Archivo de la categoría: Geoarqueología

Área de estudio multidisciplinar resultado de la aplicación del conocimiento geológico al estudio arqueológico.

Los otros “relojes de arena”. Método de datación por OSL

Texto y gráficos – Ana Isabel Casado Gómez

Los clásicos relojes de arena cronometran el tiempo en función de lo que tarda en pasar la arena que contienen por su estrecha cintura. Pero existe otro tipo de “relojes en la arena” que nos permiten contar el tiempo gracias a su estructura cristalina y a la luz, proporcionándonos un práctico método de datación: la Luminiscencia Ópticamente Estimulada u OSL.

El método de datación por OSL, por su acrónimo en inglés (Optically Stimulated Luminescence), se emplea principalmente en materiales sedimentarios detríticos (como la arena y los limos de las dunas de La Moraña).

Este método tiene un rango de aplicación de entre 6 y 800.000 años, aunque no para de optimizarse y se han llegado a datar sedimentos de 1,5 Ma (Bartz et al., 2019).

Esta técnica se desarrolló ante la necesidad de datar de manera directa los sedimentos, sin utilizar materia orgánica a la que aplicarle la datación por Carbono-14, ya que no siempre se encuentran restos biológicos en los sedimentos. Además, el límite de datación del Carbono-14 es menor (60.000 años) y es a veces insuficiente.

Cómo funciona

Para la datación por OSL se utiliza el cuarzo. Esto supone una gran ventaja frente a otras técnicas ya que el cuarzo es uno de los minerales más duros, resistentes y abundantes de la superficie terrestre.

Con el método de luminiscencia ópticamente estimulada se data el último momento en que un material de origen sedimentario estuvo expuesto a la luz solar, el momento de su sedimentación y enterramiento.

¿Qué le sucede al cuarzo cuando recibe luz solar? ¿Y cuando se entierra y deja de recibir esa luz?

Cuando los sedimentos se encuentran en la superficie, la radiación solar visible “limpia” el cuarzo eliminando cualquier electrón que pudiera encontrarse atrapado en su estructura, esto se conoce como blanqueamiento. (Figs. 1.A).

Al enterrarse el sedimento y dejar de estar radiado por el Sol, el cuarzo comienza a recibir un débil flujo de partículas radiactivas (alfa α, beta β y gamma γ) provenientes de elementos radiactivos que forman parte de otros minerales del propio sedimento (como el torio, el uranio y el potasio-40 de la biotita, la circonita, el apatito o el esfeno, o el potasio-40 de los feldespatos blancos y rosas).

La consecuencia de esta radiación natural propia del sedimento es la acumulación progresiva de electrones en trampas dentro de la estructura cristalina de los cuarzos: cuanto más tiempo permanezcan los cuarzos enterrados y protegidos de la luz, más electrones acumularán en su estructura (Figs. 1.B).

Fig. 1. Esquema de los procesos radiactivos que tienen lugar en los sedimentos, tanto a macroescala como a microescala. A) Cuando el cuarzo es radiado por la luz solar y su estructura está libre de electrones. B) Cuando el cuarzo queda enterrado y afectado por otras radiaciones que no son la solar, acumulando electrones en su estructura cristalina.

¿Cómo se recogen las muestras en el campo?

Para poder emplear este método con éxito, es necesaria una recogida muy meticulosa de las muestras en el campo. Para ello:

  1. Se introduce un tubo metálico dentro del sedimento (Fig. 2A) para proteger la muestra de la luz, y evitar así la pérdida de los electrones acumulados en los cuarzos. El tubo se coloca perpendicular a la superficie del afloramiento y se introduce en el sedimento. Se extrae un testigo dejando un agujero cilíndrico en el sedimento.
  2. Posteriormente, con un taladro de corona circular (Fig. 2B), se extrae el sedimento que hay alrededor de la muestra para hacer medidas sobre este sedimento en el laboratorio.
  3. Por último, se introduce un dosímetro en el agujero y se toman medidas de radiación gamma (γ) in situ (Fig. 2C).
Fig. 2. Fotografías del proceso de recogida de muestras para datación por OSL. A) Detalle de la extracción de la muestra. Una persona sujeta el tubo metálico mientras que otra lo golpea con una maza hasta conseguir introducirlo en el sedimento y extraer la muestra protegida de la luz. B) Recogida del sedimento colindante a la muestra para medir la humedad, los elementos radiactivos y la radiación beta (β) del sedimento. C) Dosímetro midiendo la radiación gamma (γ) en el interior del sedimento. Fotografías: AI Casado.

¿Y qué hacemos con las muestras en el laboratorio?

Una vez en el laboratorio, los granos de cuarzo se separan del resto de minerales. Esto se hace en un cuarto oscuro (como los de revelado de fotografías en papel) empleando una tenue luz roja cuya radiación no interfiere con los electrones atrapados en la estructura del cuarzo (Figs. 3A).

Separados los cuarzos, se exponen a una radiación visible controlada semejante a la radiación visible solar. Al iluminar los cuarzos, los electrones que habían quedado atrapados en su estructura durante su enterramiento emiten una señal luminiscente que permite contabilizar cuántos electrones se han acumulado (esta cantidad de electrones se conoce como paleodosis) (Figs. 3B).

Fig. 3. Esquema de los procesos radiactivos que tienen lugar en los sedimentos, tanto a macro como a microescala, en el laboratorio. A) Cuando el cuarzo es radiado por una tenue luz roja. B) Cuando se radia con una luz similar a la solar, permitiendo contabilizar los electrones atrapados en su estructura cristalina.

La datación

¿Y cómo sabemos cuántos años suponen los electrones contabilizados?

Como cada sedimento es diferente, hay que evaluar en el laboratorio cuál es la dosis de radiación natural del sedimento tomado alrededor de la muestra (Fig. 2B) conociendo la radiación gamma (γ) y midiendo la humedad, los elementos radiactivos y las partículas beta (β).

Con todos estos datos, se puede evaluar cuántos electrones puede generar cada muestra en un año (dosis anual).

Al dividir la dosis acumulada en la muestra de manera natural, la paleodosis, (que se ha obtenido contabilizando los electrones atrapados en el cuarzo en el paso anterior) entre la dosis anual obtenida experimentalmente, se puede conocer cuántos años hace que se produjo la sedimentación de la muestra.

  • De esta forma, si los cuarzos han recibido poca dosis cada año (dosis anual) y han acumulado muchos electrones (paleodosis), la edad es alta.
  • Si la dosis anual que recibían los cuarzos era muy grande, aunque haya acumulados muchos electrones tendrán una edad baja.

Por eso es necesario medir la dosis anual de cada muestra.

Resumiendo…

La datación por OSL o datación por Luminiscencia Ópticamente Estimulada se emplea para conocer la edad del momento de sedimentación de un depósito que contenga granos de cuarzo (Fig. 4).

La radiación solar mantiene los cuarzos superficiales “limpios” de cualquier otra radiación que pudieran acumular durante la erosión y el transporte.

Cuando se produce la sedimentación, los cristales de cuarzo enterrados que ya no reciben radiación solar comienzan a recibir una radiación débil procedente de elementos radiactivos de los minerales que los rodean, y acumulan electrones en su estructura.

Los cristales de cuarzo se “llenan” de electrones de manera gradual, a un ritmo constante en el tiempo (dosis anual).

Y es el contaje de esos electrones lo que determina la paleodosis, con lo que se puede calcular cuánto tiempo ha pasado desde que quedaron enterrados y dejaron de recibir luz solar.

Cuando se iluminan de nuevo esos cuarzos con una radiación visible similar a la solar, los electrones atrapados en el cuarzo se liberan emitiendo una señal luminiscente.

Midiendo esos electrones y la dosis anual del sedimento, se puede saber cuántos electrones estaban atrapados en el cuarzo y calcular la edad en que se produjo la sedimentación.

Fig. 4. Gráfica resumen de la acumulación de radiación beta (β) en el cuarzo en función del tiempo y de las condiciones de exposición a la luz (modificado de Aitken, 1998)

¿Sabías que… el feldespato también tiene la capacidad de albergar electrones en trampas de su estructura cristalina, por el mismo proceso que el cuarzo? Para la datación con feldespatos el procedimiento es similar al OSL, pero se emplea radiación infrarroja para estimular la luminiscencia. En ese caso, se denomina IRSL o Luminiscencia estimulada por infrarrojos.

Referencias

Dendrocronología: contando anillos

Texto y gráficos – Ana Isabel Casado

Fotografías – Gabriel Castilla

La palabra dendrocronología proviene del griego antiguo:

  • dendro- significa “árbol
  • -crono- significa “tiempo
  • –logía significa “estudio

Por lo que dendrocronología quiere decir literalmente “estudio del tiempo de los árboles”.

Y es que este método de datación se basa en el crecimiento de los árboles (y algunos arbustos leñosos) para poder contar el tiempo. La edad máxima que se ha llegado a datar con este método es de 10.000 años.

Los anillos de los árboles

Los árboles que viven en zonas con clima estacional crecen generando un anillo cada año, como si fueran las capas de una cebolla. De esta manera, la capa más externa del tronco se está generando en el año actual y el centro se formó en su primer año de crecimiento.

1 anillo = 1 año

Al poder obtener un valor numérico de años, se considera un método de datación absoluta (permite precisar la edad concreta).

Pero, además, los anillos de los árboles nos aportan mucha información de las condiciones en las que han vivido los árboles en cada momento, no solo los años que tienen (Fig. 1).

Fig. 1: Esquema de la sección del tronco de un pino. El desarrollo de los árboles se produce generando anillos año a año. Estos anillos registran las condiciones en las que se ha desarrollado el árbol. Sus anillos de épocas lluviosas son anchos mientras que los de épocas secas son estrechos. También se pueden ver cicatrices si el árbol sufrió alguna lesión, por un incendio o los golpes de las piedras de una avalancha, por ejemplo.

En cada anillo se pueden diferenciar dos zonas:

  • Zona ancha y clara: se corresponde con el crecimiento de primavera/principios del verano, cuando las lluvias y los aportes de nutrientes son mayores y el árbol se desarrolla más.
  • Zona estrecha y oscura: se forma con el crecimiento de finales de verano y el final del crecimiento por ese año. Su color oscuro y su poco grosor son la consecuencia de una menor disponibilidad de agua y nutrientes por parte del árbol.

Además, el tamaño de los anillos de unos años a otros varía en función de si fueron años lluviosos y cálidos (anillos amplios) o si hubo sequías y frío (anillos angostos). Los árboles de la misma zona tendrán un desarrollo del grosor de sus anillos similar ya que vivirán en las mismas condiciones ambientales.

¿Cómo podemos estudiar los anillos de los árboles sin tener que talarlos?

Cuando se realiza un estudio mediante los anillos de los árboles, se necesitan muestras de distintos individuos e incluso de distintas especies para poder llegar a una conclusión global. Con el fin de NO dañar a los árboles en este tipo de estudios, se utiliza un utensilio llamado barrena Pressler.

Esta barrena se introduce girándola manualmente en el árbol gracias a que está provista de un tornillo con filos en su punta (Fig. 2).

Según penetra la barrena en el árbol va generando un testigo cilíndrico que queda dentro de la propia barrena. De esta manera, podemos extraer del árbol testigos de unos 0,5 cm de diámetro y de largo variable (15-20 cm suele ser suficiente).

Fig. 2: Esquema del funcionamiento de la Barrera Pressler para obtener testigos de los anillos de los árboles. La barrena se introduce en el tronco haciéndola girar de manera manual a la vez que se presiona, gracias al tornillo afilado que posee en la punta. Al ir penetrando la barrena, corta perpendicularmente los anillos del árbol de fuera hacia dentro obteniéndose el registro completo del desarrollo del árbol. Lo que se consigue es un testigo cilíndrico donde se ven las secciones de los anillos como si fuera el “código de barras” del árbol.

En estos testigos se pueden observar los grosores de los anillos y tener así el registro completo de los años de vida del árbol sin dañarlo (Fig. 3). El pequeño orificio que queda en el tronco se cubre con cera para evitar posibles bacterias e insectos que pudieran perjudicar al árbol.

Fig. 3. Testigo de pino obtenido con una barrena Pressler.

¿Y cómo podemos datar hasta 10.000 años de antigüedad con los árboles?

Para poder datar mediante este método es necesario tener un registro de madera lo más continuo posible.

Partiendo de testigos de árboles vivos que nos ayuden a situarnos en el tiempo, se hacen coincidir los anillos de los primeros años de vida de los árboles con los últimos años registrados en la madera arqueológica de construcciones (como puentes e iglesias) hechas con árboles de la zona (Fig. 4).

Siendo capaces de encontrar este solapamiento del código que forman los anillos de los árboles en maderas cada vez más antiguas, se puede llegar a completar el patrón de crecimiento de los anillos de los árboles con restos de troncos conservados en el registro sedimentario, como en los sedimentos de dunas o de lagunas.

La fecha más antigua que se ha llegado a contabilizar mediante este método es de aproximadamente 10.000 años, coincidiendo con el comienzo del Neolítico (cuando las sociedades humanas pasaron a ser agrícolas-ganaderas y se valían de la madera para hacer sus construcciones).

Fig. 4: Para poder contar anillos/años que permitan hacer dataciones arqueológicas e incluso geológicas, es necesario tener un registro continuo del patrón de crecimiento de los anillos de los árboles de esa zona. Se parte de madera de árbol actual, donde se tienen localizados los años a los que pertenecen sus anillos. Se busca la coincidencia de los primeros años de vida del árbol con madera arqueológica de construcciones de la zona (de construcciones antiguas como iglesias). Esta misma metodología se repite sobre madera cada vez más antigua hasta llegar a emplear restos de madera conservados en sedimentos como dunas o depósitos lacustres. Con toda esa información, se obtiene el registro continuo del desarrollo de los anillos de los árboles de esa zona (líneas marrones sobre testigo blanco).

Una vez se ha obtenido el patrón de crecimiento de los árboles de una zona, se pueden datar tanto restos leñosos (de manera directa) como eventos en los que se ve implicada la madera. Para ello, hay que hacer coincidir los anillos de los restos de madera que se quiere datar con el del patrón de crecimiento de los anillos de la zona.

Por ejemplo, si se encuentra un tronco en los sedimentos de un lago (Fig. 5), podremos comparar los anillos del tronco encontrado con los anillos del registro de la zona, obteniendo una edad para ese tronco. Pero, además, como ese tronco está dentro de un depósito sedimentario, podemos decir que la sedimentación fue posterior al tronco, obteniendo así una datación relativa del momento de la sedimentación.

Fig. 5: Ejemplo de datación dendrocronológica. Conociéndose la relación de los anillos de los árboles en cada momento, se compara ésta con los restos de troncos encontrado en los sedimentos de relleno de un lago. Se obtiene que el árbol vivió al menos entre los años 1250 y 1310. Además, como su enterramiento fue posterior a la muerte del árbol, podemos saber que el sedimento donde se encuentran éstos troncos se depositó posteriormente al año 1310.

Para realizar la datación mediante los anillos de los árboles, se identifica el patrón de crecimiento de los restos de árboles que se quieren datar en el registro dendrocronológico de la zona donde se han encontrado.

¿Cómo es el código de los anillos de los árboles de Ávila de los últimos años?

El factor que más condicionará la anchura de los anillos de los árboles es la disponibilidad de agua, principalmente la lluvia.

En la Figura 6 podemos ver el registro de lluvias del centro de la Península de los últimos años. Para que sea más fácil de diferenciar, se han coloreado en verde las barras correspondientes a los años más lluviosos y en rojo las de los años más secos.

Al observar los anillos de un testigo de pino, somos capaces de reconocer algunos de los años en función del grosor de su anillo correspondiente:

  • Años más lluviosos y por tanto anillos más anchos (años 1972, 1997 y 2010).
  • Y años más secos con anillos más estrechos (años 1954, 1983 y 2005).
Fig. 6: Registro de las precipitaciones del centro de la Península Ibérica desde 1940 a 2018. Se han marcado de color verde los años más lluviosos y de color rojo los más secos. Cuando se compara el registro de lluvias con los anillos de crecimiento de un pino de la zona, se puede comprobar cómo es posible identificar dichos años porque los anillos más anchos se corresponden con los años lluviosos y los anillos estrechos con los años más secos. Este patrón de crecimiento de los anillos será similar en los árboles que se han desarrollado en esta misma zona.

¿Sabías que… el árbol apodado Matulasen era el árbol vivo más viejo del mundo, con 4850 años. En 2016 se descubrió un árbol aún más viejo, se estima que tiene unos 5067 años. Ambos árboles perteneces a la especie Pino longevo (Pinus longaeva) y se encuentran en el Bosque Nacional de Inyo, en las Montañas Blancas de California (Estados Unidos) pero su ubicación exacta no se ha desvelado para evitar su destrucción?

Ejemplar de Pino longevo (Pinus Longaeva) en las Montañas Blancas de California (Estados Unidos). Imagen: Rick Goldwater Wikimedia Commons.

¿Sabías que… el árbol más viejo de España, y de los más viejos de Europa, se encuentra en la Sierra de Cazorla (Jaén). Se trata de un Tejo Milenario (Taxus baccata) y tiene más de 2500 años?

El tejo milenario (Taxus baccata) de más de 2500 años, en la Sierra de Cazorla (Jaén), es el árbol más viejo de España.

En la provincia de Ávila (España) hay algunos ejemplares de árboles con solera, como la llamada “encina milenaria” del castro vetón de la Mesa de Miranda, en Chamartín, o el ejemplar de castaño conocido como “El Abuelo”, en el castañar de El Tiemblo.

¿Quieres saber más sobre métodos de datación?

Método de datación por radiocarbono (o Carbono-14)

Organismos que colonizan los granitos: la liquenometría

Estudio de la evolución paleoclimática a partir de las turberas

El análisis de los pigmentos minerales. Espectroscopía Raman

Referencias

Método de datación por radiocarbono (o Carbono-14)

Texto y gráficos – Ana Isabel Casado Gómez

La técnica conocida como “Carbono 14” es un método de datación absoluta que se basa en el carbono que se encuentra en muestras de origen biológico como los fósiles o el carbón.

Los seres vivos dependemos del carbono para nuestra existencia, ya que forma parte de nuestro organismo constituyendo moléculas (ADN, colágeno, queratina…) y tejidos, tanto orgánicos como inorgánicos (plumas, pelo, huesos, conchas…). Los seres vivos obtenemos este carbono de la naturaleza mediante la ingesta de alimentos o, en el caso de las plantas, con la fotosíntesis.

Isótopos de carbono

El carbono es un elemento que se encuentra en la naturaleza como tres posibles isótopos (fig. 1):

  • El Carbono-12 tiene 6 protones y 6 neutrones, 12 partículas subatómicas en su núcleo.
  • El Carbono-13 tiene 6 protones y 7 neutrones, 13 partículas subatómicas en su núcleo.
  • El Carbono-14 tiene 6 protones y 8 neutrones, 14 partículas subatómicas en su núcleo.

La diferencia entre un isótopo y otro es el número de neutrones que posee, ya que todos tienen los mismos protones y los mismos electrones. El nombre de los distintos isótopos de carbono viene dado por la suma de los protones y los neutrones que hay en su núcleo.


Figura 1. Los tres isótopos de carbono, tanto estables como inestables (radiactivos) con sus respectivos número de protones, neutrones y electrones;  y su abundancia en la naturaleza.

El Carbono-12 y el Carbono-13 son estables y se mantendrán inalterables, mientras que el Carbono-14 es inestable (radiactivo) lo que hace que no se mantenga en el tiempo.

La abundancia natural de estos isótopos es de 98,89% de Carbono-12; 1,10% de Carbono-13 y solo 1,0×10-10 % de Carbono-14.

Para el método de datación por Radiocarbono, lo que se compara es la proporción de los isótopos Carbono-12 y Carbono-14 en la muestra.

Proporción Carbono-12 / Carbono-14 en restos biológicos

La proporción entre estos dos isótopos de carbono es la misma en una planta viva (que toma el carbono del CO2 de la atmósfera) que en un herbívoro (que toma el carbono de las plantas) y que en un carnívoro (que toma el carbono de los herbívoros que lo tomaron de las plantas). Luego, la proporción entre los distintos isótopos de carbono presente en los organismos vivos es la misma que existe en la atmósfera (fig. 2).

Figura 2. Esquema de la proporción de isótopos de Carbono-12 y Carbono-14 tanto en la atmósfera como en los organismos vivos. Esta proporción es la misma en todos los casos, ya que se transmite de unos organismos a otros mediante la cadena alimenticia a partir de los organismos vegetales que lo toman de la atmósfera.

En el momento que un organismo muere, la proporción entre sus isótopos de carbono comienza a cambiar. La cantidad de Cabono-12 se mantiene igual que cuando estaba vivo pero la cantidad de Carbono-14 disminuye debido a la inestabilidad de este isótopo.

Lo que le sucede al Carbono-14 es que, al ser inestable, transforma uno de sus neutrones en un protón en lo que se conoce como proceso de decaimiento, convirtiéndose en un isótopo de Nitrógeno-14 que sí que es estable. El Carbono-14 es lo que se denomina el isótopo padre, y el Nitrógeno-14 es el isótopo hijo (fig. 3).

Figura 3. El Carbono-14 sufre un proceso de decaimiento por el que uno de sus neutrones se transforma en un protón, convirtiéndose en Nitrógeno-14. El isótopo original se denomina isótopo padre mientras que el producto del decaimiento se llama isótopo hijo.

La cantidad de Carbono-14 de un resto orgánico se reduce de manera exponencial, formando una curva. El Carbono-14 tarda 5.730 años en reducir a la mitad su cantidad en la muestra, lo que se conoce como semivida o periodo de semidesintegración (fig. 4).

Esto significa que 5.730 años después de haber muerto el organismo, sus restos tendrá la mitad de Carbono-14 que cuando vivía; y que cuando pasen otros 5.730 años (a los 11.460 años de haber muerto) el resto tendrá la mitad de la mitad del Carbono-14 original o, lo que es lo mismo, un cuarto del Carbono-14 original.

Figura 4: cuando el organismo muere, la cantidad de Carbono-14 disminuye de manera exponencial mientras que la de Carbono-12 se mantiene en el tiempo. Cada vez que la cantidad de Carbono-14 (isótopo padre) se reduce a la mitad al transformarse en Nitrógeno-14 (isótopo hijo), se consume una semivida, lo que supone 5.730 años.

Llegará un momento en que todo el Carbono-14 original del resto biológico se haya transformado en Nitrógeno-14, el isótopo padre se agota y solo existe isótopo hijo. La datación por radiocarbono deja de ser posible. Este, por ejemplo, es el caso de los dinosaurios que vivieron hace más de 65 millones de años y cuyos fósiles no conservan isótopos de Carbono-14.

De esta manera, gracias a la proporción entre el isótopo de Carbono-12 y el de Carbono-14 en el resto biológico podemos conocer cuánto tiempo ha pasado desde que el organismo murió hasta la actualidad, siempre que no haya sido hace más de 60.000 años aproximadamente, que es la edad máxima que podemos datar por este método.

¿SABÍAS QUE…? El método de datación por Carbono-14 solo se puede emplear para restos de organismos que murieron antes de 1950 ya que, debido a la proliferación de las pruebas de armas nucleares a partir de la década de los 50 del siglo pasado, los porcentajes de isótopos radiactivos de la atmósfera se han visto gravemente alterados.

Algunos ejemplos

  • En el Geolodía 2019 en El Oso vimos cómo se ha aplicado este método para datar restos vegetales encontrados dentro de los sedimentos de las dunas, lo que nos permite aproximar la edad de las propias dunas.

¿Quieres saber más sobre métodos de datación?

Younger Dryas: cambios climáticos que condicionaron el paisaje abulense y la vida humana

Autor (texto y gráficos) – Javier Pérez Tarruella

Hace 18.000 años nuestro planeta se encontraba inmerso en el último máximo glaciar. La nieve caída sobre los continentes no llegaba a fundirse en verano, formándose grandes acumulaciones de hielo. Y como el agua de precipitación no retornaba al océano el nivel del mar descendió hasta 125 metros por debajo del actual.

18.000 años es un parpadeo en términos geológicos. Y es que el periodo en el que le ha tocado vivir a nuestra especie (el Cuaternario) se caracteriza por un clima que cambia rápidamente (fig. 1).

Figura 1. Variación climática en los últimos 250.000 años. A grandes rasgos se diferencian 3 glaciaciones y 3 periodos interglaciares, en el último de los cuales nos encontramos ahora. En este artículo nos centraremos en la transición de la última glaciación al presente interglaciar en el que nos encontramos.

Estos cambios climáticos, que a grandes rasgos dan lugar a una glaciación y un periodo interglaciar cada 100.000 años aproximadamente, son debidos a:

Estos factores astronómicos siempre han existido, pero el hecho de que hayamos llegado a tener casquetes de hielo en ambos polos (algo rarísimo en la Historia de la Tierra) ha hecho mucho más vulnerable y cambiante al sistema climático.

El enfriamiento súbito del Younger Dryas

Estos cambios no siempre son graduales. Si estudiamos en detalle el final de la última glaciación vemos que, cuando parecía que se retiraba definitivamente, dio un último coletazo hace unos 12.000 años con el llamado Younger Dryas (también conocido como Dryas Reciente o Joven Dryas).

Este enfriamiento súbito del clima fue el responsable de la aparición del mar de dunas de La Moraña, y es que la precipitación en Ávila disminuyó al reducirse la evaporación del Atlántico Norte por las bajas temperaturas.

Para saber más sobre el mar de dunas de La Moraña.

La hipótesis más aceptada sobre el origen de este cambio climático es la del vaciado del Lago Agassiz. Este lago se formó por el deshielo del casquete glaciar de Norteamérica, cerca de los Grandes Lagos, alcanzando un tamaño similar al de la Península Ibérica (figura 2). En un determinado momento este lago vertió sus aguas al Atlántico, deteniendo las corrientes oceánicas y enfriando especialmente el Atlántico Norte.

Figura 2. El Lago Agassiz y las posibles vías de vertido de sus aguas al océano.

¿Sabías que…? La película Ice Age 2 está basada en la hipótesis del Lago Agassiz. Los protagonistas viven junto a una presa de hielo que retiene el agua del deshielo acumulada en el Lago Agassiz y deben escapar antes de que se rompa y el lago se vacíe de golpe, es decir: ¡antes de que comience el Younger Dryas!

El final del Younger Dryas y el inicio de la agricultura

Como se observa en la figura 3, a pesar de que los factores astronómicos aumentaban la insolación sobre el hemisferio norte, el clima se enfrió y con ello disminuyó la precipitación.

Sin embargo, más destacable que el enfriamiento del Younger Dyas fue su final. Y es que ese calentamiento y deshielo que se habían visto frustrados remontaron rápidamente, con una subida del nivel del mar de más de 40 mm/año durante unos 3 siglos y un calentamiento de más de 7ºC en Groenlandia para ese periodo.

Figura 3. Gráfica que muestra 5.000 años de evolución climática, incluyendo el Younger Dryas. La temperatura y la precipitación en el Atlántico Norte disminuyeron en este periodo, a pesar del aumento de la insolación. El enfriamiento finalizó de golpe, provocando la fusión masiva de glaciares y un aumento brusco del nivel del mar.

Los registros arqueológicos muestran que el inicio de la agricultura y las civilizaciones complejas (el Neolítico) coincide con el final del Younger Dryas, el calentamiento que dio paso al presente Interglaciar. Ahora, gracias a unos sondeos en el Mar Muerto, en el entorno de Mesopotamia o “Cuna de la Civilización”, sabemos que esta coincidencia es exacta.

Estos sondeos indican que el espesor de las capas de sedimento en la cuenca del Mar Muerto se incrementa a partir del fin del Younger Dryas. La incipiente actividad agrícola y el pastoreo provocarían un aumento de la erosión y por tanto el incremento de la sedimentación observado en la zona.

Por una parte, parece que un cambio ambiental tan brusco obligó a modificar el modo en que obteníamos el alimento; y por otra parte, la relativa estabilidad climática del Interglaciar nos permitió perfeccionar la técnica hasta llegar a los tractores que hoy aran La Moraña.

Quizá sin el Younger Dryas no habría surgido este nuevo paradigma de vida de nuestra especie, o quizá hubiese aparecido 2.000 años antes al no retrasarse el fin de la glaciación. En cualquier caso, fue un evento que nos permite aprender cuánto han condicionado los cambios climáticos la historia de la Humanidad.

¿Sabías que…? Otra de las hipótesis utilizadas para explicar el cambio climático del Younger Dryas es el impacto de un meteorito en Groenlandia. Esta hipótesis se lanzó en 2007 y en 2018 se descubrió bajo el casquete glaciar de Groenlandia un enorme cráter de impacto de 30 km de diámetro. Los cálculos sugieren que un meteorito de 1 km impactó contra la Tierra hace entre 10.000 y 2 millones de años, de momento es el único sospechoso que tenemos como culpable cósmico del Younger Dryas.

Referencias

Estudio de la evolución paleoclimática a partir de las turberas

Autor – Pablo Melón Jiménez

Las turberas son humedales ácidos en los cuales se produce la acumulación de materia orgánica como turba.

La turba es un material de color pardo oscuro, aspecto terroso y poco peso, constituido por restos vegetales en estado de descomposición que se utiliza fundamentalmente como combustible y como abono orgánico.

Musgo Sphagnum sp. presente en las turberas

Las turberas son en realidad pequeñas cuencas lacustres de origen glaciar en las que la velocidad de acumulación de la materia orgánica es mayor que la velocidad de descomposición de la misma.

Este proceso condiciona que el agua que vierte en las lagunas no entre en contacto con la materia orgánica y de forma progresiva se produce una reducción en la concentración de oxígeno, dando lugar a zonas en las que se produce la descomposición de la materia orgánica por parte de bacterias anaeróbicas. Este proceso de anoxia produce una reducción importante de los nutrientes en la turbera, que es aprovechado fundamentalmente por los musgos del género Sphagnum sp., que proliferan en aguas pobres en nutrientes frente a otros organismos.

El polen: un registro de la evolución del clima y la vegetación

Desde la antigüedad, las turberas han servido como combustible (de hecho forman parte de la clasificación de los carbones; turba<lignito<hulla<antracita) y para fertilizar campos de cultivo.

Pero además, en los últimos tiempos, se ha comprobado la eficacia de este tipo de ambientes como guardianes del registro palinológico, es decir, del polen y esporas provenientes de distintas plantas y hongos. El estudio de este tipo de registros ha permitido en el caso de los castros vetones, y en particular del castro de Ulaca, hacer una aproximación a la evolución paleoclimática y de la vegetación de la zona en relación a sus pobladores. Los registros de sedimentos encontrados en vasijas y otros restos arqueológicos recuperados de los castros vetones han permitido analizar la evolución de los terrenos en que habitaron dichos pueblos, gracias también a la datación por carbono-14.

Para saber más del método de datación por carbono 14: Método de datación por radiocarbono (o carbono 14)

Los pueblos vetones emprendieron durante la Segunda Edad del Hierro (s. VI a I a.C.) un extenso proceso de explotación del paisaje que dio lugar, tras la deforestación continuada, a la generación de nuevas zonas de pastos y tierras de cultivo (Sáez, J.A.L., Merino, L.L., & Díaz, S.P., 2008).

Este registro se puede observar por la reducción de los pólenes de especies como la encina, el roble melojo y el fresno y el aumento progresivo de la presencia de algunos palinomorfos de carácter antrópico (condicionados por la presencia humana) como Cichorioideae y Cardueae, que explican la antropización del paisaje (la transformación que ejerce el ser humano sobre el medio).

Grano de polen observado en el Microscopio Electrónico de Barrido (SEM).

¿SABÍAS QUE…? La aparición de algunas esporas de hongos coprófilos (aquellos que tienen afinidad por los excrementos animales) indica no solo que los vetones eran un pueblo con amplia dedicación ganadera, sino que además convivían con el ganado in situ.

¿Quieres saber más sobre métodos de datación?

El análisis de los pigmentos minerales. Espectroscopía Raman

Texto y gráficos de Ana Isabel Casado Gómez

Como hemos podido ver en otros artículos, los vetones se servían de la naturaleza, y por ello de la Geología, para su día a día: para orientar sus altares, para extraer la piedra con la que construían sus edificaciones… y para elaborar y decorar los utensilios de barro que utilizaban.

Cerámica vetona que muestra a un guerrero montando a caballo con sus armas: una falcata a la cintura y un soliferro en la mano (Museo arqueológico de Cáceres)

Fabricaban todo tipo de utensilios y piezas de vajilla (vasos, platos, copas, cuencos, botellas…) con arcillas que obtendrían de los lechos de los cursos de agua cercanos, como el río Adaja y sus afluentes. Ciertas piezas significativas las decoraban pintando bandas, líneas onduladas, motivos de cestería, círculos e incluso escenas de caza como la de la fotografía.

De dónde obtenían los vetones los pigmentos con los que decoraban sus cerámicas

Una vez más, de la naturaleza que los rodeaba, ya que empleaban colorantes naturales. Los vetones, y todos los pueblos antiguos en general, tenían una gama cromática restringida fundamentalmente a tres colores: rojo, amarillo y negro. Eso sí, en muchas tonalidades diferentes.

[ ] Los colores rojos y amarillos, e incluso tonos anaranjados, los conseguían a partir de óxidos e hidróxidos de hierro presentes en minerales como la hematites, la goethita y la limonita. Estos minerales abarcan diversos tamaños, desde pequeños cristales hasta nódulos o capas irregulares. Su formación se produce por la alteración superficial de rocas que contienen hierro.

[ ] El color negro de origen mineral lo obtenían a partir de:

  • La pirolusita (óxido de manganeso), que se forma por oxidación del manganeso presente en la mayoría de las rocas.
  • El grafito (carbono), habitual en rocas metamórficas formando placas cristalinas.
  • La magnetita (óxido de hierro II y III), que aparece como mineral accesorio en muchas rocas ígneas.
minerales_pigmentos
Minerales utilizados por los vetones para hacer pigmentos.

La identificación de los pigmentos minerales en muestras arqueológicas

Las técnicas más convenientes para analizar muestras arqueológicas son aquellas que no las destruyen o alteran significativamente, ya que cada muestra es única.

Una de estas técnicas es la espectroscopía Raman, que se basa en el análisis de cómo afecta la luz a la muestra.

La luz blanca (como la del Sol) está formada por la superposición de los diferentes colores, cada uno de ellos con una energía y una longitud de onda diferentes. Esto lo podemos comprobar cada vez que llueve y se forma el arco iris, la luz se descompone en sus distintas longitudes de onda mostrándonos diferentes colores. Cada uno de estos colores se corresponde con los fotones de una energía diferente.

arcoiris copia.jpg

Cuando vemos la luz de un láser, de un único color (monocromática), es porque toda la luz que emite dicho láser es de la misma energía.

Al alumbrar un objeto con un láser, la gran mayoría de los fotones de la luz que lo ilumina continúan su viaje con la misma energía, pero aproximadamente uno de cada diez millones de fotones intercambia energía con aquello que ilumina teniendo lugar lo que se conoce como efecto Raman. Cuantificando esos pequeños cambios de energía somos capaces de diferenciar la composición de dichos objetos sin alterarlos, ya que cada compuesto genera un espectro Raman propio y único.

Cuando se ilumina la muestra con un láser (todos los fotones que emite el láser tienen la misma energía), nuestros equipos son capaces de registrar los cambios de energía de los fotones que han interactuado con la muestra, identificando su composición sin que la muestra se altere.

ceramica2 copia.jpg

Para poder identificar los minerales de cada pigmento, se compara cada nuevo análisis con bases de datos de espectros Raman. Como se puede ver en la figura, cada mineral tiene un espectro Raman único (como su propia huella dactilar), lo que hace posible su identificación.

raman_minerales.jpg

¿Sabías que…?

La cantidad de fotones que emite una bombilla de luz amarilla de 100 vatios es de 276 trillones de fotones por segundo.

bombilla fotones_sabiasque.jpg


Los manantiales de Ulaca o cómo llega el agua hasta la cima del monte

Autora – Fina Muñoz

Para las sociedades humanas antiguas la captación de recursos siempre fue de vital importancia. El agua era un elemento esencial, por lo que muchos de estos pueblos se asentaban cerca de ríos y otras fuentes de agua. Incluso hoy en día gran parte de nuestras ciudades se encuentran próximas a un río.

En Ulaca los ríos se hallan relativamente alejados del núcleo del castro. Pero todavía hoy existen manantiales en la parte más alta del cerro, dentro de lo que fue el recinto amurallado de la antigua ciudad vetona. Esos manantiales constituyeron muy probablemente uno de los recursos hídricos que aprovechaban sus ciudadanos de manera cotidiana.

¿Pero cómo llega el agua hasta lo más alto de un cerro granítico? ¿Cómo mana ese agua a través de una roca como el granito?

Los acuíferos en la roca granítica

En hidrogeología se entiende que un acuífero es aquella formación geológica que permite la circulación de agua por sus poros o grietas, de forma que se pueda aprovechar para su uso.

Al observar una muestra de granito de cerca veremos que no son rocas porosas y por tanto no permiten la circulación de agua. Sin embargo, en los diversos afloramientos de granito en el entorno del castro se pueden apreciar fracturas o diaclasas con diferentes orientaciones. Estas diaclasas configuran lo que se denomina porosidad secundaria al constituir una red tridimensional compleja e interconectada y que sí permite la circulación del agua aunque sea de forma lenta.

Para expresar la productividad hídrica en hidrología subterránea utilizamos el parámetro permeabilidad, que alude a la cantidad de interconexión entre los poros y/o fracturas y por tanto a la capacidad de que el agua pueda fluir mejor o peor a través de ellos.

Por todo ello, se dice que los granitos presentan una permeabilidad entre media y baja en función del grado de fracturación y en comparación con la permeabilidad de otras formaciones rocosas (Figura 1).

Fig1
Figura 1. Esquema tridimensional de una formación rocosa granítica fisurada y detalle de un perfil típico con desarrollo de sedimentos de porosidad intergranular. (Modificado de Molinero, J. 2005).

Una red de fracturas y un sistema de vasos comunicantes

Si se observa la foto aérea del entorno del castro, se aprecian claramente direcciones de fracturación preferentes (Figura 2).

Fig2
Figura 2. Familias de fracturas en los granitos, una en verde con dirección NNW-SSE y otra en naranja ENE-WSW. Canteras en la zona Sur del castro de Ulaca.

Fracturación y paisaje: fallas y diaclasas

Esta red tridimensional interconectada funciona como un sistema de vasos comunicantes, de forma que el agua que llega a las zonas de recarga (las cumbres más altas en la Sierra de la Paramera) empuja por gravedad y hace ascender el agua en otros puntos más alejados, como el cerro de Ulaca.

Cuando hay una intersección entre la superficie del relieve y la superficie piezométrica del acuífero (superficie que une los puntos donde el agua se encuentra a la misma presión en el subsuelo) se produce una surgencia de agua que forma un manantial.

Además, la existencia de varias turberas en el castro de Ulaca (Figura 3) indica que el nivel freático (superficie que une los puntos donde encontramos agua en el subsuelo, independientemente de la presión) en el acuífero granítico está cercano a la superficie.

fig31.jpg
Figura 3. Turbera en la zona alta del castro de Ulaca cerca de las ruinas del edificio denominado “El Torreón”.

La “domesticación” del agua en las culturas antiguas

En el yacimiento vetón de Ulaca no hay pruebas de obras hidráulicas realizadas por sus antiguos moradores, por lo que el aprovechamiento del agua debía realizarse directamente por captación de los manantiales de la zona.

Es muy probable que el manantial presente en la zona alta del castro, junto a las ruinas del edificio conocido como “El Torreón”, estuviera ya activo, siendo la situación de este edificio estratégica para la “domesticación” de los recursos hídricos.

¿Sabías que…?

La Cultura de las Motillas, anterior a Ulaca, fortificó sus pozos de más de una decena de metros de profundidad con fuertes murallas y torres de vigilancia en torno a ellos.
Esta importante defensa del recurso hídrico coincide en parte con episodios climáticos muy secos y es el reflejo de algunos de los primeros aprovechamientos del nivel freático en la Península.


vistaaereayacimientomotilladelazuer_gal_33_00053_B
La Motilla del Azuer, en Daimiel, es el yacimiento más representativo de la Edad del Bronce en La Mancha.

Recursos docentes relacionados

RECURSO DIDÁCTICO. Temas y prácticas de hidrogeología e hidrología superficial

RECURSO DIDÁCTICO. Serie documental que repasa cuestiones fundamentales del agua subterránea

Bibliografía

Arqueoastronomía: el paisaje como recurso en el Castro de Ulaca

Texto e imágenes – Gabriel Castilla Cañamero

Los geólogos somos naturalistas y nuestro trabajo consiste en reconstruir la historia de la Tierra y explorar los recursos que nos ofrece. Para ello estudiamos tanto el registro geológico como las huellas que la erosión y la tectónica imprimen en el paisaje. Los geólogos somos, en definitiva, contadores de historias; relatos que tratan sobre cómo era la naturaleza en el pasado y cómo se comporta en la actualidad.

Un recurso natural es todo aquel bien material (agua, rocas, suelo) y servicio (cobijo, transporte) que proporciona la naturaleza y contribuye tanto a la supervivencia como al desarrollo de una sociedad. La naturaleza se transforma en recurso por medio de una valoración cultural o económica que realiza una comunidad. Así, por ejemplo, hoy consideramos que un paisaje puede ser un recurso natural cuando este posee valores educativos o estéticos que atraen el turismo y potencian la economía de una región.

El valor del paisaje en la antigüedad

Pero, ¿qué valor podía tener un paisaje similar en la antigüedad? Los paisajes ofrecen puntos de referencia que permiten establecer vínculos entre las comunidades humanas, el entorno natural que habitan y el cosmos.

La observación de la salida y puesta del Sol, la Luna o las estrellas más brillantes respecto a puntos de referencia en el horizonte (montañas, rocas, valles, oquedades), permitieron a las sociedades antiguas establecer calendarios con los que ajustar la explotación de los recursos naturales del entorno a los ciclos biológicos vinculados a las estaciones.

Hasta no hace mucho tiempo nuestros hábitos alimenticios estaban condicionados por la reproducción o migración de ciertos animales, la floración de plantas comestibles y la cantidad de agua disponible en ríos y manantiales. La explotación de los recursos energéticos dependían de las oscilaciones en la temperatura ambiental, la existencia de material combustible y la cantidad de horas de luz del día. El transporte terrestre, fluvial y marítimo estaba vinculado a la dirección e intensidad de los vientos, las corrientes y la temperie. Además, para viajar largas distancias era necesario aprender a orientarse según la posición de ciertas estrellas y el Sol en el horizonte.

Fue así que la posición que ocupan los astros respecto a puntos de referencia del paisaje se convirtió en un recurso natural esencial para el bienestar de los seres humanos en el pasado.

Arqueometría y arqueoastronomía

La Arqueometría es un campo interdisciplinar entre las Ciencias Naturales y las Ciencias Humanas, que tiene como objetivo desarrollar técnicas y métodos especializados para poderlos aplicar a obtener información sobre aspectos culturales, históricos o medioambientales del pasado (Maniatis 2002).

Una de estas disciplinas es la Arqueoastronomía, el campo de investigación encargado de estudiar la manera en que las sociedades de épocas pasadas se relacionaban con el cosmos, y su objetivo último es obtener datos que después serán usados para fundamentar hipótesis sobre las relaciones que las antiguas sociedades tuvieron con la bóveda celeste y con el paisaje circundante (Cerdeño et al, 2006). La recogida de estos datos requiere la participación de especialistas de diversas disciplinas: físicos, topógrafos, matemáticos, arqueólogos y geólogos, entre otros.

Arqueoastronomía en el Castro de Ulaca

En el caso del Castro de Ulaca estos estudios se han centrado en dos aspectos fundamentales:

  1. Explorar y determinar la orientación de estructuras arquitectónicas respecto a los ortos y ocasos de astros de especial interés.
  2. El análisis del horizonte que rodea el castro para comprobar la existencia de marcadores de algún evento astronómico.

En investigaciones similares (Mejías et al, 2015) el papel de los geólogos ha consistido en:

  • Aportar información sobre cómo era el horizonte del paisaje y el medio ambiente en la época en que el castro fue habitado.
  • Valorar el origen natural o artificial (acción antrópica) de ciertos rasgos que pueden ser de especial interés para las orientaciones (como piedras caballeras, fracturas).
  • Estudiar las rocas y minerales empleados en la construcción de los edificios más importantes, lo que nos dará información sobre el estado de conservación, posibles modificaciones, datación y singularidad de las edificaciones o estructuras que son motivo de estudio.

El lugar de mayor interés arqueoastronómico en Ulaca es el altar de sacrificios, por tratarse del centro social y religioso del castro (Figura 1).

Figura 1
Figura 1. Altar de Ulaca visto desde la piedra caballera conocida como Canto de la Mula.

El calendario que se emplea como referencia para el mundo celta, incluidos los vetones, es el encontrado en Coligny (Francia) en 1897, fechado hacia el siglo II d. C. (Cossard, 2010). Se trata de un calendario lunisolar que divide el año en dos partes:

  1. La oscuridad, ritualizada en la festividad de Samhain, que señalaba el comienzo del año a mediados del otoño (1 de noviembre).
  2. La luz, ritualizada en mitad de la primavera en la festividad de Beltaine (1 de mayo).

Un exhaustivo estudio realizado por Manuel Pérez Gutiérrez (2010) ha puesto de manifiesto la existencia de múltiples alineaciones de interés entre el altar y el horizonte del castro (Figura 2).

Figura 2
Figura 2. Orientación del altar hacia la Sierra de la Paramera.

Entre ellas caben destacar las relacionadas con los principales relieves de la Sierra de la Paramera (Figura 3 y 5) y con una piedra caballera próxima conocida como “Canto de la Mula” (Figura 4 y 5).

Figura 3
Figura 3. Detalle de los principales relieves de la Sierra de la Paramera. Durante el solsticio de verano, momento del año con mayor número de horas de luz, la Luna alcanza su mínima altura sobre el horizonte (apenas 5º) a su paso sobre el Risco del Sol.
Figura 4
Figura 4. Piedra caballera conocida como Canto de la Mula vista desde el altar. El Sol se pone tras ella hacia el 10 de mayo (festividad celta de Beltaine), y la Luna hace lo mismo coincidiendo con el solsticio de invierno, el día del año con menos horas de luz.
Figura 5
Figura 5. Principales alineaciones entre el altar de Ulaca y el paisaje circundante

En ambos casos se han hallado evidencias de alineaciones vinculadas tanto al seguimiento de las principales festividades celtas como a la observación de los solsticios de invierno y verano por parte de los habitantes de Ulaca hace más de 2.000 años.

Para saber más

Aprovechamiento de los recursos geológicos: las canteras de Ulaca

Autoría – Alberto Martín y Javier Elez

Imágenes – Gabriel Castilla y Javier Elez

El aprovechamiento de los recursos geológicos que nos ofrece la Tierra es una de las actividades más antiguas de la Historia del ser humano. Comienza ya en la “Edad de Piedra” (Paleolítico y Neolítico) pasando por las “Edades de los Metales” (Cobre, Bronce y Hierro) y se extiende hasta la actualidad.

La época actual está marcada por la utilización de los combustibles fósiles (carbón e hidrocarburos), la explotación del átomo y los nuevos componentes tecnológicos (silicio y grafeno) y en las últimas décadas las energías renovables.

La incorporación de estos recursos naturales a la sociedad constituye hitos tecnológicos significativos en el progreso humano.

Las primeras explotaciones sistemáticas de recursos geológicos

Uno de los primeros recursos geológicos que supuso una revolución tecnológica para el ser humano fue el sílex. Utilizado desde mucho antes, en el Neolítico ya se encuentran las primeras explotaciones mineras subterráneas con excavación de labores (pozos y galerías) de las que se tiene noticia. Algunas datan de hace aprox. 8000 años, como los yacimientos de Krzemionki Opatowskie en Polonia y Spiennes en Bélgica.

En estos y otros yacimientos se han encontrado pozos de hasta 10 metros de profundidad con galerías de varios kilómetros de longitud en niveles de creta con sílex, que cavaron con la ayuda de picos hechos con cuernos y palas de hueso.

En España, uno de los yacimientos neolíticos más importantes con este tipo de minería de sílex es el de Casa Montero, en Madrid.

Las canteras de granito de Ulaca

En Ulaca, los vetones utilizaron el granito como materia prima para construir todo tipo de edificaciones. Prueba de ello son las canteras que todavía podemos ver en el yacimiento.

canteraUlaca
Una de las canteras de granito del yacimiento vetón de Ulaca, en Villaviciosa (Solosancho), provincia de Ávila, España. Del estado de estas canteras se puede deducir que fueron abandonadas en plena explotación. Foto: Gabriel Castilla.

Esta cultura se aprovechó de las características geológicas del granito, en concreto de la existencia de diaclasas, para poder extraer bloques casi perfectos con facilidad.

Las diaclasas son un tipo de fracturas muy abundantes que no implican un desplazamiento de los bloques (al contrario que las fallas).

En Ulaca estas diaclasas se observan como planos rectilíneos que atraviesan el granito en diferentes direcciones, constituyendo planos de debilidad dentro de la masa de roca homogénea.

IMG-20180316-WA0000
Ilustración de uno de los paneles explicativos de la ruta arqueológica que recorre el yacimiento. Punto 10. Las canteras.

Utilizando cuñas dispuestas en agujeros a lo largo de estas fracturas, los canteros vetones podían introducirlas paulatinamente a lo largo de las fracturas (mediante mazas u otras herramientas), forzando la rotura gradual de grandes bloques de roca de manera muy limpia a lo largo de estos planos de debilidad.

Aún quedan en Ulaca bloques prácticamente terminados y que no fueron transportados, un paisaje sugerente que nos llena de preguntas.

IMG-20180316-WA0001
Bloques de granito perfectamente cortados y dispuestos para ser utilizados. Canteras del yacimiento arqueológico vetón de Ulaca. Foto: Gabriel Castilla.

¿SABÍAS QUE…?

Esta misma técnica de extracción de la piedra, con pocas variaciones,se siguió utilizando en la actividad de cantería del granito en el Sistema Central de la Península Ibérica hasta mediados del siglo XX, ¡más de 2000 años después!

Colección de herramientas de cantería reunidas y exhibidas al aire libre por un particular en Moralzarzal (Madrid).

JUEGO RECOMENDADOBetterGeo, mod para una geología realista en Minecraft

Referencias

Organismos que colonizan los granitos: la liquenometría

Autor – Javier Elez

¿Te has fijado alguna vez en la gran cantidad de seres vivos que colonizan las rocas que ves en tus paseos por el campo? Es habitual encontrar, por ejemplo, una gran variedad de musgos y líquenes tapizando los granitos.

Los musgos son plantas no vasculares, mientras que los líquenes son organismos simbiontes complejos en los que colaboran hongos, algas y levaduras, según publicó la revista Science hace un par de años.

img-20171228-wa0001460469250.jpg

Estos últimos, los líquenes, se estudian en varios campos e incluso existe una rama de la Botánica denominada Liquenología. Pero, ¿para qué se utilizan los líquenes en Geología?

Los líquenes y la geología

En geología se emplea una técnica de datación denominada liquenometría.

Algunas especies de líquenes nos permiten estimar con bastante precisión el tiempo que ha pasado desde que una superficie queda expuesta y los líquenes comienzan a colonizarla hasta la fecha en la que se realiza la datación. Según pasa el tiempo, la colonia va creciendo en diámetro y este crecimiento se puede medir.

Esta técnica se puede utilizar con éxito para datar superficies de hasta 5.000 años. Evidentemente, cuanto más atrás en el tiempo, mayor puede ser el margen de error.

¿En qué situaciones pueden quedar expuestas nuevas superficies para ser colonizadas por líquenes? En riadas, en caídas de bloques y de construcciones por terremotos, en movimiento de masas rocosas por glaciares, deslizamientos de ladera, etc.

cantera
En esta cantera de granito abandonada los líquenes comenzaron a proliferar sobre las superficies expuestas con el cese de la actividad de extracción.

Esta técnica de datación se emplea en el estudio de los procesos geológicos activos en campos como la geología del Cuaternario, estudios relativos a la variación del clima a lo largo de los últimos miles de años y los riesgos geológicos.

Algunas de las aplicaciones prácticas de la liquenometría son:

  • El estudio de la evolución temporal del retroceso de un glaciar. Y por tanto, las variaciones climáticas que se dieron en el pasado.
  • La datación y estudio de los efectos de grandes terremotos del pasado, de los que en muchas ocasiones no queda un registro documental.
  • Evolución de grandes deslizamientos o de zonas con importantes desprendimientos de roca por inestabilidad gravitacional.
  • Estudio de grandes riadas y sus periodos de retorno.
  • Como te puedes imaginar, también se utiliza con éxito en otras ramas del conocimiento como la Arqueología.

Cómo se realiza la datación liquenométrica

Simplificando mucho, la obtención de una edad se realiza estimando una curva de crecimiento climático en función de la localización geográfica en la que se encuentran y relacionando esta curva con el diámetro de la colonia.

Estos cálculos son relativamente complejos y se tienen en cuenta parámetros tales como la especie en concreto de liquen, la cantidad de insolación que le llega a la colonia en función de su localización (solana-umbría), la elevación a la que se encuentra, si se halla en una superficie plana o inclinada, etc.

¿SABÍAS QUE…?

Para calibrar la curva de crecimiento de las colonias de líquenes también se miden de forma sistemática en los cementerios cercanos a la localidad de estudio.

Las lápidas son superficies de piedra expuestas en las que está marcada la fecha de primera exposición y por tanto se sabe cuándo comienza la colonización por líquenes.

© Textos de Javier Elez.

© Fotografías de Gabriel Castilla y Javier Elez.

¿Quieres saber más sobre métodos de datación?