lugares de Interés Geológico (IELIG)

Con el objetivo de hacer un inventario nacional completo y unificado, en 2011 el IGME pone en marcha el Inventario Español de Lugares de Interés Geológico (IELIG) que pretende unir y ampliar las anteriores propuestas de catalogación, tanto internacionales como de ámbito nacional y autonómico.

Actualmente el IELIG tiene más de 4.500 lugares de interés geológico que en la web info.igme.es/ielig/ se pueden consultar públicamente para que los conozca la ciudadanía, las instituciones y que, en última instancia, sean considerados en los planes de ordenación territorial de cada municipio. Además, este catálogo está abierto a seguir ampliándose incluyendo nuevas propuestas de lugares de interés geológico.

Imagen de la base de datos de Lugares de Interés Geológico (IELIG) del IGME. Permite realizar búsquedas por poblaciones o puntos geográficos.
Imagen de la base de datos de Lugares de Interés Geológico (IELIG) del IGME. Permite realizar búsquedas por poblaciones o puntos geográficos.

IELIGs en Arévalo

En el entorno de Arévalo hay actualmente tres puntos catalogados en el IELIG.

Mapa de localización de los tres lugares de interés geológico en las inmediaciones de Arévalo (Ávila).
Mapa de localización de los tres lugares de interés geológico en las inmediaciones de Arévalo (Ávila).

Dos de ellos son de interés geomorfológico, sedimentológico y estratigráfico y se encuentran en campos de dunas pleistocenas del último episodio glacial hace unos 10.000 años. Son formaciones geológicas de arenales naturales, donde en algunos puntos aún se pueden observar antiguas canteras para la extracción de áridos. Estas formaciones de dunas son importantes para los estudios paleoclimáticos ya que constituyen registros de una época con un clima en la región de Ávila muy distinto al actual.

Vista de los frentes de la cantera abandonada del LIG Dunas eólicas cuaternarias de Arévalo (DI127). Tomada de info.igme.es/ielig/
Vista de los frentes de la cantera abandonada del LIG Dunas eólicas cuaternarias de Arévalo (DI127). Tomada de info.igme.es/ielig/

Si quieres ampliar información sobre las dunas de Ávila, te recomendamos: Un mar de dunas en La Moraña | Herramientas para descubrir los cinturones de dunas de Ávila

El tercer LIG se encuentra en las márgenes del río Arevalillo y es el yacimiento de vertebrados de La Lugareja. En él se han encontrado fósiles de tortugas gigantes y del mamífero Hispanomerix, un pariente del actual ciervo almizclero asiático. Este yacimiento es del periodo Mioceno superior hace 9 millones de años y es de especial relevancia por su interés paleontológico.

Parte anterior del peto de Titanochelon bolivari encontrado en Arévalo (Ávila) y expuesto en la Sala de las Tortugas, en la Universidad de Salamanca. Hernández-Pacheco, 1917.

Apadrina una roca

En el contexto del IELIG está incluida la iniciativa “Apadrina una roca”.

Se trata de un programa de participación ciudadana en el que cualquier persona puede “apadrinar” un LIG que le resulte interesante y que pueda visitar con frecuencia.

Desde la página web del IELIG se puede participar mediante un formulario de datos básicos y con el compromiso de visitar regularmente el LIG para comprobar su estado.

El objetivo es crear un vínculo entre los participantes de esta iniciativa y los LIG que han elegido, de forma que tengan un canal de comunicación con el IGME para informar de incidencias que puedan amenazar su integridad.

Logo del proyecto de participación ciudadana Apadrina una Roca está promovido por el IGME para el cuidado y protección de los lugares de interés geológico
El proyecto de participación ciudadana Apadrina una Roca está promovido por el IGME para el cuidado y protección de los lugares de interés geológico.

Este contenido forma parte del Geolodía 2023 de Ávila en Arévalo, Ávila (España).

GEOLODÍA 22. Los elementos del paisaje en Villaflor

Autoría: Davinia Díez Canseco y Jaime Cuevas

En esta panorámica general podemos ver tres elementos del paisaje que narran las historias que han ocurrido en este lugar a lo largo del tiempo geológico.

Desde esta panorámica vemos 3 elementos del paisaje que narran las historias que han ocurrido aquí a lo largo del tiempo geológico. Imagen de Gabriel Castilla.
Desde esta panorámica vemos 3 elementos del paisaje que narran las historias que han ocurrido aquí a lo largo del tiempo geológico. Imagen de Gabriel Castilla.
  1. El primer elemento son los arroyos, torrentes y procesos de erosión que modelan rápidamente el paisaje y que hacen preguntarnos si un romano vería el mismo entorno que vemos ahora.
  2. El segundo elemento es el relieve cercano formado por materiales geológicos del periodo Mioceno (14 millones de años), cuando esta zona fue habitada por antiguos vertebrados que dejaron sus restos en yacimientos paleontológicos como el que acabáis de ver. Estos fósiles, junto con las calcretas, permiten dibujar un entorno de clima y paisaje muy distinto al actual. ¿Qué tipo de paisaje vieron estos antiguos mamíferos?
  3. El tercer elemento son las montañas que hay al fondo, que permiten descifrar otras historias que emergen desde lo más profundo del tiempo. De allí son las rocas que en otro tiempo fueron sedimentos de océanos, se enterraron bajo cordilleras para luego volver a la superficie, incluso algunas que antes fueron magmas en el interior de la corteza.
Esta fue la última parada del Geolodía 22 de Ávila en Villaflor.

El desafío final

Además de sintetizar todos los elementos del paisaje que el público asistente había recorrido, aquí debían resolver el ‘desafío final’, acertar la frase oculta siguiendo las pistas recogidas durante su exploración del laberinto.

Las pistas recogidas en cada parada geológica
La frase oculta

Mapa central de la guía de campo. En él se indican el área de juego y la posición aproximada de las paradas geológicas. Además, se facilita un espacio para pegar cada una de las pistas recogidas durante la exploración del laberinto y el acertijo final que el público asistente tendrá que adivinar basándose en las pistas.
Mapa central de la guía de campo. En él se indican el área de juego y la posición aproximada de las paradas geológicas. Además, se facilita un espacio para pegar cada una de las pistas recogidas durante la exploración del laberinto y el acertijo final que el público asistente tendrá que adivinar basándose en las pistas.
La solución
Solución al desafío final del Geolodía 22 de Ávila en Villaflor.
Solución al desafío final del Geolodía 22 de Ávila en Villaflor.

Este contenido formó parte del Geolodía 2022 de Ávila.

Raíces de carbonato. Calcretas y clima

En algunas paredes del laberinto de Villaflor podemos observar un patrón de líneas blancas. Son en realidad láminas de carbonato cálcico que han sido cortadas por la incisión de la red de drenaje.

Estas láminas se formaron gracias a la actividad de raíces de plantas en simbiosis con microorganismos y hongos, y es lo que conocemos como calcretas.

En un clima semiárido los nutrientes y el agua son bienes muy preciados y los vegetales desarrollaron estas estructuras para ayudar a retenerlos cerca de sus raíces.

Así, la presencia de estas láminas nos habla de unas condiciones climáticas concretas, de aridez y temperaturas suaves o cálidas hace millones de años.

Calcretas laminares en la pared de un canal del laberinto. En realidad son láminas de carbonato cálcico expuestas al ser cortadas por el “cuchillo” de la red de drenaje. Imagen de Javier Pérez Tarruella.
Calcretas laminares en la pared de un canal del laberinto. En realidad son láminas de carbonato cálcico expuestas al ser cortadas por el “cuchillo” de la red de drenaje. Imagen de Javier Pérez Tarruella.

Cuando las calcretas se presentan en forma de láminas entrecruzadas y no como grandes capas, nos indican que la sedimentación era puntual y esporádica: en determinados eventos de tormenta se producía sedimentación, que provocaba la muerte de la lámina activa y la formación de nuevas láminas, que cortan a las anteriores.

Carbono para arriba, Carbono para abajo

Las rocas en las que están desarrolladas las calcretas de Villaflor no contienen carbonato, el carbonato era aportado en parte por el polvo en suspensión (como el de las invasiones de polvo del Sáhara que sufrimos actualmente).

Las calcretas fijan carbono en la corteza terrestre, así que tienen su papel en el ciclo del CO2 .

Las plantas absorben CO2 para convertirlo en hojas, madera y raíces, pero al morir la planta, estos elementos se oxidan y el carbono vuelve a la atmósfera. Sin embargo, el carbono fijado en la calcreta no se oxida, se fija y pasa a formar parte de la litosfera, hasta que la meteorización lo disuelva y vuelva a formar parte de la atmósfera.

Este es uno de los contenidos del Geolodía 22 de Ávila en Villaflor.

La prueba del ácido

Cuando echamos ácido clorhídrico en la calcreta para comprobar su contenido en carbonato cálcico, estos compuestos reaccionan y forman agua, CO2 que escapa formando burbujas y cloruro de calcio, que se disuelve en el agua.

Así, en este gesto devolvemos a la atmósfera Carbono que había sido retenido en la corteza terrestre durante millones de años.

Este es uno de los contenidos del Geolodía 2022 de Ávila.

Aprende más sobre las calcretas laminares de La Moraña

La datación relativa en geología

Autoría: Pablo Melón y Ana Isabel Casado

En el laberinto de Villaflor estás en un sistema de drenaje donde el agua “corta” el sedimento como si fuera un cuchillo y se lo lleva, dejando ver cada capa. Ahora, están todas las capas pero… ¿habrá sido siempre así?

Presta atención a lo que ves para poder interpretar cómo se relacionan unas capas con otras y ordenar los componentes del laberinto de más antiguo a más moderno, utilizando la datación relativa.

Para entender lo que te rodea tienes que fijarte bien. ¿Hay cosas que se repiten? ¿Todo tiene el mismo color? Gráfico de Ana Isabel Casado.
Para entender lo que te rodea tienes que fijarte bien. ¿Hay cosas que se repiten? ¿Todo tiene el mismo color? Gráfico de Ana Isabel Casado.

La datación relativa es un método de datación empleado en geología en el que se ordenan los eventos de más antiguo a más moderno sin asignarles edades concretas. Estos son los principios en los que se basa:

Esta fue una de las paradas geológicas en la actividad Geolodía 22 en Villaflor, el domingo 8 de mayo de 2022.
Este es el juego que se propuso al público asistente a la actividad. En él debían colocar correctamente cada evento según el principio de datación relativa explicado en la parada geológica. ¡La mayoría tuvieron un 10!

Este contenido formó parte de la actividad Geolodía 2022 de Ávila.