En esta panorámica general podemos ver tres elementos del paisaje que narran las historias que han ocurrido en este lugar a lo largo del tiempo geológico.
Desde esta panorámica vemos 3 elementos del paisaje que narran las historias que han ocurrido aquí a lo largo del tiempo geológico. Imagen de Gabriel Castilla.
El primer elemento son los arroyos, torrentes y procesos de erosión que modelan rápidamente el paisaje y que hacen preguntarnos si un romano vería el mismo entorno que vemos ahora.
El segundo elemento es el relieve cercano formado por materiales geológicos del periodo Mioceno (14 millones de años), cuando esta zona fue habitada por antiguos vertebrados que dejaron sus restos en yacimientos paleontológicos como el que acabáis de ver. Estos fósiles, junto con las calcretas, permiten dibujar un entorno de clima y paisaje muy distinto al actual. ¿Qué tipo de paisaje vieron estos antiguos mamíferos?
El tercer elemento son las montañas que hay al fondo, que permiten descifrar otras historias que emergen desde lo más profundo del tiempo. De allí son las rocas que en otro tiempo fueron sedimentos de océanos, se enterraron bajo cordilleras para luego volver a la superficie, incluso algunas que antes fueron magmas en el interior de la corteza.
Esta fue la última parada del Geolodía 22 de Ávila en Villaflor.
El desafío final
Además de sintetizar todos los elementos del paisaje que el público asistente había recorrido, aquí debían resolver el ‘desafío final’, acertar la frase oculta siguiendo las pistas recogidas durante su exploración del laberinto.
Las pistas recogidas en cada parada geológica
La frase oculta
Mapa central de la guía de campo. En él se indican el área de juego y la posición aproximada de las paradas geológicas. Además, se facilita un espacio para pegar cada una de las pistas recogidas durante la exploración del laberinto y el acertijo final que el público asistente tendrá que adivinar basándose en las pistas.
– Una de las particularidades de la Geología como ciencia es que es una ciencia histórica.
– ¿Qué quiere decir esto?
– Que los procesos que estudiamos y que son responsables de la dinámica de nuestro planeta se han dado en un espacio y sucesión temporal determinados.
Este orden es muy relevante, ya que mucho de lo que acontece en un momento dado suele estar fuertemente condicionado por su pasado más o menos inmediato.
¿Cómo entendemos el tiempo en los procesos geológicos?
Por lo general, en el imaginario colectivo se entiende que los procesos geológicos son todos lentos, que requieren de mucho tiempo (millones de años) para tener lugar y que solo el paso del tiempo constante y tenaz es capaz de generar cambios significativos en el planeta.
Pero esto no es así, necesariamente. Por ejemplo, la erupción de La Palma ha durado poco más de dos meses y sin embargo ha cambiado significativamente la topografía de un sector de la isla para los próximos miles de años.
Recopilatorio diario visual del volcán de la erupción de Cumbre Vieja, La Palma. IGME.
Es por eso que queríamos explicar aquí cómo se entiende el tiempo en Geología ⤵️.
Procesos lentos vs. rápidos
Es cierto que algunos procesos son constantes, progresivos y lentos. Y que necesitan de millones de años para que se observen los efectos. Por ejemplo:
Pero muchos otros son (extremadamente) rápidos. Por ejemplo:
Un terremoto puede cambiar la posición y topografía de una zona concreta del planeta en cuestión de minutos.
En los fondos marinos más profundos y tranquilos puede producirse sedimentación que registre decenas de millones de años de forma continua. Pero en otros contextos es muy habitual encontrarnos en el registro geológico sedimentos de fenómenos de tormenta, tsunamis, explosiones volcánicas, etc. que sabemos que solo pudieron durar unas pocas horas o minutos.
Además, que un proceso necesite de millones de años para culminar, como la formación de cordilleras, no quiere decir necesariamente que se produzca de forma lenta y pausada. Puede desarrollarse a pulsos, acelerando y desacelerando en función de un número importante de variables.
Tiempos diferentes, resultados similares
El mismo proceso se puede dar en intervalos temporales diferentesdando lugar a resultados muy similares.
Por ejemplo, los volcanes pueden estar activos durante millones de años, pero a veces hay edificios volcánicos pequeños que comienzan a funcionar en pocas semanas. De igual forma, su desaparición puede ser lenta y progresiva por erosión o corta y violenta si explotan.
También es posible encontrar sedimentos continuos de fondos tranquilos de lagos que abarcan solo unas pocas decenas de miles de años (los lagos se llenan rápidamente de sedimentos). En contraposición a los sedimentos de fondos marinos profundos que hemos comentado y que pueden abarcar decenas de millones de años.
Procesos únicos vs. procesos cíclicos
Algunos procesos son únicos y otros cíclicos, con independencia de su duración. Por ejemplo:
El clima ha ido oscilando de glaciación a deglaciación de forma cíclica (y por causas perfectamente conocidas) a lo largo de los últimos 2,5 millones de años (periodo Cuaternario) unas 55 veces.
Curva del nivel del mar y estadios isotópicos marinos (MIS) en los diferentes ciclos glaciares-interglaciares durante los últimos 200.000 años. Figura incluida en el artículo El Periodo Cuaternario: La Historia Geológica de la Prehistoria, de Silva, P.G.; Bardají, T.; Roquero, E.; Baena-Preysler, J.;Cearreta, A.; Rodríguez-Pascua, M.A.; Rosas, A.;Cari Zazo; Goy, J.L.
Sin embargo, la formación de los océanos, probablemente a partir de un bombardeo de cometas de hielo procedentes de los márgenes exteriores del sistema solar, es un proceso único e irrepetible.
Interacción y condicionamiento
Y además el conjunto de procesos interacciona entre sí, de forma que unos procesos y sus resultados condicionan a otros y su desarrollo. En general, los intervalos temporales de los procesos se mezclan e interfieren entre ellos:
La evolución de unas especies en otras puede ser un fenómeno lento y progresivo. O completamente súbito por causas puramente evolutivas. A esto último lo llamamos radiación adaptativa.
Sin embargo, un fenómeno puntual como el impacto de un meteoritopuede causar extinciones masivas y en cuestión de pocos años cambiar completamente la distribución de fauna a nivel planetario (sí, por ejemplo el de los dinosaurios, pero a diversas escalas hay muchos más ejemplos de meteoritos y extinciones).
El sesgo de conocimiento en Geología
Además, tenemos un sesgo de conocimiento en función de los datos de los que disponemos y sus márgenes de error.
Muchas de las rocas más antiguas del planeta han sido destruidas (recicladas) en lo que conocemos como ciclo de Wilson. Por lo tanto, hay un mayor volumen de roca que se conserva de épocas recientes, de manera que somos capaces de identificar muchos (pero muchos) más procesos y fenómenos cuanto más nos acercamos al presente. De la última parte de la evolución del planeta incluso tenemos las formas relictas (heredadas, que se formaron en épocas pasadas) de fenómenos que ya no existen y que nos ayudan también a caracterizar el pasado. Por ejemplo, los circos glaciares de Gredos y de todo el Sistema Central: ya no existen los glaciares que los originaron, pero sí sus huellas.
Laguna glaciar de El Duque, en Solana de Ávila, Ávila. Imagen de Gabriel Castilla.
Y no menos importante: los métodos de datación absoluta de los que disponemos (los que nos dan edades numéricas) tienen en general mayor precisión cuanto más nos acercamos al presente, de forma que:
Dataciones de hace más de 3000 millones de años pueden tener márgenes de error de más/menos 200 millones de años.
Y dataciones de hace 3000 años pueden tener márgenes de error de más/menos 250 años.
Desafortunadamente, a día de hoy no es posible modelizar en laboratorio cómo afecta el parámetro tiempo a los distintos procesos y materiales geológicos. Y por eso no tenemos más remedio que «imaginarnos» el tiempo, que como has visto es un parámetro escurridizo.
Próximamente: Cómo entender la tabla del tiempo geológico
Un corte geológico es un esquema que representa lo que está debajo del suelo que pisamos.
Si te imaginas una tarta, cuando la cortas por la mitad ves las capas de bizcocho y nata que la componen (y también las de chocolate si las hay 😋 ).
Un corte geológico es como un trozo de tarta: «cortamos» una sección del terreno para ver qué materiales lo componen.
En un corte geológico lo que dibujamos son las capas que hay en el interior de la tierra y cómo están dispuestas.
El corte geológico se realiza habitualmente desde un punto hasta otro del terreno a lo largo de una línea recta. Para ello, nos suele ayudar representar primero el perfil topográfico de la zona por la que pasa el corte geológico (la representación de valles y cimas, como en las rutas ciclistas).
Al final, el corte geológico no es más que un modelo que interpreta la forma y distribución de materiales que atravesaría nuestro cuchillo si cortásemos hacia abajo la superficie del terreno.
Talud al pie de un camino que nos muestra un conjunto de pliegues apretados en materiales carbonatados, como si estuvieran representados en un corte geológico. Los taludes son cortes geológicos «al natural». Cuenca de Jaca, Pirineo Oscense. Imagen: Javier Elez.
¿Hasta qué profundidad llega un corte geológico?
Pues hasta donde decida su autor según la aplicación que le quiera dar.
Los cortes geológicos son herramientas que tienen muchas aplicaciones y que siempre están construidos con un objetivo claro de inicio. En función de ese objetivo se define la profundidad.
Los hay que van desde pocos metros hasta los que llegan al núcleo y dibujan las capas principales de la Tierra.
Corte geológico desde el Sistema Central hasta la cuenca geológica del Duero. En este modelo aproximado la profundidad sería superior a los 1000 m desde la superficie. Gráfico de Javier Elez.
Se pueden hacer a mano alzada para expresar una idea o proceso o a escala para poder medir ángulos, espesores de capas (potencia), profundidades o cualquier cosa que se nos ocurra.
En ocasiones el modelo final también nos permite reconstruir lo que ya no está, es decir, lo que fue erosionado (lo que habría desde el perfil topográfico hacia arriba)…
Este es uno de los cortes que acompañaba al mapa geológico británico de 1815 de William Smith, primer mapa geológico moderno que cubría un país completo y en el que se implementa por primera vez un código de colores para caracterizar materiales y edades diferentes. Fuente: Natural History Museum, Great Britain.
Los cortes geológicos son imprescindibles en la búsqueda de recursos naturales que se encuentran en el subsuelo, desde minerales y rocas de interés económico hasta hidrocarburos, ya que permiten por un lado cuantificar cantidades y por otro estimar cuánto esfuerzo económico será necesario para extraer el recurso y por tanto saber si es rentable su explotación o no antes de empezar.
En hidrogeología se utilizan para identificar el recurso: dónde y cuánta agua hay en una zona. Y son imprescindibles en la gestión de aguas subterráneas, ya que permiten identificar las vías preferentes de recarga o de contaminación del acuífero y ayudan en el diseño de las medidas de corrección y recuperación.
En obra civil contribuyen a anticipar qué materiales vamos a encontrar en el subsuelo a la hora de hacer una infraestructura (un túnel, un puente, una cimentación de un edificio o una presa) y a prever los problemas y ventajas que el terreno nos ofrece para la realización de esas obras.
Son herramientas imprescindibles en ciencia base, pero también en campos de aplicación de la ciencia como el estudio de los riesgos geológicos (terremotos, deslizamientos de ladera, riesgos volcánicos, etc.).
Uno de los grandes problemas a los que se enfrenta la ciencia es el llamado pensamiento mágico, es decir, el razonamiento erróneo que hunde sus raíces en la religiosidad dogmática y la superstición. Es difícil conseguir que un individuo cambie de opinión sobre un tema, especialmente cuando éste forma parte de su sistema de valores, y es por ello que pocas personas cambian de equipo de fútbol, pensamiento político o confesión religiosa a lo largo de la vida. Esto se debe a que de manera natural nuestro cerebro filtra la información que le llega, prestando atención solo a aquella parte que confirma sus creencias y opiniones.
Los psicólogos llaman a este autoengaño selectivo sesgocognitivo de confirmación, que explica, entre otras muchas cosas, por qué somos fieles a la línea editorial de un periódico o preferimos las tertulias de una determinada cadena de televisión. Este es, en esencia, el mecanismo mental que lleva a algunas personas a defender contra toda evidencia científica sus opiniones, aunque éstas les lleven a creer que la Tierra es plana o que el origen de los seres humanos en el marco de la teoría de la evolución es una falacia.
El hecho de que la historia de la Tierra y el origen de la humanidad aparezca relatada en la Biblia supuso un gran obstáculo para el desarrollo de las ciencias naturales, pues durante siglos numerosos pensadores intentaron acomodar sus observaciones con las revelaciones divinas del libro del Génesis.
La superación del sesgo de confirmación en las ciencias naturales
El primer científico que concibió una metodología capaz de liberar la geología de este yugo especulativo fue el naturalista de origen escocés James Hutton, que en su libro Teoría de la Tierra (1788) asumió que no se debe recurrir o inventar ninguna causa desconocida, fantástica o extraordinaria si los procedimientos lógicos disponibles pueden ser suficientes para explicar un fenómeno natural. O dicho de otro modo: el estudio de la naturaleza se debe abordar partiendo únicamente de hechos demostrados y verificables, pues solo razonando así es posible encontrar soluciones a problemas que antes eran inabordables. Además de fiabilidad, este método le otorga a la ciencia geológica la capacidad de hacer predicciones, o sea, la posibilidad de entender el futuro partiendo del pasado.
Fue otro naturalista de origen escocés, Charles Lyell(Figura 1), quien supo ver en esta conexión temporal la semilla de una nueva forma de pensar, el actualismo. Ante los ojos de Lyell los relieves de la corteza terrestre son consecuencia de la acción de procesos análogos a los que observamos en la actualidad (ríos, glaciares, el viento, volcanes, terremotos, etc.), de ahí el término actualismo. Desarrolló esta idea en el libro Principios de Geología (1830-1833) y la condensó en una sola frase: La clave del pasado está en el presente; estableciendo así una conexión entre los cambios experimentados por la tierra a lo largo del tiempo.
Pocos años después, en 1847, se presentó en España la primera traducción al castellano de mano del geólogo Joaquín Ezquerra del Bayo, quien fue capaz de destilar la esencia de una obra científica de 650 páginas en unas pocas frases:
Grande ha sido la revolución que Lyell ha hecho en esta ciencia, aun cuando tal vez nosea suya la primera idea (…); cuasi la totalidad de los fenómenos que se observan en la corteza de nuestro globo, tanto con respecto al trastorno de las rocas que la constituyen, como con respecto a los restos de seres organizados que en ellas hay encerrados, se explican muy bien por la marcha natural de las mismas causas que están obrando en la actualidad; lo mismo que pasa ahora ha estado pasando hace muchísimo tiempo. La Geología ha perdido todo lo que tenia de fabuloso y de inconcebible, adquiriendo una sencillez que, no por eso deja de ser más admirable y más sorprendente.
Por aquella misma época, hacia 1843, el pionero de la fotografía William Henry Fox Talbotregistraba la primera imagen de una investigación geológica de campo. Bajo el título The Geologists (los geólogos) muestra a un hombre y una mujer analizando un afloramiento de roca caliza en Chudleigh (Devon, Reino Unido). Todo apunta a que los protagonistas son el investigador Henry De La Beche y la naturalista autodidacta Mary Anning, primera geóloga de la historia (Figura 2).
El actualismo metodológico y la geología
Hoy, casi 180 años después de que se tomara esta fotografía (el nombre técnico es calotipo), geólogos y geólogas de todo el mundo desarrollamos nuestro trabajo en el contexto del llamado actualismo metodológico, que podemos resumir así: las causas que actúan modelando el planeta en la actualidad ya actuaron en el pasado, e incluso los procesos catastróficos (impactos de asteroides, cambios climáticos globales, etc.) deben entenderse como sucesos normales ocurridos en el pasado, que pueden suceder en el presente y que con toda probabilidad sucederán también en el futuro.
Pero tal y como planteamos al principio, uno de los problemas a los que se enfrenta la ciencia moderna es el pensamiento que niega la realidad de los hechos verificables; un desafío para la razón que solo puede ser contestado desde la divulgación y la alfabetización científica de la sociedad. Para hacerlo posible es necesario disponer de herramientas didácticas que faciliten la enseñanza y el aprendizaje de las ciencias a cualquier edad, pues la única forma de aprender a razonar por analogía es practicando. Y es en este sentido donde los pinares que cubren los campos de dunas de La Moraña abulense nos ofrecen un inesperado recurso didáctico: su resina.
La resina y el ámbar como recurso didáctico
Figura 3. Mosquito siendo atrapado por la resina de un pino en las inmediaciones de El Oso (Ávila), inicio del complejo proceso de ambarización. A la derecha vemos una muestra de ámbar que contiene un mosquito fosilizado en su interior. Fuente: Gabriel Castilla y Wikipedia.
Como podemos ver en la Figura 3, la resina líquida puede atrapar todo tipo de partículas en su interior, como es el caso de este mosquito, cuyo aspecto es similar al que podemos observar en el interior de una muestra de ámbar. El ámbar es precisamente resina procedente de coníferas que ha experimentado un lento proceso de endurecimiento y enterramiento hasta su transformación en un fósil hace millones de años.
El ámbar es un tesoro para la ciencia debido a la enorme cantidad de información que podemos encontrar en su interior, pero también porque el proceso de ambarización es químicamente muy complejo y requiere que la resina sobreviva al proceso de degradación al que naturalmente se ve sometido por efecto del calor, la humedad y la descomposición por parte de bacterias y hongos. Es por ello que el ámbar es un mineral escaso en todo el mundo y se reconoce su valor ornamental desde la Edad del Bronce (2500-1500 a.C.), cuando la demanda debió ser tan elevada que incluso se han detectado falsificaciones realizadas con resina de pino en ajuares funerarios.
¿Significa esto que los autores de la falsificación establecieron por analogía una relación entre la resina y el ámbar? Probablemente sí. ¿Implica esto que aquellas personas llegaron a intuir la noción de actualismo, entendida como relación entre el presente (resina) y el pasado (ámbar)? Difícil saberlo.
Ver cómo quedan atrapados los insectos en la resina y alcanzar a comprender cómo logra ésta transformarse en un mineral requiere entender y manejar nociones abstractas como mineralización, fosilización y tiempo geológico.
Para comprender el concepto de actualismo son necesarios ejemplos tan claros como el que acabamos de ver, pues nos permite visualizar un proceso natural complejo de forma intuitiva y sencilla. Un paseo por La Moraña puede ser una experiencia didáctica inesperada si caminamos despacio y escuchamos con atención las historias que nos susurran sus árboles.
Uno de los problemas más habituales en las investigaciones geológicas de campo es el hecho de que muchos afloramientos y formas del relieve se encuentran enmascarados por la vegetación, lo que dificulta su reconocimiento a simple vista. Cuando esto sucede se suele recurrir a fotografías aéreas captadas por aviones o satélites, imágenes que muestran una perspectiva cenital del terreno.
Para ayudar al cerebro a visualizar un relieve tridimensional a partir de una imagen plana (sea ésta una fotografía o un modelo digital del terreno), se suele recurrir a la estereoscopía.
Esta técnica consiste en mirar con un estereoscopio dos fotografías aéreas tomadas por un avión o satélite desde perspectivas ligeramente distintas. El instrumento óptico superpone las dos fotografías, pero mostrando separadamente una a cada ojo. Como resultado, el cerebro recrea la ilusión de profundidad en una única imagen tridimensional, igual que cuando miramos un paisaje desde la ventanilla de un avión que vuela a baja altura.
Figura 1. Modelo del terreno de una zona al norte de El Oso, en La Moraña abulense. Usaremos esta imagen como base para la construcción de nuestro par estereoscópico.
Construyendo un estereoscopio casero
Debido al enorme potencial didáctico que ofrece la estereoscopía, nos propusimos dar a conocer esta técnica con motivo del Geolodía 2019.
Para ello nos planteamos el reto de diseñar un modelo de estereoscopio que cualquier persona pueda construir y utilizar sin necesidad de entrenamiento previo, y con el que descubrir la geología oculta de La Moraña, en especial los cerros testigo y los campos de dunas parabólicas.
Con este fin preparamos un modelo del terreno a partir de datos de altura del terreno y software de acceso libre y gratuito, cuyo manejo describimos pormenorizadamente en la entrada dedicada a los cinturones de dunas en Ávila.
En la siguiente fotografía podemos ver todos los materiales empleados en la construcción del estereoscopio (de izquierda a derecha):
Una lámina de espejo recortable (10X15 cm).
Listones cuadrados de madera (0,5×30 cm).
Depresores –palos de helado- de madera (2,5X20 cm).
Un tablero de madera o de DM (20X30 cm).
Una lámina de cartón pluma (30×40 cm).
4 clavos pequeños sin cabeza (opcional).
Fotografía 2. Materiales y herramientas necesarios para la construcción de nuestro estereoscopio.
Todos los materiales fueron adquiridos en un bazar por un coste inferior a 10 euros.
Herramientas
Las herramientas usadas en el montaje fueron:
Una regla metálica.
Cola blanca de contacto.
Unas tijeras fuertes (cortachapas).
Y un cúter de proyectista (una pequeña sierra para manualidades también puede servir).
Instrucciones de montaje
En la siguiente secuencia de imágenes podemos apreciar los pasos necesarios para el montaje.
Fotografía 3. Secuencia de montaje
En primer lugar (a), tomamos un depresor de madera y lo partimos en varios trozos de aproximadamente 1,2X3,5 cm.
A continuación pegamos 6 de estos trozos en el tablero de DM tal y como se aprecia en la imagen (b) -dos en la mitad y cuatro en las esquinas-.
Seguidamente, tomamos 2 listones cuadrados que recortamos para que cada uno mida 20 cm (c).
Después pegamos sobre las maderas que pusimos en mitad del tablero los 2 listones que acabamos de recortar. Los ponemos uno junto al otro con cuidado de dejar entre ellos el espacio justo que permita encajar una lámina de cartón pluma en la que irá la lámina de espejo adhesiva (d).
Opcionalmente podemos reforzar los dos listones con 4 clavos sin cabeza.A continuación pegamos 2 depresores, uno en cada extremo del tablero (e).
Como podemos ver, el hecho de pegar los listones y los depresores sobre los tacos de madera que cortamos inicialmente, crea un espacio por donde podremos deslizar las fotografías aéreas e impedir que se muevan sin necesidad de fijarlas con clips o celofán.
Por último (f), recortaremos un trozo de cartón pluma de unos 20X10 cm sobre el que pegaremos la lámina de espejo. Recortaremos los picos con las tijeras cortachapas para evitar accidentes en los ojos.
El resultado final del montaje podemos verlo en esta fotografía.
Fotografía 4. Estereoscopio terminado.
Montaje de un par estereoscópico
Para apreciar visualmente el relieve en un par de fotografías estereoscópicas necesitamos que éstas se hayan tomado desde perspectivas distintas, como ya explicamos anteriormente. Sin embargo, puesto que solo disponemos de una imagen, lo que vamos a hacer es engañar al cerebro mostrándole dos imágenes iguales pero montadas de tal forma que una (la de la izquierda) sea especular a la original (que pondremos a la derecha), tal y como podemos ver en la fotografía 5.
Fotografía 5. Imagen especular (izquierda) reflejada en el espejo del estereoscopio (derecha). En segundo plano (casi tapada por el espejo) está la imagen original. En el reflejo ya podemos intuir el relieve.
El estereoscopio de un único espejo fue inventado a mediados del siglo XIX por el científico británico Charles Wheatstone y su uso es perfecto para situaciones en las que solo se dispone de una fotografía.
Existen muchos programas que nos permiten generar una imagen especular a partir de otra. Quizá lo más rápido sea utilizar el procesador de textos Word o el creador de diapositivas PowerPoint de Microsoft (sus homólogos gratuitos de Open-office puede realizar la misma tarea).
El procedimiento es sencillo: se pega en un documento de Word apaisado la imagen que queremos ver en 3D, hacemos una copia de esta imagen y la pegamos justo al lado de la original; luego desplazamos el marco derecho hacia la izquierda hasta crear la imagen especular, tal y como podemos ver en la fotografía 6. Una vez tengamos lista la composición podemos imprimir el documento y recortarlo para poder deslizarlo bajo los depresores del estereoscopio.
Fotografía 6. Montaje listo para usar en nuestro estereoscopio. La fotografía de la izquierda es exactamente igual que la de la derecha, pero ha sido dispuesta especularmente. Descarga este montaje ya preparado y listo para imprimir.
Al encajar un espejo entre ambas fotografías podemos mirar el montaje mostrando a cada ojo una fotografía y haciendo creer al cerebro que las está viendo desde perspectivas diferentes. Para engañar al cerebro de manera rápida y eficaz debemos mirar el espejo con el ojo izquierdo y la fotografía con el ojo derecho. Para ello lo mejor es poner la nariz junto al espejo y mirar relajadamente, sin cruzar ni forzar la vista, tal y como se aprecia en la fotografía 7.
Como resultado de este “engaño” nuestra mente construye la ilusión de tridimensionalidad, recreando el relieve de los campos de dunas y los cerros testigo como si los estuviésemos viendo desde un avión.
Figura 7. Una participante del Geolodía 2019 usando nuestro estereoscopio. Fotografía de Isabel Hernández.
Bibliografía
Centeno, J. D.; Fraile, M. J.; Otero, M. A. y Pividal , A. J. (1994) Geomorfología práctica. Ejercicios de Fotointerpretación y Planificación Geoambiental. Editorial Rueda, Madrid.
García Rodríguez, M. P.; Sanz Donaire, J. J.; Pérez González, Mª E. y Navarro Madrid, A. (2012). Guía Práctica de Teledetección y Fotointerpretación. Departamento de Análisis Geográfico y Geografía Física. Universidad Compluense de Madrid.
Puedes escuchar el contenido de esta entrada aquí:
La técnica conocida como «Carbono 14» es un método de datación absoluta que se basa en el carbono que se encuentra en muestras de origen biológico como los fósiles o el carbón.
Los seres vivos dependemos del carbono para nuestra existencia, ya que forma parte de nuestro organismo constituyendo moléculas (ADN, colágeno, queratina…) y tejidos, tanto orgánicos como inorgánicos (plumas, pelo, huesos, conchas…). Los seres vivos obtenemos este carbono de la naturaleza mediante la ingesta de alimentos o, en el caso de las plantas, con la fotosíntesis.
Isótopos de carbono
El carbono es un elemento que se encuentra en la naturaleza como tres posibles isótopos (fig. 1):
El Carbono-12 tiene 6 protones y 6
neutrones, 12 partículas subatómicas en su núcleo.
El Carbono-13 tiene 6 protones y 7
neutrones, 13 partículas subatómicas en su núcleo.
El Carbono-14 tiene 6 protones y 8 neutrones, 14 partículas subatómicas en su núcleo.
La diferencia entre un isótopo y otro es el número de neutrones que posee, ya que todos tienen los mismos protones y los mismos electrones. El nombre de los distintos isótopos de carbono viene dado por la suma de los protones y los neutrones que hay en su núcleo.
Figura 1. Los tres isótopos de carbono, tanto estables como inestables (radiactivos) con sus respectivos número de protones, neutrones y electrones; y su abundancia en la naturaleza.
El Carbono-12 y el Carbono-13 son estables y se mantendrán inalterables, mientras que el Carbono-14 es inestable (radiactivo) lo que hace que no se mantenga en el tiempo.
La abundancia natural de estos isótopos es de 98,89% de Carbono-12; 1,10% de Carbono-13 y solo 1,0×10-10 % de Carbono-14.
Para el método de datación por Radiocarbono, lo que se compara es la proporción de los isótopos Carbono-12 y Carbono-14 en la muestra.
Proporción Carbono-12 / Carbono-14 en restos biológicos
La proporción entre estos dos isótopos de carbono es la misma en una planta viva (que toma el carbono del CO2 de la atmósfera) que en un herbívoro (que toma el carbono de las plantas) y que en un carnívoro (que toma el carbono de los herbívoros que lo tomaron de las plantas). Luego, la proporción entre los distintos isótopos de carbono presente en los organismos vivos es la misma que existe en la atmósfera (fig. 2).
Figura 2. Esquema de la proporción de isótopos de Carbono-12 y Carbono-14 tanto en la atmósfera como en los organismos vivos. Esta proporción es la misma en todos los casos, ya que se transmite de unos organismos a otros mediante la cadena alimenticia a partir de los organismos vegetales que lo toman de la atmósfera.
En el momento que un organismo muere, la proporción entre sus isótopos de carbono comienza a cambiar. La cantidad de Carbono-12 se mantiene igual que cuando estaba vivo pero la cantidad de Carbono-14 disminuye debido a la inestabilidad de este isótopo.
Lo que le sucede al Carbono-14 es que, al ser inestable, transforma uno de sus neutrones en un protón en lo que se conoce como proceso de decaimiento, convirtiéndose en un isótopo de Nitrógeno-14 que sí que es estable. El Carbono-14 es lo que se denomina el isótopo padre, y el Nitrógeno-14 es el isótopo hijo (fig. 3).
Figura 3. El Carbono-14 sufre un proceso de decaimiento por el que uno de sus neutrones se transforma en un protón, convirtiéndose en Nitrógeno-14. El isótopo original se denomina isótopo padre mientras que el producto del decaimiento se llama isótopo hijo.
La cantidad de Carbono-14 de un resto orgánico se reduce de manera exponencial, formando una curva. El Carbono-14 tarda 5.730 años en reducir a la mitad su cantidad en la muestra, lo que se conoce como semivida o periodo de semidesintegración (fig. 4).
Esto significa que
5.730 años después de haber muerto el organismo, sus restos tendrá la mitad de
Carbono-14 que cuando vivía; y que cuando pasen otros 5.730 años (a los 11.460
años de haber muerto) el resto tendrá la mitad de la mitad del Carbono-14
original o, lo que es lo mismo, un cuarto del Carbono-14 original.
Figura 4: cuando el organismo muere, la cantidad de Carbono-14 disminuye de manera exponencial mientras que la de Carbono-12 se mantiene en el tiempo. Cada vez que la cantidad de Carbono-14 (isótopo padre) se reduce a la mitad al transformarse en Nitrógeno-14 (isótopo hijo), se consume una semivida, lo que supone 5.730 años.
Llegará un momento en que todo el Carbono-14 original del resto biológico se haya transformado en Nitrógeno-14, el isótopo padre se agota y solo existe isótopo hijo. La datación por radiocarbono deja de ser posible. Este, por ejemplo, es el caso de los dinosaurios que vivieron hace más de 65 millones de años y cuyos fósiles no conservan isótopos de Carbono-14.
De esta manera, gracias a la proporción entre el isótopo de Carbono-12 y el de Carbono-14 en el resto biológico podemos conocer cuánto tiempo ha pasado desde que el organismo murió hasta la actualidad, siempre que no haya sido hace más de 60.000 años aproximadamente, que es la edad máxima que podemos datar por este método.
¿SABÍAS QUE…? El método de datación por Carbono-14 solo se puede emplear para restos de organismos que murieron antes de 1950 ya que, debido a la proliferación de las pruebas de armas nucleares a partir de la década de los 50 del siglo pasado, los porcentajes de isótopos radiactivos de la atmósfera se han visto gravemente alterados.
Algunos ejemplos
En el Geolodía 2019 en El Oso vimos cómo se ha aplicado este método para datar restos vegetales encontrados dentro de los sedimentos de las dunas, lo que nos permite aproximar la edad de las propias dunas.
Con la llegada de la revolución digital todos tenemos más herramientas para explorar el mundo, también los geólogos. Desde el punto de vista de la geología, temática principal de este blog, queremos destacar dos que nos permiten, por ejemplo, descubrir que el norte de Ávila está cubierta de dunas.
Satélites y Sistemas de Información Geográfica (SIG)
En primer lugar, las imágenes y datos de todo tipo obtenidas de nuestro planeta por los diversos satélites existentes. Y en segundo lugar los programas informáticos que nos permiten manejar estos datos, tanto consultarlos y visualizarlos como operar con ellos, y que se denominan de forma genérica Sistemas de Información Geográfica (SIG).
Para los que no lo veáis claro, echad un vistazo a Google Earthy pensad en cómo es posible imaginarse el planeta con este detalle sin tener las herramientas adecuadas… Difícil, ¿verdad?
Hoy queremos poneros un ejemplo de la aplicación de lasno tan nuevas yatecnologías de satélite al conocimiento de nuestro planeta.
Las dunas de la Moraña
En Ávila existen dunas con unas formas súper delicadas conservadas prácticamente intactas desde hace unos 11.500 años. ¿Lo sabías?
Estos depósitos eólicos desérticos se agrupan en cinturones de dunas que tienen longitudes kilométricas y formas muy elaboradas. Como todas las dunas, eran movidas por los vientos dominantes en su momento. Pero, ¿dónde están ahora? Pues escondidas en el paisaje.
Para desenmascararlas necesitamos de los datos que nos proporcionan los satélites y un poco de software.
Los datos que vamos a utilizar son datos de elevación (altimetría) de alta resolución obtenidos mediante tecnología LIDAR. Los tenemos de forma gratuita para todo el territorio nacional en el Centro Nacional de Información Geográfica.
Para cocinar estos datos utilizamos un Sistema de Información Geográfica (SIG), que es el software que nos va a permitir realizar cálculos con los datos de elevación. El cocinado es sencillo: calculamos lo que se denomina modelo de elevaciones sombreado, que es una simulación de las sombras que haría el sol sobre el modelo del terreno que suponen los datos de elevación. El resultado es espectacular, mira la Figura 1.
Figura 1. Desliza la barra para ver el modelo sombreado a la izquierda y la fotografía de satélite a la derecha. Verás cómo las dunas solo se ven a simple vista con el primero. La zona es la cabecera del rio Arevalillo, al norte de El Oso, y abarca entre otras a la localidad de Cabizuela.
Si hacemos zoom en las dos dunas bien definidas abajo a la izquierda del cinturón veremos esto:
Figura 2. Las bonitas dunas de Cabizuela con más detalle. La elevación que tienen sobre el fondo prácticamente plano llega a ser de unos 12 m máximo.Figura 3. Foto en el campo y desde el sur de las mismas dunas de Cabizuela. Encima de ellas quedan las zonas de pinares, donde no se puede cultivar nada más. Como ves, a simple vista no son nada evidentes.
Aquí va un video 3D realizado a partir de los datos del modelo de elevación junto con el modelo de elevaciones sombreado. En él hemos exagerado en la vertical para que se vea mejor el relieve, otro truco que se puede hacer con estos datos.
Estos cinturones de dunas no solo se encuentran aquí en la Moraña abulense, sino que se extienden a lo largo de toda la zona sur de la meseta castellano-leonesa y se reconocen fácilmente también en Segovia (Tierra de Pinares) y Valladolid.
Busca tú las dunas con Iberprix
Si quieres buscar tú mism@ las dunas, te dejamos aquí un visor online muy sencillo que te ahorrará todo el trabajo de manipulación de datos.
Abajo a la derecha encontráis un botón rojo con un símbolo de «capas», pincháis y os aparecen pestañas.
Desmarca todas y marca solo la de “Relieve” y podrás ver un modelo de elevaciones sombreado de toda España.
Dadle al zoom ya que tiene muy buena resolución…
En próximos artículos os contamos cómo se forman las dunas y qué información nos aportan sobre el clima y el paisaje en el que se formaron, justo aquí, en la Moraña abulense.
¿Te atreves a decir desde dónde soplaba el viento dominante hace 11.500 años…?
Pulsa Play y activa el audio para escuchar este Paisaje sonoro. Si tienes problemas para escucharlo en tu móvil pulsa AQUÍ.
Para no perder el sentido de la Historia, la Historia Natural
La Historia de la Tierra ha sido larga. Se remonta a mucho antes de que el ser humano apareciera en ella y está registrada en las rocas y los fósiles.
Al “tocar» la Historia, el ser humano se encontró con una barrera psicológica: pensar en un tiempo geológico de millones de años ha sido un salto reciente en el conocimiento humano, que muchos no han dado todavía.
En esta reflexión sonora sobre qué papel juegan la Geología y la Paleontología en el conocimiento de la Historia Natural, ponemos voz y música a las hermosas palabras de la paleontóloga Nieves López en “Geología y Paleontología para aficionados”.
El “Barrio de Bajondillo”, hoy deshabitado, tiene su origen en la necesidad de los vecinos de Burgohondo de estar más cerca de sus explotaciones agrícolas y ganaderas, ambas de subsistencia, y que se encontraban a varios kilómetros del núcleo urbano.
Por ello, se construyeron las denominadas “casillas”, o casas de campo, donde las personas residían sobre todo en verano. Las casillas no contaban con agua corriente, alcantarillado, ni energía eléctrica.
Junto a estas casillas, se construyeron los pajares o edificaciones destinadas a la guarda del ganado y/o del heno o paja y hornos comunitarios, lo que constituye el entramado principal del barrio.
En el año 1955 residían en Bajondillo 150 habitantes. A partir de los años 60 comienza el éxodo rural y empezaron a quedar en desuso.
La geología y el barrio
No por casualidad, el barrio está construido sobre el berrocal y al lado de la llanura de inundación del arroyo de la Garganta del Puerto.
El berrocal, con sus grandes bolos de orden métrico, habría servido como cimiento rocoso de las construcciones.
Mientras que la llanura de inundación supondría tierra fértil para el desarrollo de la agricultura.
Barrio de Bajondillo junto a la mayor extensión de la llanura de inundación de la Garganta del Puerto, un área plana de sedimento rico en materia orgánica, óptimo para el desarrollo de la agricultura.
Además, los bloques y cantos acumulados en el arroyo durante las riadas serían utilizados para la mampostería de las casillas junto con madera y vegetales para la cubierta (sustituidos por tejas de barro con el paso del tiempo).
La vida en todos los barrios discurría de forma muy similar: entre vecinos se ayudaban en las tareas del campo y se juntaban para ir a la “Re”, que consistía en tener el ganado en una zona y quedarse a dormir allí, para que no sufrieran ataques de lobos ni robos.
Solían juntarse todas las noches a “velar”, es decir, se reunían en una casilla donde hablaban un rato y compartían el vino y los frutos de temporada.