Archivo de la categoría: Cambio climático

GEOLODÍA 24. ¿Qué es un glaciar y cómo funciona? Los glaciares de montaña

Por Ana Isabel Casado y Pablo Melón

Un glaciar (del francés glacier) es una gran masa de hielo comprimido, formada por acumulación, compactación y recristalización de nieve hasta crear hielo glaciar (figura 1); y que necesita de miles de años para que esto suceda.

Gráfico de cambios en la morfología y en la porosidad de la nieve con la profundidad hasta convertirse en hielo glaciar.
Figura 1. Cambios en la morfología y en la porosidad del agua sólida con la profundidad, desde nieve granular hasta hielo glaciar

Con esta compactación, el hielo se reorganiza perdiendo el aire que se encuentra entre las partículas sólidas hasta que solo queda el aire del interior de burbujas. El resultado es la formación de hielo glaciar, con su característico color azul.

Los glaciares son dinámicos (se mueven) y generan procesos de erosión, transporte y sedimentación, al igual que sucede con el agua líquida.

Clasificación de los glaciares

La clasificación morfológica de los glaciares se basa en tres factores: su tamaño, su forma y la posición de la masa de hielo (figura 2).

  • Glaciares de casquete: son de gran escala. Ocupan casi el 10% de la superficie terrestre. Su forma es masiva y fluye en todas direcciones.
  • Glaciares de meseta: son de mediana escala. Su forma también es masiva. Fluyen en todas direcciones y se encuentran cubriendo zonas elevadas y mesetas.
  • Glaciares de montaña (o alpinos): son de pequeña escala. Consisten en corrientes de hielo más largas que anchas y se encuentran entre zonas montañosas elevadas, formando valles en U.
GLACIARES DE CASQUETEGLACIARES DE MESETAGLACIARES DE MONTAÑA
TAMAÑOGrandeMedianoPequeño
FORMAMasivaMasivaCorriente de hielo más larga que ancha
POSICIÓNGrandes superficies (>10% de la Tierra)Zonas elevadas y mesetasEntre montañas elevadas, con valles en U
Figura 2. Tabla con las características de tamaño, forma y posición de los glaciares. Con estas características se pueden definir tres tipos de glaciares claramente distintos: de casquete, de meseta y de montaña.

Como ya has visto en la entrada del Paleograciar de la Serradilla (Cepeda la Mora, Ávila), en el Sistema Central existieron glaciares activos en el Último Máximo Glaciar (20.000-30.000 años). Estos glaciares eran del tipo Glaciar de Montaña.

Partes de un glaciar de montaña

Los glaciares de montaña son masas de hielo que fluyen pendiente abajo y que existen porque la acumulación de nieve a gran altura compensa la fusión de hielo a baja altura y la descarga por deshielo.

Esta masa de hielo en movimiento va incorporando fragmentos rocosos de todo tipo de tamaños, y genera morfologías propias que persistirás aún cuando el glaciar haya desaparecido, como ha pasado en La Serradilla.

Las dos zonas de un glaciar de montaña (acumulación vs. ablación)

  • ZONA DE ACUMULACIÓN (ganancia de masa): parte más alta donde más nieva y se alimenta el glaciar. Las bajas temperaturas se encargan de mantener este agua sólida.
  • ZONA DE ABLACIÓN O DE FUSIÓN (pérdida de masa): zona baja donde el agua sólida se derrite por el aumento de la temperatura. Se forman pequeños drenajes y escorrentías superficiales que alimentan los ríos ladera abajo. En ocasiones, el glaciar puede desembocar en un lago o mar y fragmentarse en grandes bloques de hielo llamados icebergs.
Figura 3. Los glaciares de montaña tienen dos zonas claramente diferenciadas, la zona de acumulación, donde hay una ganancia de masa por la precipitación de nieve, y la zona de ablación, donde se pierde masa por sublimación y deshielo. Donde no hay ni pérdida ni ganancia de masa se llama línea de equilibrio. Morfológicamente, existen estructuras propias de estos sistemas glaciares que permanecen una vez el hielo se ha retirado, como el circo, las morrenas o los bloques erráticos.

Estas dos zonas (acumulación y ablación) se encuentran separadas por la línea de equilibrio, lugar donde el conjunto de las ganancias y las pérdidas es igual a cero.

El dinamismo y la capacidad de cambio son las características más importantes de los sistemas glaciares de montaña. Estos modifican su forma, se mueven, crecen, decrecen…

Algunas definiciones

Los circos glaciares son depresiones con forma semicircular y paredes muy inclinadas, que se desarrollan en la zona de acumulación (figura 3). Su forma se debe a la suma de la erosión basal, el arrastre de fondo y la gelifracción de las rocas de las paredes.

Cuando el hielo ya no existe, quedan los circos en las zonas altas de las montañas, en los cuales es habitual que se formen lagos.

La lengua glaciar (figura 3) es la masa de hielo que se desborda del circo y se desplaza pendiente abajo.

La masa de hielo va incorporando fragmentos rocosos de todo tipo de tamaños mientras se desplaza, acumulándolos principalmente en sus bordes. A estas acumulaciones se les llama morrenas (figura 3). Estas morrenas se conservan una vez desaparecido el glaciar, y se diferencian como crestas formadas por detritos de tamaños variados que nos permiten conocer las dimensiones de las masas glaciares, ya que las limitan.

Dos tipos de morrenas principales:

  • Morrena lateral: se desarrolla a los lados del glaciar y se alimenta principalmente de las rocas que caen desde las paredes laterales del valle glaciar.
  • Morrena final o terminal: se desarrolla en el borde principal del glaciar y marca un periodo de estancamiento. Las más modernas se sitúan a mayor altitud que las más antiguas.

Los bloques erráticos son también seña de identidad de los glaciares de montaña. Son grandes bloques anguloso de roca que son transportados por el glaciar a grandes distancias. Cuando son transportados dentro de un iceberg , y se desprenden de él al derretirse el hielo, se llaman ice-rafting.

Línea de nieve

Que se desarrollen o no glaciares depende de muchos factores, como ya pudiste leer en la entrada de factores que condicionan la formación de un glaciar.

La suma de dos de estos factores, latitud y altitud, generan la denominada línea de nieve (figura 4). Ésta es una línea imaginaria global que marca el límite irregular entre la superficie cubierta de nieve y la superficie libre de nieve. Esta línea no es estática ya que, en general, los glaciares se encuentran en retroceso.

Gráfico sobre dónde se encuentra la línea de nieve en diversas regiones del planeta:
- Regiones polares: 0-600 m
- Regiones templadas: 1000-5000 m
- Regiones ecuatoriales: más de 5000 m
Figura 4. La línea de nieve se mide de manera directa por satélite o fotografías aéreas, o se calcula en base a la isoterma de 0ºC. Es un factor importante en los modelos hidrológicos para estimar caudales y modelos de escorrentía y precipitación.

Este contenido forma parte del Geolodía 2024 de Ávila en Cepeda la Mora, Ávila (España).

Bibliografía

GEOLODÍA 24. Paleoglaciar de la Serradilla. ¿Cómo sabemos que en Cepeda quedan restos de un glaciar?

Al norte del pueblo de Cepeda la Mora, dentro de La Serrota, y en un paraje que se llama Alto de las Serradillas, queda una morfología singular, muy bien preservada y sin embargo muy habitual en el Parque Regional Sierra de Gredos y en todo el Sistema Central. Se trata de un paleoglaciar (Figura 1).

Figura 1. Fotografía del paleoglaciar de la Serradilla, conserva todas las formas pero ya no hay hielo. El relieve no está en equilibrio con el clima actual. Fotografía de Javier Elez.
Figura 1. Fotografía del paleoglaciar de la Serradilla. Conserva todas las formas del antiguo glaciar, pero ya no hay hielo. El relieve no está en equilibrio con el clima actual. Fotografía de Javier Elez.

Un paleoglaciar son los restos de formas y sedimentos de lo que un día fue un glaciar y que ahora ya no tiene hielo. Esto no nos impide ver sus formas típicas (circos y morrenas) y nos invita a pensar que el clima de nuestro planeta ha cambiado de forma habitual a lo largo de su historia.

El paleoglaciar de la Serradilla

Hemos elegido este paleoglaciar específicamente, y no otro de los muchos que hay en Gredos y la Sierra de Béjar, por tener unas dimensiones modestas y ser de fácil acceso desde Cepeda La Mora (Figura 2).

Figura 2. Localización del Paleoglaciar de la Serradilla, en el recuadro en rojo.
Figura 2. Localización del Paleoglaciar de la Serradilla, en el recuadro en rojo.

Estas condiciones, junto con el buen grado de preservación que tiene, hacen que se pueda abarcar en su conjunto con la mirada desde el campo y se puedan entender de forma fácil sus formas más destacadas, depósitos de sedimentos y evolución.

En concreto, este paleoglaciar de la Serradilla está muy bien conservado (aunque le falte el hielo) y presenta varios niveles de morrenas y algunos circos como elementos más característicos (Figura 3).

Figura 3. Esquema geomorfológico del paleoglaciar de la Serradilla. En colores azules las distintas morrenas, cuanto más oscuro más altas topográficamente. Las líneas en azul oscuro indican el límite de los distintos circos (cresta) asociados a las morrenas. Las zonas verdes son antiguos lagos postglaciares tipo la laguna grande de Gredos, que ahora están llenos de sedimento y vegetación y por tanto no son lagos ya. Mapa: Javier Elez.
Figura 3. Esquema geomorfológico del paleoglaciar de la Serradilla. En colores azules las distintas morrenas, cuanto más oscuro más altas topográficamente. Las líneas en azul oscuro indican el límite de los distintos circos (cresta) asociados a las morrenas. Las zonas verdes son antiguos lagos postglaciares tipo la laguna grande de Gredos, que ahora están llenos de sedimento y vegetación y por tanto no son lagos ya. Mapa: Javier Elez.

Recuerda que las morrenas son esos acúmulos de sedimentos que el hielo del glaciar arrastra, en su zona central o en los laterales, en su movimiento cuesta abajo (Figura 4).

Literalmente, el hielo se desborda del circo (que es la zona en donde se acumula la nieve y se compacta para formar hielo) y se cae en función de la pendiente existente.

Figura 4. Fotografía de primer plano de las morrenas del glaciar de las Serradillas, se observa su estructura caótica compuesta por bloques de todos los tamaños. Fotografía: Gabriel Castilla.
Figura 4. Fotografía de primer plano de las morrenas del glaciar de las Serradillas, se observa su estructura caótica compuesta por bloques de todos los tamaños. Fotografía: Gabriel Castilla.

¿Cuándo estuvo activo el glaciar?

Si pensamos en el pasado, este paleoglaciar estuvo activo, incluyendo su lengua de hielo, probablemente al mismo tiempo que los grandes conjuntos de Gredos tan conocidos por las personas aficionadas a las montañas.

No hay dataciones geológicas concretas de la actividad de este paleoglaciar, pero si lo comparamos con los datos de edad que sí existen en otras zonas cercanas, podríamos interpretar que estuvo activo durante el Último Máximo Glaciar (hace unos 20.000 o 30.000 años) y que probablemente el hielo desaparecería definitivamente hace solo unos 13.000 años.

Todo esto es muy tentativo, ya que comparamos con datos de otros paleoglaciares más estudiados en el Sistema Central (Carrasco et al. 2020; Oliva et al., 2019), pero es una interpretación razonable, sujeta a cambiar cuando tengamos datos más precisos.

Figura 5. Vistas 3D desde el NE del paleoglaciar de la Serradilla. A) modelo sombreado con elementos geomorfológicos. B) modelo sombreado únicamente en donde se aprecia el relieve. C) foto de satélite. Mapa: Javier Elez.
Figura 5. Vistas 3D desde el NE del paleoglaciar de la Serradilla. A) modelo sombreado con elementos geomorfológicos. B) modelo sombreado únicamente en donde se aprecia el relieve. C) foto de satélite. Mapa: Javier Elez.

El final de la glaciación

Las morrenas están pintadas en colores azules en los mapas de las Figuras 3 y 5, los escarpes de los distintos circos (la zona más alta erosionada por el hielo en el circo) en azul oscuro.

El hielo ocupaba desde los escarpes hasta las morrenas. En muchos glaciares de nuestro planeta, las morrenas más bajas topográficamente son más antiguas y corresponden a los episodios de máxima extensión de los hielos, mientras que las más altas topográficamente son más recientes.

Al incrementarse poco a poco la temperatura al final de la glaciación, el hielo se refugia en zonas cada vez más altas, moviendo los sedimentos y generando las morrenas en esas zonas, hasta que finalmente la temperatura sube lo suficiente como para que desaparezcan definitivamente los hielos.

En el paleoglaciar de la Serradilla vemos al menos 4 o 5 conjuntos de morrenas escalonadas en la vertical (Figura 5), marcando claramente esa retirada de los hielos que acompaña a un ciclo de calentamiento del planeta, en el cual, como sabes, estamos inmersos a día de hoy. Es una evidencia más de los cambios de clima del planeta en el que vivimos, siempre extremadamente dinámico.

Las zonas pintadas en verde son lagos de origen glaciar. Al desaparecer el hielo por el progresivo calentamiento del planeta, éste se transformó en agua, que fue retenida por las morrenas y dio origen a esos lagos. Estos, como el de la Laguna Grande de Gredos o la Laguna de la Nava o tantas otras, son muy efímeros en tiempo geológico y se rellenan rápidamente de sedimentos, dejando esas praderas planas con mucha vegetación que se ven en el interior del paleoglaciar de la Serradilla.

Este contenido forma parte del Geolodía 2024 de Ávila en Cepeda la Mora, Ávila (España).

Referencias

Carrasco, R.M. et al. (2020). Glacial geomorphology of the High Gredos Massif: Gredos and Pinar valleys (Iberian Central System, Spain). Journal of Maps, 16:2. Pp. 790-804.

Oliva, M. et al. (2019). Late Quaternary glacial phases in the Iberian Peninsula. Earth-Science Reviews 192. Pp. 564-600.

GEOLODÍA 24. Los 10 factores que condicionan la formación de un glaciar

Por Gabriel Castilla Cañamero, Javier Pérez Tarruella y Javier Élez

De innumerables artimañas se sirve la naturaleza para convencer al hombre de su finitud: el fluir incesante de la marea, la furia de la tormenta, la sacudida del terremoto […]. Pero entre todas ellas la más temible, la más estremecedora, es la pasividad del silencio blanco.

El silencio blanco. Jack London, 1899.

Una definición y algunas preguntas

Los glaciares se forman en aquellos lugares fríos donde la nieve se acumula hasta transformarse en hielo. Conforme crece la capa de nieve, la presión de las capas profundas aumenta, haciendo que disminuya el volumen por compactación y, en consecuencia, que aumente la densidad hasta que se forma hielo glaciar (Figura 1).

Figura 1. Formación del hielo glaciar por enterramiento y compactación (izquierda). El movimiento de un glaciar es consecuencia del comportamiento del hielo compacto y denso bajo la acción de la fuerza de la gravedad (derecha). A partir de una situación de equilibrio entre la zona de acumulación y la zona de ablación los glaciares pueden retroceder, reduciéndose su zona de acumulación; o en caso contrario, avanzar. Figura: Gabriel Castilla, adaptado de Rubial (2005) y Anguita y Moreno (1993).
Figura 1. Formación del hielo glaciar por enterramiento y compactación (izquierda). El movimiento de un glaciar es consecuencia del comportamiento del hielo compacto y denso bajo la acción de la fuerza de la gravedad (derecha). A partir de una situación de equilibrio entre la zona de acumulación y la zona de ablación los glaciares pueden retroceder, reduciéndose su zona de acumulación; o en caso contrario, avanzar. Figura: Gabriel Castilla, adaptado de Rubial (2005) y Anguita y Moreno (1993).

La diferencia entre un glaciar vivo y una masa de hielo muerto es el movimiento, y el motor que lo impulsa es el gradiente de presión que se forma entre la zona de acumulación donde se forma hielo glaciar y la zona de ablación, que es donde el hielo se pierde tanto por fusión como por la erosión que ejerce el viento (Figura 2).

Figura 2. El glaciar Río Túnel Superior (en la difusa frontera entre la Patagonia de Argentina y Chile). Al fondo se aprecia la zona de acumulación en forma de circo (depresión semicircular rodeada de montañas), y en primer plano el frente de la lengua glaciar. La laguna se ha formado por la fusión del hielo en la zona de ablación. Fotografía de Iván Pérez López.
Figura 2. El glaciar Río Túnel Superior (en la difusa frontera entre la Patagonia de Argentina y Chile). Al fondo se aprecia la zona de acumulación en forma de circo (depresión semicircular rodeada de montañas), y en primer plano el frente de la lengua glaciar. La laguna se ha formado por la fusión del hielo en la zona de ablación. Fotografía de Iván Pérez López.

Pero, ¿cómo llega a formarse un glaciar en un lugar concreto? ¿Qué variables lo condicionan?

Puesto que cada caso de estudio es único, no es posible ofrecer una respuesta general a estas preguntas; sin embargo, existen al menos diez variables que nos permiten aproximarnos a los entresijos de un proceso geológico de singular complejidad y belleza.

  1. Latitud
  2. Altitud
  3. Insolación
  4. Albedo
  5. Orientación
  6. Continentalidad
  7. Efecto abrigo
  8. Morfología previa
  9. Redes de fractura y escarpes tectónicos
  10. Polvo atmosférico

Entremos en detalles.

Las diez variables

La latitud determina el ángulo con el que la radiación solar alcanza la superficie terrestre. Como podemos ver en la Figura 3, esta incide perpendicularmente en la región ecuatorial mientras que en los polos llega con mucha inclinación, lo que implica que se pierda una parte de la energía al atravesar la atmósfera.

Figura 3. La cantidad de radiación solar que incide sobre la superficie terrestre depende de la inclinación con la que atraviesa la atmósfera, es decir, varía con la latitud. La temperatura media anual en la zona ecuatorial es de 25 ºC, mientras que en los polos es de -40 ºC. Figura: Gabriel Castilla.

Es por ello que la cantidad de radiación que reciben las regiones polares es mucho menor que en el ecuador, y este es el principal motivo por el que existen glaciares al nivel del mar en la Antártida, Islandia y Groenlandia (Figura 4).

Las regiones ecuatoriales solo han albergado glaciares al nivel del mar durante los llamados episodios Snowball Earth (literalmente Tierra bola de nieve), intensas glaciaciones del período Criogénico, hace entre 720 y 635 millones de años.

¿Significa esto que no puede haber glaciares en el ecuador? Sí los hay, pero situados a gran altitud.

Dado que la atmósfera se calienta desde la superficie terrestre, la temperatura desciende con la altura, y en las zonas templadas del planeta esta diferencia térmica es de aproximadamente un grado centígrado por cada 152 metros de ascenso vertical.

Esto quiere decir que en una región donde la temperatura al nivel del mar sea de 25 ºC, a los 4.500 m de altitud podrá alcanzar los -5 ºC (o sea, 30 grados menos), y  explica por qué podemos encontrar glaciares a 4.500 m de altitud en la zona ecuatorial de la cordillera de los Andes y en las montañas Rwenzori, en el corazón de África Oriental (Figura 4).

En el caso de la Península Ibérica, situada a una latitud media de 40º norte, el momento álgido del Último Periodo Glaciar tuvo lugar hace entre 24.000 y 21.000 años, y los glaciares se formaron en el Sistema Central a una altitud comprendida entre los 1.500 m y los 2.500 m sobre el nivel del mar actual.

Figura 4. A la izquierda, laguna glaciar Breiðárlón en el extremo sur del glaciar Vatnajökull (Islandia), a unos 64º de latitud norte y prácticamente al nivel del mar. Y a la derecha, glaciar en la cumbres de las Montañas Rwenzori (Uganda), a unos 5.000 m de altitud y prácticamente en la línea del ecuador (0º 23´ latitud norte). Fotografías de Gabriel Castilla y WWF respectivamente.
Figura 4. A la izquierda, laguna glaciar Breiðárlón en el extremo sur del glaciar Vatnajökull (Islandia), a unos 64º de latitud norte y prácticamente al nivel del mar. Y a la derecha, glaciar en la cumbres de las Montañas Rwenzori (Uganda), a unos 5.000 m de altitud y prácticamente en la línea del ecuador (0º 23´ latitud norte). Fotografías de Gabriel Castilla y © WWFUganda respectivamente.

La cantidad de radiación solar que alcanza un punto de la superficie terrestre en un año depende de variables como la nubosidad y el relieve (en el hemisferio norte es la cara sur de las montañas la que recibe más radiación y por tanto es la más cálida).

En las zonas ecuatoriales, el Sol alcanza su altura máxima sobre el horizonte durante 30 días; sin embargo, en las zonas tropicales alcanza esta misma posición en el cielo durante 86 días (¡casi el triple de tiempo!) y es por ello que los trópicos son más cálidos y albergan grandes desiertos. La cantidad de radiación que recibe el área mediterránea es mucho mayor que la que alcanza Escandinavia, donde los inviernos son más rigurosos.

Durante el momento álgido del Último Periodo Glaciar, las zonas de menor insolación alojaron masas de hielo que alcanzaron los 3.000 m de espesor. Sin embargo, en la Península Ibérica el espesor máximo del hielo fue de unos 200 m en la Sierra de Béjar (Sistema Central).

Figura 5. Mapa de insolación de Europa (izquierda) comparado con la distribución de precipitaciones y masas de hielo durante el Último Máximo Glaciar (derecha). Se aprecia una relación entre baja insolación y mayor acumulación de hielo en la zona de Escandinavia. Estas masas de hielo, de hasta 3000 m de espesor, condicionaron el régimen de vientos y la humedad en Centroeuropa (vientos intensos, fríos y secos que depositaron un manto de loess –limo arcilloso- en el continente). Fuente de la imagen: Comisión Europea/Joint Reseach Center y Rea et al. (2020).
Figura 5. Mapa de insolación de Europa (izquierda) comparado con la distribución de precipitaciones y masas de hielo durante el Último Máximo Glaciar (derecha). Se aprecia una relación entre baja insolación y mayor acumulación de hielo en la zona de Escandinavia. Estas masas de hielo, de hasta 3000 m de espesor, condicionaron el régimen de vientos y la humedad en Centroeuropa (vientos intensos, fríos y secos que depositaron un manto de loess –limo arcilloso- en el continente). Fuente de la imagen: Comisión Europea/Joint Reseach Center y Rea et al. (2020).

Este término hace referencia a la cantidad de radiación solar que puede reflejar una superficie. El hielo y la nieve fresca son como un espejo y pueden reflejar hasta el 90% de la radiación que reciben, es decir, apenas se calientan por el Sol. Sin embargo, esta situación cambia cuando se deposita sobre ellos ceniza volcánica o sedimento, partículas oscuras de menor reflectividad que sí absorben la radiación solar.

De este hecho se desprende una idea importante: los glaciares se derriten desde dentro, bien por aumento de la temperatura ambiental, o bien porque absorben calor por cambios en el albedo (Figura 6).

Esta es la razón por la que países como Italia, Francia y China intentan conservar algunos glaciares emblemáticos cubriéndolos con material geotextil blanco de alta reflectividad que actúa como aislante térmico.

Figura 6. Vista panorámica del glaciar Svínafellsjökull (Islandia). Se aprecia una notable diferencia de albedo entre el hielo joven (al fondo) y el que contiene ceniza volcánica (primer plano). El hielo sucio de menor albedo se funde antes, creando una laguna de aspecto turbio debido a las finas partículas de ceniza que quedan en suspensión. Fotografía de Gabriel Castilla.
Figura 6. Vista panorámica del glaciar Svínafellsjökull (Islandia). Se aprecia una notable diferencia de albedo entre el hielo joven (al fondo) y el que contiene ceniza volcánica (primer plano). El hielo sucio de menor albedo se funde antes, creando una laguna de aspecto turbio debido a las finas partículas de ceniza que quedan en suspensión. Fotografía de Gabriel Castilla.

Diversos estudios señalan que en el hemisferio norte los glaciares tienden a situarse en lugares de sombra (cara norte de los macizos montañosos), protegidos del viento dominante (a sotavento) y con mucha frecuencia orientados hacia el este (Figura 7).

En el hemisferio sur la orientación predominante es sureste, coincidiendo con la cara del relieve que recibe una menor insolación.

Figura 7. Durante el Último Máximo Glaciar, el glaciarismo de La Serrota (Ávila) se desarrolló en torno a los 2.200 m de altitud. La fotografía corresponde al llamado glaciar de la Serradilla, muy cerca de la localidad de Cepeda la Mora. En las imágenes de satélite captadas en marzo de 2024 se aprecia cómo las primeras nevadas dejadas por la borrasca Nelson (con vientos procedentes del oeste-suroeste) depositaron una mayor cantidad de nieve en los valles orientados hacia el noreste y el sureste, es decir, a sotavento. Fotografía de Javier Pérez Tarruella y Copernicus/Sentinel/UE, respectivamente.
Figura 7. Durante el Último Máximo Glaciar, el glaciarismo de La Serrota (Ávila) se desarrolló en torno a los 2.200 m de altitud. La fotografía corresponde al llamado glaciar de la Serradilla, muy cerca de la localidad de Cepeda la Mora. En las imágenes de satélite captadas en marzo de 2024 se aprecia cómo las primeras nevadas dejadas por la borrasca Nelson (con vientos procedentes del oeste-suroeste) depositaron una mayor cantidad de nieve en los valles orientados hacia el noreste y el sureste, es decir, a sotavento. Fotografía de Javier Pérez Tarruella y Copernicus/Sentinel/UE, respectivamente.

Es la lejanía de un territorio respecto de una masa de agua (mar un océano) que aporte humedad (recordemos que sin humedad no hay nieve) y suavice las temperaturas extremas. En el contexto de la Península Ibérica hace referencia a la influencia de frentes fríos y secos procedentes de Centro Europa y Siberia, en relación a los frentes cálidos y húmedos procedentes del Océano Atlántico.

El estudio de los campos de dunas fósiles que se formaron en Tierra de Pinares (comarca que abarca parte de las provincias de Ávila, Valladolid y Segovia), nos permiten conocer la dirección y sentido de los vientos dominantes durante los momentos de extrema aridez del Último Máximo Glaciar.

Diversos modelos señalan que vientos procedentes del suroeste y el oeste azotaron la meseta castellana, favoreciendo tanto el transporte de sedimento que formó las dunas como la erosión eólica (deflación) responsable de la ablación de los glaciares.

Figura 8. Modelo atmosférico para el último máximo glaciar. Las flechas señalan la dirección y el sentido del viento; el código de colores marca la velocidad. El modelo es compatible con los datos de la orientación de los campos de dunas en la península para esa época. Adaptado de Dietrich, 2011.
Figura 8. Modelo atmosférico para el último máximo glaciar. Las flechas señalan la dirección y el sentido del viento; el código de colores marca la velocidad. El modelo es compatible con los datos de la orientación de los campos de dunas en la península para esa época. Adaptado de Dietrich, 2011.

Puesto que durante la última glaciación los vientos dominantes que barrían la península provenían principalmente del oeste y suroeste, es muy probable que los ventisqueros (trampas –abrigos- donde el viento forma torbellinos que atraen la nieve) estuvieran orientados en sentido opuesto, es decir, hacia el este y el noreste.

Como su propio nombre indica, durante las ventiscas la nieve se arremolina y acumula en estos puntos formando neveros (pequeñas masas de hielo que perduran todo el año), que en períodos fríos pueden actuar como áreas de acumulación de nieve.

Figura 9. Nevero en la cara sureste de un relieve montañoso en los Pirineos Orientales (Francia). La imagen fue tomada en agosto de 2017. Si un nevero persiste durante varios años reciben el nombre de nicho de nivación. Fotografía de Gabriel Castilla.
Figura 9. Nevero en la cara sureste de un relieve montañoso en los Pirineos Orientales (Francia). La imagen fue tomada en agosto de 2017. Si un nevero persiste durante varios años reciben el nombre de nicho de nivación. Fotografía de Gabriel Castilla.

Es importante reconstruir cómo era el relieve montañoso antes de la glaciación y, por tanto, antes de que los glaciares dejaran su huella en el paisaje.

Las cimas de las cordilleras que tienen poca pendiente son más propensas a acumular nieve (y por tanto a la formación hielo glaciar) que las cimas con mucha pendiente o que cuentan con un relieve muy acusado.

En estos casos la nieve tiende a caer en forma de aludes y por tanto no se acumula en las cimas, sino en la profundidad de los valles. Un buen ejemplo lo encontramos en la Sierra de Gredos, que por ser un sistema montañoso antiguo ha sido fuertemente erosionado y su línea de cumbres tiende a la horizontalidad, lo que favorecer la acumulación de nieve en la cuerda de cumbres.

Figura 10. Vista parcial de la cara norte de la Sierra de Gredos (sector oriental), formada durante la Orogenia Alpina, hace unos 40 millones de años. El paisaje que observamos en la actualidad (una línea de cumbres que tiende a la horizontalidad), es el resultado de la acción erosiva del Cuaternario (últimos 2,5 millones de años), periodo en el que se han sucedido hasta 51 episodios climáticos de frío-calor, aunque no todos ellos han dejado evidencias glaciares. Fotografía de Gabriel Castilla.
Figura 10. Vista parcial de la cara norte de la Sierra de Gredos (sector oriental), formada durante la Orogenia Alpina, hace unos 40 millones de años. El paisaje que observamos en la actualidad (una línea de cumbres que tiende a la horizontalidad), es el resultado de la acción erosiva del Cuaternario (últimos 2,5 millones de años), periodo en el que se han sucedido hasta 51 episodios climáticos de frío-calor, aunque no todos ellos han dejado evidencias glaciares. Fotografía de Gabriel Castilla.

Las rocas se pueden romper por diferentes causas. Las fracturas de pequeña entidad se pueden disponerse al azar o seguir patrones de distribución en función de su origen: desde la existencia de heterogeneidades en la roca (por diferencias de composición, por ejemplo), pasando por desgaste debido a ciclos de calor-frío extremo, la descompresión o tensiones propias de la tectónica de placas. Las diaclasas (fracturas sin desplazamiento) favorecen la infiltración del agua en la roca y con ello la aceleración de los procesos de meteorización química (por alteración y disolución de minerales) y la erosión (Figura 11).

Figura 11. Red de fracturas de una de las cumbres de la Sierra de Gredos. La nieve se acumula principalmente en las zonas más erosionadas, siguiendo una red de fracturas que estás dispuestas verticalmente (líneas azules) y en diagonal (líneas rojas). Conforme la erosión vaya haciendo su trabajo, estas zonas de acumulación irán creciendo. Fotografía de Gabriel Castilla.
Figura 11. Red de fracturas de una de las cumbres de la Sierra de Gredos. La nieve se acumula principalmente en las zonas más erosionadas, siguiendo una red de fracturas que estás dispuestas verticalmente (líneas azules) y en diagonal (líneas rojas). Conforme la erosión vaya haciendo su trabajo, estas zonas de acumulación irán creciendo. Fotografía de Gabriel Castilla.

Los escarpes tectónicos son fracturas de mayor tamaño que implican un desplazamiento, normalmente formando un relieve con forma de escalón. Estas fallas también favorecen la meteorización, pero sobre todo los movimientos en masa (deslizamientos, vejigas, torrentes, etc.), formando cabeceras de vaciado donde pueden instalarse cuencas glaciares (Figura 12).

Figura 12. Cabecera de vaciado en uno de los picos de la Sierra de Gredos (detalle ampliado de la Figura 10). La montaña ha sido fuertemente erosionada y vaciada por una red de valles torrenciales rectos y paralelos entre sí, posiblemente escarpes de falla. Es en estos valles alargados, situados a gran altura, con pendiente moderada y a resguardo del viento, donde tienden a instalarse las cuencas glaciares durante los episodios de glaciación. Fotografía de Gabriel Castilla.
Figura 12. Cabecera de vaciado en uno de los picos de la Sierra de Gredos (detalle ampliado de la Figura 10). La montaña ha sido fuertemente erosionada y vaciada por una red de valles torrenciales rectos y paralelos entre sí, posiblemente escarpes de falla. Es en estos valles alargados, situados a gran altura, con pendiente moderada y a resguardo del viento, donde tienden a instalarse las cuencas glaciares durante los episodios de glaciación. Fotografía de Gabriel Castilla.

Durante las glaciaciones una gran cantidad del agua dulce de los continentes queda atrapada en forma de hielo. El resultado es un aumento generalizado de la aridez (falta de humedad ambiental) con una consecuente pérdida de masa vegetal que conlleva la degradación del suelo. Desprovisto de raíces, el suelo es erosionado por el viento con más intensidad, movilizando una gran cantidad de sedimento en forma de arena y grava (que puede formar dunas) y de polvo, que el viento arrastra hasta las capas altas de la atmósfera. Este polvo modificará el albedo de la superficie en la que se deposite, calentándola.

Un análogo podría ser la irrupción en Europa de nubes de polvo sahariano que aceleran el deshielo de las cumbres de Sierra Nevada (Figura 13). ¿Hasta qué punto el polvo puede condicionar la formación y el desarrollo de un glaciar? Algunos estudios señalan que el polvo del desierto del Gobi (entre el norte de China y el sur de Mongolia) podría ser la causa por la que no se formaron grandes masas de hielo en el norte de Asia durante la última glaciación.

Figura 13. En marzo de 2022 la borrasca Celia provocó un episodio de polvo sahariano que afectó a gran parte de la Península Ibérica. En la imagen podemos ver los efectos que posteriormente tuvo en el deshielo de Sierra Nevada. Además de cambios en el albedo de la nieve, el oscurecimiento del cielo provocó una disminución de la insolación, con una pérdida del 80% de la capacidad de producción fotovoltaica de España. ¿Cómo pudo afectar el polvo del Sáhara al desarrollo de los glaciares en la Península Ibérica? Publicación de Amig@s Sierra Nevada.

Recapitulación

Los 10 factores que acabamos de ver nos hablan fundamentalmente de cómo nos alcanza la radiación solar, de cómo la atmósfera y el relieve redistribuyen esa radiación en forma de calor mediante el viento y otros fenómenos meteorológicos, y de cómo la geología condiciona la existencia de lugares favorables para la acumulación del hielo glaciar.

En este contexto podemos afirmar que el glaciarismo es un proceso geológico complejo y para entender el origen, la dinámica y la evolución temporal de los glaciares necesitamos manejar conceptos relacionados con muchas disciplinas, desde la física de la atmósfera y la Geografía, pasando por la Astronomía y la Geología.

El estudio de los glaciares es, sin duda, un estimulante reto multidisciplinar para cualquier espíritu curioso y amante de la Naturaleza.

Este contenido forma parte del Geolodía 2024 de Ávila en Cepeda la Mora, Ávila (España).

Referencias

  • Anguita, F. y Moreno, F. (1993). Procesos Geológicos Externos y Geología Ambiental. Editorial Rueda. Madrid, 311 pp.
  • Bernat Rebollal, M. (2012). Geomorfología de los depósitos eólicos cuaternarios del centro de la Península Ibérica. Una caracterización de la actividad eólica en tierras depinares y la llanura manchega. Tesis Doctoral. Universidad Complutense de Madrid. Facultad de Ciencias Geológicas. Departamento  de Geodinámica.
  • Carrasco, R.M. et al. (2023). The Prados del Cervunal morainic complex: Evidence of a MIS 2 glaciation in the Iberian Central System synchronous to the global LGM. Quaternary Science Reviews, 312.
  • Carrasco, R.M. et al. (2011). Reconstrucción y cronología del glaciar de meseta de la Sierra de Béjar (Sistema Central Español) durante el máximo glaciar. Boletín de la Real Sociedad Española de Historia Natural. Sección Geología. Nº 105 (1-4). Pp. 125-135.
  • Carrasco, R.M. et al. (2020). Glacial geomorphology of the High Gredos Massif: Gredos and Pinar valleys (Iberian Central System, Spain). Journal of Maps, 16:2. Pp. 790-804.
  • Dietrich, S. (2011). Palaeo wind system reconstruction of the last glacial period over Europe, using high resolution proxy data and model-data-comparison. Johannes Gutenberg-Universität Mainz.
  • Elis, R. y Palmer, M. (2016). Modulation of ice ages via precession and dust-albedo feedbacks. Geoscience Frontiers Vol. 7, nº 6, pp. 891-909.
  • Evans, I.S. (1977). World-wide variations in the direction and concentration of cirque and glacier aspects. Geografiska Annaler, 59A (3-4), 151-175.
  • Krinner, G.; Boucher, O. y Balkanski, Y. (2006). Ice-free glacial northern Asia due to dust deposition on Snow. Climate Dynamics Vol. 27, pp. 613-625.
  • Oerlemans, J.; Griesen, R.H. y Van Den Broeke, M.R. (2009). Retreating alpine glaciers: increased melt rates due to accumulation of dust (Vadret da Morterasch, Switzerland). Journal of Glaciology, Vol. 55, nº 192, pp. 729-736.
  • Oliva, M. et al. (2019). Late Quaternary glacial phases in the Iberian Peninsula. Earth-Science Reviews 192. Pp. 564-600.
  • Oliva. M.; Andrés, N.; Fernández-Fernández. J.M. y Palacios, D. (2023). The evolution of glacial landforms in the Iberian Mountains during the deglaciation. En Palacios, D.; Hughes, P.D.; García-Ruiz; J.M. y Andrés, N. European Glacial Landscapes. The Last Deglaciation. Cap. 22. Pp. 201-208. Elsevier, 2023.
  • Página Web de Meteosierra (Naturaleza): https://meteosierra.com/naturaleza/medio-natural/
  • Pedraza, J. y Carrasco, R.M. (2006). El glaciarismo Pleistoceno del Sistema Central. Enseñanza de las Ciencias de la Tierra, Vol. 13, 3. Pp. 278-288.
  • Rea, B.R. et al. (2020). Atmospheric circulation over Europe during the Younger Dryas. Science Advances, 6. 11 December 2020.
  • Rubial, M. J. (2005). Los glaciares: dinámica y relieve. Enseñanza de las Ciencias de la Tierra, Vol. 13, 3. Pp. 230-234.

GEOLODÍA 24. Qué es una Glaciación

Llamamos glaciaciones a los momentos de la historia de la Tierra en los que ha habido hielo permanente en forma de glaciares. O al menos a aquellos en los que tengamos evidencias de ello. Es decir: ¡Estamos en una glaciación! De hecho, a nuestra especie le ha tocado vivir en el periodo más frío y con más hielo de los últimos 300 millones de años.

Desde hace al menos 33 millones de años tenemos hielo permanente en la Antártida (Stickley et al., 2004), mientras que desde los últimos 3,3 millones de años tenemos hielo permanente en Groenlandia (Westerhold et al., 2020). Por tanto, estamos en una glaciación que afecta a ambos hemisferios (Figura 1).

En esta escala de millones de años, el principal condicionante de los casquetes glaciares es la distribución de los continentes y océanos. La apertura del Paso de Drake aislando la Antártida o el cierre del istmo de Panamá parecen momentos clave para la actual glaciación.

Las curvas del clima global de la Figura 1 representan isótopos de oxígeno en foraminíferos bentónicos, cuyos valores dependen de la cantidad de hielo en planeta y de la temperatura de los océanos. Si quieres saber cómo se obtienen estos registros del clima a lo largo de la historia de la Tierra te recomendamos la entrada «Así conocemos el clima del pasado«.

El hielo glaciar, así como el hielo marino son muy sensibles a pequeñas variaciones del clima, ya que tan sólo 1 ºC puede suponer la diferencia entre el estado sólido y el líquido. Esta sensibilidad del hielo hace que sutiles alteraciones como las asociadas a pequeños cambios en la órbita de la Tierra, deriven en cambios climático extremos. Es por esto que en los últimos millones de años, en el período Cuaternario, con glaciación en ambos hemisferios, tenemos cambios constantes y muchas veces abruptos en las cantidades de hielo en el planeta (Figura 1).

Esas grandes variaciones, que se dan cada decenas o centenas de miles de años, las dividimos en periodos glaciares e interglaciares. Las «glaciaciones» que esculpieron los valles glaciares de Gredos o la Serrota en Ávila son en realidad esos últimos periodos glaciares del Cuaternario (Figura 1). En esta escala de decenas-cientos de miles de años, los principales desencadenantes de los cambios climáticos son los ciclos de Milankovitch.

Además de las curvas de isótopos de oxígeno, que nos ayudan a conocer las variaciones de temperatura y hielo en el planeta, tenemos otras pistas para deducir la presencia de grandes glaciares en épocas muy remotas de la historia de la Tierra. Una de ellas son los «dropstones«: Rocas enormes incluidas en depósitos sedimentarios del fondo del océano. ¿Cómo pudieron llegar hasta allí, tan lejos de los continentes? Te dejamos un vídeo con el ejemplo de la localidad de Checa, en Teruel.

Este contenido forma parte del Geolodía 2024 de Ávila en Cepeda la Mora, Ávila (España).

Referencias

  • Lisiecki, L. E., & Raymo, M. E. (2005). A Pliocene‐Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography20(1).
  • Stickley, C. E., Brinkhuis, H., Schellenberg, S. A., Sluijs, A., Röhl, U., Fuller, M., … & Williams, G. L. (2004). Timing and nature of the deepening of the Tasmanian Gateway. Paleoceanography19(4).
  • Westerhold, T., Marwan, N., Drury, A. J., Liebrand, D., Agnini, C., Anagnostou, E., … & Zachos, J. C. (2020). An astronomically dated record of Earth’s climate and its predictability over the last 66 million years. Science369(6509), 1383-1387.
  • Imagen de portada: Cabra montesa frente a un circo glaciar de la sierra de Gredos. Javier P. Tarruella.

GEOLODÍA 23. Cuando el río suena… ¿Cuánta agua lleva?

En Arévalo tienen su encuentro el río Adaja y su afluente el Arevalillo. Entre ambos drenan un área de casi 2.000 km2, pero sin la interacción con el subsuelo acabarían totalmente secos tras apenas dos días sin precipitaciones. La participación de las aguas subterráneas, la Geología, la evapotranspiración de las plantas o la presencia de embalses y lagunas condicionan el volumen de agua que acaba saliendo por el río y a qué ritmo lo hace.

Los Modelos Digitales del Terreno (MDT) son archivos que contienen datos de elevación de la superficie en un mapa de píxeles, estos nos permiten hacer una radiografía completa de estas cuencas de drenaje gracias a las diferencias de altitud entre píxeles. En la figura 1 vemos cómo cada punto de la red se ha coloreado en función del área drenada, es decir, en función del número de píxeles que llegan a él desde una altitud mayor. El Adaja recibe la mayor parte de sus aportes aguas arriba de la ciudad de Ávila, además en sus cursos altos las precipitaciones son mucho mayores, así que la mayor parte del caudal proviene de estas zonas.

Si cada gota de lluvia que cayese sus cuencas de drenaje acabase en los ríos, en Arévalo el Arevalillo llevaría un caudal medio de 9 m3/s y el Adaja de 25 m3/s ¡El caudal medio del Tormes en Salamanca!. Sin embargo, sin la interacción con el subsuelo estos caudales serían muy irregulares, muy elevados los días de lluvia, y con los cauces secos los días sin lluvia. La evaporación y evapotranspiración reduce el caudal del Adaja en un 75%. En el Arevalillo esta reducción es mucho más acusada, y es que es una cuenca muy particular, con zonas donde la red de drenaje no se ha organizado y existen cuencas endorreicas desconectadas del río, como es el caso de la Laguna de El Oso.

Las modelizaciones combinando los MDTs con la información climática, como la precipitación máxima diaria, nos permite, por ejemplo, calcular el peligro de inundación simulando lluvias torrenciales sobre este terreno. Como vemos en el mapa de la figura 2, en Arévalo este peligro no se traduce en un riesgo importante para la población, ya que las zonas expuestas al peligro no están pobladas ni cuentan con actividad económica.

Este contenido forma parte del Geolodía 2023 de Ávila en Arévalo, Ávila (España).

GEOLODÍA 23. ¿Dónde están los sedimentos que no llegan al mar?

Colmatación de presas y erosión de deltas, la amenaza de un problema invisible

También tienes este artículo en formato audio. Escúchalo aquí:

Buscar lo diferente es observar; buscar lo común es comprender. Encontrar detalles diferentes es reunir datos, encontrar esencias comunes es crear conocimiento. 

El gozo intelectual. Jorge Wagensberg, 2007

¿Qué es un río?

Según la Real Academia Española, un río es una corriente de agua continua y más o menos caudalosa que va a desembocar en otra, en un lago o en el mar.

Si nos ceñimos a esta definición debemos asumir que la mayoría de nuestros ríos en realidad no lo son, pues el agua no discurre libremente y de forma continua por sus cauces. Esto es lo que afirman los datos recopilados por el proyecto AMBER (acrónimo en inglés de gestión adaptativa de barreras en ríos europeos).

El número de obstáculos censados en ríos españoles alcanza ya los 30.000, una cifra que según los expertos podría multiplicarse por seis cuando el conteo esté terminado. Sabiendo que nuestro país tiene unos 187.000 kilómetros de río, estaríamos hablando de algún tipo de barrera a cada kilómetro.

Así pues los ríos españoles avanzan hacia el mar, pero lo hacen a trompicones.

El río Arevalillo a su paso por Arévalo (Ávila). Como podemos ver el cauce está intervenido a cada pocos metros por diferentes infraestructuras. En primer término el molino de Valdeláguilas (también llamado de Valencia o Quemado), el Puente de los Barros y al fondo el Puente de Medina. Foto: Gabriel Castilla.
El río Arevalillo a su paso por Arévalo (Ávila). Como podemos ver, el cauce está intervenido a cada pocos metros por diferentes infraestructuras. En primer término el molino de Valdeláguilas (también llamado de Valencia o Quemado), el Puente de los Barros y al fondo el Puente de Medina. Foto: Gabriel Castilla.

¿Por qué tantos obstáculos?

España es el país de Europa con mayor número de presas cuya pared supera los 15 metros de altura. Y si bien estas obras son las que tienen un mayor impacto sobre el cauce y el territorio circundante de un río, la gran mayoría de las barreras son pequeñas obras ya en desuso: rampas, presas, azudes (donde a diferencia de las presas el agua rebosa por encima), pequeños puentes, molinos harineros o antiguas centrales hidroeléctricas que interrumpen la circulación natural del agua, de los sedimentos y de las especies que viven en el cauce y la rivera.

Las razones por las que se han construido este tipo de barreras son diversas. Las grandes presas, por ejemplo, cumplen varias funciones:

  1. Sirven como almacén de agua potable.
  2. Ayudan a controlar las crecidas de los ríos, evitando inundaciones en los valles y las llanuras.
  3. Permiten obtener energía hidroeléctrica.
Vista general del Molino de Valencia y la represa que afecta al río Arevalillo en Arévalo (Ávila). Imagen de Gabriel Castilla.
Vista general del Molino de Valencia. Tradicionalmente la fuerza del agua se ha usado para mover norias, molinos y turbinas. Para ello suele ser necesario represar el agua y hacerla caer por un canal estrecho que aumenta la presión, como cuando taponamos parcialmente la boca de un grifo o de una manguera con un dedo. Foto: Gabriel Castilla.

Una trampa para el sedimento

Como acabamos de ver, las presas que encontramos en los cauces tienen o tuvieron una utilidad, pero su ejecución y permanencia implican unas consecuencias que no siempre son evidentes.

Una presa es una barrera (normalmente) artificial que frena, impide o regula el paso de una corriente de agua.

Cuando un río se frena, pierde energía cinética bruscamente y con ello su capacidad de transportar sedimentos, tanto en el fondo de la corriente (los materiales más pesados, principalmente arena, grava y cantos) como en suspensión (fundamentalmente arena fina, arcilla y limo).

El resultado es una alteración de la pendiente longitudinal del cauce, lo que afecta a la dinámica geomorfológica del río hasta la desembocadura.

Una de las consecuencias del estancamiento del agua en un entorno rico en nutrientes es la eutrofización, como en este caso junto al Molino de Valencia. Al disponer de gran cantidad de alimento las algas crecen sin control, consumiendo el oxígeno del medio e impidiendo la entrada de radiación ultra violeta en el agua. El resultado es la muerte de organismos aerobios (peces, crustáceos, anfibios, etc.) por anoxia, un incremento de bacterias anaerobias y la concentración de gases nocivos (como óxidos de nitrógeno y metano). Foto: Gabriel Castilla.
Una de las consecuencias del estancamiento del agua en un entorno rico en nutrientes es la eutrofización, como en este caso junto al Molino de Valencia. Al disponer de gran cantidad de alimento, las algas crecen sin control, consumiendo el oxígeno del medio e impidiendo la entrada de radiación ultravioleta en el agua. El resultado es la muerte de organismos aerobios (peces, crustáceos, anfibios, etc.) por anoxia, un incremento de bacterias anaerobias y la concentración de gases nocivos (como óxidos de nitrógeno y metano). Foto: Gabriel Castilla.

Desde el punto de vista ecológico esta barrera supone una modificación del transporte de nutrientes y de la materia orgánica, afectando a la calidad del agua y favoreciendo la eutrofización.

Y desde un punto de vista geológico, la zona embalsada se transforma en una trampa que captura sedimento. Esto tiene dos consecuencias:

  1. La primera es que aguas arriba el cauce se hace más estrecho y la vegetación coloniza zonas que anteriormente estaban activas.
  2. Y la segunda es que el vaso de la presa poco a poco se va rellenando de sedimentos hasta que queda colmatado de barro en vez de agua.
La presa del molino hace de barrera para el sedimento, que queda atrapado aguas arriba. En consecuencia el cauce del río Arevalillo se estrecha y es ocupado por la vegetación. Foto: Gabriel Castilla.

La colmatación de presas es un problema poco conocido pero que tiene graves consecuencias en un país como España, que padece sequías recurrentes y es  vulnerable a la desertización.

Según los datos disponibles,  la tasa de aterramiento (acumulación de tierras, lodo o arena en el fondo de una depresión por acarreo natural o voluntario) en los embalses españoles ronda los 100 hm3 al año, lo que se traduce en que cada 50 años perdemos unos 5.000 hm3 de capacidad de almacenamiento de agua dulce. Esta cantidad equivale al consumo de agua potable de toda la población de nuestro país durante 3 años.

Mapa digital del terreno donde se aprecia como la presa del Molino de Valencia hace de barrera que modifica el cauce. Aguas arriba el relieve es menos acusado (color verde) porque está relleno de sedimentos, mientras que aguas abajo el río ha erosionado el cauce (color azul) precisamente por la falta de sedimentos. Autor: Javier Pérez Tarruella.
Mapa digital del terreno donde se aprecia como la presa del Molino de Valencia hace de barrera que modifica el cauce. Aguas arriba el relieve es menos acusado (color verde) porque está relleno de sedimentos, mientras que aguas abajo el río ha erosionado el cauce (color azul) precisamente por la falta de sedimentos. Autor: Javier Pérez Tarruella.

Las principales modificaciones que sufren los cauces situados aguas abajo de los embalses pueden ser tanto de incisión como de sedimentación. La erosión se produce porque la presa retiene la mayor parte del sedimento que circulaba por el río en condiciones naturales. El agua que la presa libera durante crecidas erosiona el lecho aguas abajo pero no aporta nuevos sedimentos, por lo que el balance sedimentario del río entra en una fase de desequilibrio.

¿Sabías que la cantidad de sedimento que queda atrapado en los embalses españoles cada 50 años equivale a unas 4 toneladas de arena y arcilla por cada español al año?

Rompiendo el equilibrio

La desembocadura es el lugar donde un río pierde de manera natural su capacidad de carga. Es aquí, normalmente ya cerca del mar, donde deposita tanto los sedimentos más finos como los nutrientes que ha transportado durante todo su viaje. Si la cantidad de sedimentos que llegan a la costa es alta y tanto las corrientes como el oleaje no los dispersan, entonces se forma un delta.

Los deltas se caracterizan por ser lugares húmedos muy ricos en nutrientes, lo que los convierte en “edenes de biodiversidad”. Además, históricamente han destacado por ser terrenos muy fértiles de gran interés agrícola. En el caso del delta del Nilo, probablemente el ejemplo mejor conocido, la evidencia arqueológica señala que se lleva explotando agrícolamente de forma ininterrumpida desde hace al menos 7.000 años.

El delta del Ebro antes (15 de enero, izquierda) y después (21 de enero, derecha) del paso de la Borrasca Gloria en el año 2020. El delta no desapareció pero durante unos días buena parte de su superficie quedó cubierta por una lámina de agua (color azul) como consecuencia de las fuertes lluvias y del oleaje. La borrasca causó importantes daños en una zona de gran valor ecológico, social y económico. La falta de aporte de sedimento hace que el delta sea una región especialmente vulnerable a las fuertes tormentas. Imagen: satélite SENTINEL HUB-01.
El delta del Ebro antes (15 de enero, izquierda) y después (21 de enero, derecha) del paso de la Borrasca Gloria en el año 2020. El delta no desapareció pero durante unos días buena parte de su superficie quedó cubierta por una lámina de agua (color azul) como consecuencia de las fuertes lluvias y del oleaje. La borrasca causó importantes daños en una zona de gran valor ecológico, social y económico. La falta de aporte de sedimento hace que el delta sea una región especialmente vulnerable a las fuertes tormentas. Imagen: satélite SENTINEL HUB-01.

En España el caso más emblemático es el delta del río Ebro, actualmente en retroceso y en grave riesgo de desaparecer.

El principal motivo es la falta de aporte de sedimentos, pues de los 20 millones de toneladas que alcanzaban la meta del curso fluvial antes de los pantanos de Mequinenza, Riba-roja d’Ebre y Flix han quedado reducidos a 90.000 toneladas. O dicho de otro modo: el 99% del sedimento fino que debería alimentar el delta queda atrapado en los vasos de las presas y en las modificaciones del cauce que éstas provocan.

Bibliografía

  • AMBER Consortium (2020). Atlas de la Barrera AMBER. Una base de datos paneuropea de barreras artificiales. Versión 1.0.
  • Cobo, R. (2008). Los sedimentos de los embalses españoles. Ingeniería del Agua, Vol. 15, No 4, pp. 231-241.
  • Elcacho, J. (2020). [Efectos de la borrasca Gloria] ¿Ha desaparecido por completo el delta del Ebro bajo las aguas? La Vanguardia, 22 de enero de 2020.
  • Europa Press Data. La situación del agua en España y en el mundo, en gráficos [Datos actualizados el 27 de julio de 2022]. Fuentes: INE y FAO.
  • Martínez Salvador, A. et al (2015). Estimación de aportes de sedimentos a embalses de pequeñas cuencas mediterráneas mediante GeoWEPP. Ensayo en la cuenca vertiente del río Mula al embalse de la Cierva (Cuenca del río Segura). Limnetica, 34 (1), pp. 41-56.
  • Miranda, D. (2022) Delta del Ebro, un edén de biodiversidad. National Geographic España.
  • Vericat. D. y Batalla, R.J. (2004). Efectos de las presas en la dinámica fluvial del curso bajo del río Ebro. Revista C & G, No 18 (1-2), pp. 37-50.

Este contenido forma parte del Geolodía 2023 de Ávila en Arévalo, Ávila (España).

¿Por qué algunos gases son ‘de efecto invernadero’?

Puedes escuchar esta entrada aquí:


Seguramente has escuchado que:

Sin embargo, la concentración de metano se mide en ppb «partes por billón», mientras que el dióxido de carbono se mide en ppm «partes por millón», pues la concentración de este último es cientos de veces superior. ¿Cómo es posible que gases tan marginales en nuestra atmósfera puedan tener un papel tan importante en el clima?

Habitualmente los «gases de efecto invernadero» envuelven el discurso en torno al cambio climático, pero sin entrar en qué tienen de especial estos gases para provocar el calentamiento.

Vamos a ver cómo los gases de efecto invernadero calientan el planeta, cuánto lo hacen, y por qué unos lo hacen más que otros.

¿Qué hace especial a un gas para captar calor o dejar de hacerlo?

Un vaso de agua es casi totalmente transparente a nuestra vista. Esto no es casualidad, nuestros ojos evolucionaron en el agua y sólo pudieron hacerlo captando el espectro de ondas que el agua dejaba pasar. Radiaciones con una longitud de onda más larga que el color rojo o más cortas que el violeta son absorbidas por el agua, así que de nada nos hubiese servido ser capaces de verlas en ese medio.

Igual que el agua, cada sustancia tiene su propio espectro de absorción, captan energía de determinadas frecuencias de la radiación, y son invisibles o dejan pasar al resto. Como una copa de cristal que se pone a vibrar si se somete a una nota musical concreta, con la que incluso puede llegar a romperse, pero que ni se inmutaría con un sonido más potente de una nota (frecuencia) diferente.

La radiación infrarroja de onda larga es la que emiten las superficies al calentarse, y, al igual que la luz, es una onda electromagnética (el sonido es una onda también, pero de presión).

En función de la temperatura de la superficie, la longitud de onda de la radiación emitida será diferente, con ondas más cortas (frecuencias más altas) cuanto mayor sea la temperatura, y viceversa. Así es como detectan la fiebre los termómetros sin contacto o las cámaras de los aeropuertos.

Algunos gases, igual que la copa de cristal sometida al sonido, pueden vibrar y calentarse al absorber radiación infrarroja, pero sólo producirán efecto invernadero si su espectro de absorción coincide con la frecuencia («las notas») del calor de nuestro planeta.

Las frecuencias de la Tierra y de los gases

Nuestro planeta es calentado por la radiación solar con el espectro propio de nuestra estrella, principalmente en forma de luz. Parte de la radiación es frenada antes de llegar a la Tierra. Por ejemplo, la capa de Ozono absorbe parte de la radiación ultravioleta en la estratosfera.

La radiación solar que llega calienta la superficie, y después ese calor es emitido en forma de radiación infrarroja de onda larga, una onda mucho más larga que la de la luz solar. De la misma forma que pasa con el ozono y los rayos UV del sol, también hay frecuencias de la radiación que emite nuestro planeta que son absorbidas antes de poder escapar al espacio.

Flujos de energía globales entre la atmósfera, la superficie terrestre y el espacio exterior. Las flechas amarillas representan la radiación solar de onda corta (luz, rayos UV, etc.), las flechas naranjas representan la radiación infrarroja de onda larga (Calor).
Figura 1. Flujos de energía globales entre la atmósfera, la superficie terrestre y el espacio exterior. Las flechas amarillas representan la radiación solar de onda corta (luz, rayos UV, etc.), las flechas naranjas representan la radiación infrarroja de onda larga (Calor). Su explicación se desarrolla más adelante.

Otro proceso por el cual la radiación solar no llega por completo a la superficie es la dispersión de Raileigh. Parte de la luz visible es atrapada y reemitida por las moléculas de la atmósfera, y las frecuencias altas, como el azul, son mucho más sensibles a este proceso. ¡Por eso el cielo es azul! En realidad, el azul del cielo es la parte azul de la luz solar que se queda «rebotando» por la atmósfera. También es el motivo de que los atardeceres sean rojos: cuando el sol está a baja altura, su luz debe atravesar mucha más atmósfera y las únicas frecuencias que consiguen sobrevivir hasta nuestros ojos son las bajas, los colores naranjas y rojos.

El vapor de agua (H2O), por ejemplo, tiene un espectro de absorción de calor muy amplio. De hecho es el principal agente del efecto invernadero en nuestro planeta, responsable de impedir que salgan al espacio unos 77 W(vatios)/m2. Algunas frecuencias del calor de la Tierra son totalmente absorbidas por este gas y hay otras frecuencias a las que deja escapar.

El CO2 tiene un espectro de absorción de calor mucho más estrecho, pero coincide con frecuencias que el agua dejaba pasar, y además sus frecuencias de absorción son las que con más intensidad emite nuestro planeta, así que tiene mucho calor disponible para absorber (ver gráfica 1). Por esta razón el dióxido de carbono tiene un papel tan importante en el efecto invernadero, impidiendo que escapen al espacio unos 39 W/m2 de calor.

Algunas frecuencias del calor de nuestro planeta no son absorbidas por ningún gas de la atmósfera y escapan directamente desde la superficie al espacio. Estas frecuencias son lo que llamamos Ventana atmosférica. Los gases de efecto invernadero son para este calor como el vidrio de una ventana para la luz: el calor los atraviesa.

La curva roja representa la radiación en forma de calor emitida por la superficie terrestre y el área en negro la que escapa de la atmósfera al espacio. El área encerrada entre estas dos curvas representa el calor que ha sido retenido por los diferentes gases de efecto invernadero en la atmósfera. El vapor de agua (H2O) absorbe mucha radiación en los laterales del espectro, el CO2 absorbe en unas frecuencias muy concretas en el centro de la curva y el metano (CH4) en una longitud de onda más corta. En la ventana atmosférica el calor no es absorbido por ningún gas y por lo tanto escapa casi por completo al espacio (poca diferencia entre el área negra y la curva roja). Imagen: Javier P. T. Datos de Zhong & Haigh (2013)
Gráfica 1: La curva roja representa la radiación en forma de calor emitida por la superficie terrestre, y el área en negro la que escapa de la atmósfera al espacio. El área encerrada entre estas dos curvas representa el calor que ha sido retenido por los diferentes gases de efecto invernadero en la atmósfera. El vapor de agua (H2O) absorbe mucha radiación en los laterales del espectro, el CO2 absorbe en unas frecuencias muy concretas en el centro de la curva, y el metano (CH4), en una longitud de onda más corta. En la ventana atmosférica el calor no es absorbido por ningún gas y por lo tanto escapa casi por completo al espacio (hay poca diferencia entre el área negra y la curva roja). Imagen: Javier P. T. Datos de Zhong & Haigh (2013)

Los primeros en llegar se reparten el pastel

Es la hora del temido metano (CH4) . Su espectro de absorción no está cerca de la emisión principal de nuestro planeta, sólo absorbe unos 2 W/m2 y la molécula en sí no tiene ninguna propiedad especial que la haga mucho más eficiente a la hora de absorber calor. Si el CO2 tiene unas condiciones tan óptimas para ser gas de efecto invernadero… ¿Cómo es posible que emitir metano provoque 30 veces más efecto invernadero?

Una de las claves es que un gas de efecto invernadero no absorbe calor en una proporción lineal a su concentración. Es decir, aumentar al doble la concentración de un gas de efecto invernadero no va a causar el doble de efecto invernadero. De ser así estaríamos en un aprieto mucho mayor, ya que el CO2 captura una gran cantidad de calor y hemos aumentado su concentración en un 50%.

Así, las primeras moléculas del gas en entrar en la atmósfera ya absorben una gran cantidad de calor (ver gráfica 2). Este es el secreto del metano: que aún hay poco, y cada molécula que se añade tiene calor disponible en su frecuencia de absorción. No hay muchos comensales en su mesa y tendrá una buena ración de pastel. Mientras en la mesa del CO2, aunque hay mucho más pastel, ya hay muchos más comensales.

En otro momento de la Historia de la Tierra podría ser al revés: Si el metano tuviese una concentración mucho mayor y el CO2 mucho menor, añadir una molécula de CO2 contribuiría mucho más al efecto invernadero que una de metano. Es decir, que la importancia de la emisión de los diferentes gases de efecto invernadero es circunstancial.

Gráfica 2: Modelo de la cantidad de radiación absorbida por el CO2 atmosférico en función de su concentración en la atmósfera. Con bajas concentraciones ya se absorbe una gran cantidad de calor, y por cada pequeña cantidad de gas añadida, la contribución al efecto invernadero es muy grande. El metano se encuentra en esa fase de elevada pendiente de su curva. Modificado de Zhong & Haigh (2013)

Sabiendo esto, lo más peligroso para el cambio climático sería añadir gases nuevos que absorben en la ventana atmosférica: una mesa vacía, con el pastel sin tocar, y cada molécula que llegase podría coger calor hasta empacharse. En cambio, añadir un gas de efecto invernadero, pero que absorbe en una frecuencia en la que otros gases ya están absorbiendo casi toda la radiación disponible, no tendría un efecto significativo en el clima. La situación del CO2 es intermedia, sin contar con nuestra aportación ya absorbía una gran cantidad de calor, pero aún tiene bastante disponible.

La declaración de energía en el planeta: Nos sale a devolver

Al planeta llegan de media 341 W/m2 de radiación solar. Un 30% de esta es reflejada por nubes, hielo o desiertos, y devuelta al espacio sin ser absorbida (albedo), quedando un aporte de 239 W/m2 al sistema climático. La atmósfera absorbe parte de la radiación solar antes de que llegue al suelo, manteniendo el cielo azul o protegiéndonos de los rayos UVA. Al final, a la superficie llegan aproximadamente 161 W/m2 de radiación solar (ver figura abajo).

El calor contenido en la atmósfera y sus gases de efecto invernadero devuelven mucho calor al suelo, este se calienta y lo envía de nuevo a la atmósfera, de forma que la energía total que emite la superficie terrestre es 396 W/m2, mucha más de la que entra del sol al sistema climático. Esos 157 W/m2 extra permiten que la temperatura media de nuestro planeta sea de 15ºC en lugar de -18ºC, la que tendría si no existiesen los gases de efecto invernadero ni la atmósfera.

Flujos de energía globales entre la atmósfera, la superficie terrestre y el espacio exterior. Las flechas amarillas representan la radiación solar de onda corta (luz, rayos UV, etc.), las flechas naranjas representan la radiación infrarroja de onda larga (Calor). Otros colores indican otras transferencias de energía como el movimiento de masas de aire (negro), o el calor latente en forma de vapor (azul). Datos de Trenberth y Fasullo (2012). Cuando el el clima se está calentando la cantidad de calor saliente disminuye, ese calor se acumula en las capas bajas de la atmósfera mientras las capas altas se enfrían.
Figura 1 (bis). Flujos de energía globales entre la atmósfera, la superficie terrestre y el espacio exterior. Las flechas amarillas representan la radiación solar de onda corta (luz, rayos UV, etc.), las flechas naranjas representan la radiación infrarroja de onda larga (Calor). Otros colores indican otras transferencias de energía como el movimiento de masas de aire (negro), o el calor latente en forma de vapor (azul). Datos de Trenberth y Fasullo (2012). Cuando el el clima se está calentando la cantidad de calor saliente disminuye, ese calor se acumula en las capas bajas de la atmósfera mientras las capas altas se enfrían.

Según las estimaciones, el aumento en la concentración de gases de efecto invernadero está ampliando ese calor extra en casi 3 W/m2. Calor que está siendo absorbido principalmente por el CO2 y en menor medida por el metano y otros gases, cada uno en sus frecuencias concretas.

Otras actividades humanas, en cambio, están enfriando el planeta compensando más de 0,5 W/m2. Por ejemplo, el humo contribuye a enfriar el planeta (sí), ya que los aerosoles y cenizas ayudan a formar neblinas que impiden que la radiación solar llegue al suelo. También la deforestación (sí), pues las zonas deforestadas tienen mayor albedo. Esto deja el balance en aprox. + 2 W/m2. (IPCC, 2021)

Para ponerlo en contexto, en el último máximo glacial se estima un balance de -8 W/m2 con respecto al actual. Más de la mitad era debido a la mayor cantidad de hielo y el polvo atmosférico, que reflejaban la radiación solar entrante, y el resto debido a la menor concentración de gases de efecto invernadero. En este periodo la temperatura era nada menos que 8ºC inferior a la actual (Osman et al., 2021). Según la media de las estimaciones, la magnitud del balance de radiación que ya hemos cambiado es un 30% del que acabó con la última glaciación. Una cosa está clara: La cantidad de calor que se queda en nuestro planeta sigue aumentando de forma constante, y los efectos se espera que sean cada vez más notables.

La ubicación del final de las glaciaciones está controlada por factores astronómicos externos, conocidos como «Ciclos de Milankovitch«. Estos factores no alteran la cantidad total de radiación que llega al planeta, sólo cambian la distribución de la radiación entre ambos hemisferios y a lo largo del año. Esto da lugar a cambios en los balances de energía que hemos desarrollado en este artículo, modificando los valores de albedo o la concentración de gases de efecto invernadero, que son los que realmente controlan la mayoría de cambios climáticos del planeta cuando se retroalimentan entre sí. Los factores externos habitualmente controlan cuándo se producen los cambios, pero no son capaces de llevarlos a cabo por sí mismos.

Referencias

  • IPCC. (2021). Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. Cambridge University Press. In Press.
  • L. C. Skinner, E. Bard, (2022). Radiocarbon as a Dating Tool and Tracer in Paleoceanography, Reviews of Geophysics, 60, 1,  https://doi.org/10.1029/2020RG000720
  • Maslin, M. (2014). Climate change: a very short introduction. OUP Oxford.
  • Osman, M.B., Tierney, J.E., Zhu, J. et al. (2021). Globally resolved surface temperatures since the Last Glacial Maximum. Nature 599, 239–244 https://doi.org/10.1038/s41586-021-03984-4
  • Trenberth, K.E.; Fasullo, J.T. (2012). Tracking Earth’s Energy: From El Niño to Global Warming. , 33(3-4), 413–426. https://doi.org/10.1007/s10712-011-9150-2  
  • Zhong, W., & Haigh, J. D. (2013). The greenhouse effect and carbon dioxide. Weather68(4), 100-105.
  • Imagen destacada: Embalse de Almendra (Salamanca). Por Javier Pérez Tarruella.

Así conocemos el clima del pasado

Sabemos que el clima de la Tierra ha cambiado constantemente. En el Mesozoico (la era de los dinosaurios, hace entre 252 y 66 millones de años) apenas había hielo en los polos. Aragón o Castilla y León tenían playa, en una península ibérica que no era tal sino una isla tropical. Hace solo unos miles de años, ya con nuestra especie extendida por todos los continentes, el planeta se encontraba en una intensa glaciación.

Saber si algún momento del pasado ha sido más frío más que en la actualidad es relativamente sencillo: los glaciares esculpen valles en forma de U y dejan en ellos unos depósitos sedimentarios característicos, o pulen la roca (rocas aborregadas) y dejan arañazos en ella (estrías glaciares). A día de hoy encontramos muchos de estos valles y morfologías sin hielo. Podemos deducir entonces, que si en el pasado había más hielo en ese lugar, es probable que las temperaturas fuesen más bajas.

Vista del circo glaciar y valle en U de la garganta de La Vega, cerca de El Barco de Ávila (España). Imagen de Javier Pérez Tarruella. Además de la morfología, podemos observar grandes bloques erráticos en el centro del valle.

Pero… ¿Cómo saber cuáles eran las temperaturas o qué cantidad total de hielo había en el planeta? ¿Cómo podemos conocer el clima de hace millones de años?

De esto se encarga la ciencia de la Paleoclimatología, que utiliza indicadores o «Datos Proxy« que pueden ser de lo más variados. Y en esta entrada veremos un par de ejemplos: isótopos y foraminíferos.

Un dato «Proxy» es un dato indirecto. Como no es posible medir directamente la temperatura o la precipitación del pasado, se utilizan registros de otras variables a partir de las cuales se pueden deducir las primeras, igual que en el ejemplo de los glaciares. La interpretación de estos datos «Proxy» está basada siempre en principios físicos, químicos o biológicos.

El registro paleoclimático más completo que existe abarca los últimos 65 Millones de años, y utiliza como Proxy los isótopos de Oxígeno (Zachos et al., 2001).

1. Los isótopos de Oxígeno y el hielo

La mayoría de átomos de oxígeno están formados por 8 protones y 8 neutrones en su núcleo, lo que conocemos como el isótopo «Oxígeno 16». Sin embargo, existe una pequeña proporción de estos átomos que tiene 8 protones y 10 neutrones: el isótopo «Oxigeno 18».

Dos isótopos de un mismo elemento, en este caso Oxígeno 16 y 18 tienen idénticas propiedades químicas al tener el mismo número de protones y electrones. Pero su diferente masa les hace tener comportamientos diferentes frente a procesos como la evaporación o la condensación.

Así, existen moléculas de agua (H2O) con Oxígeno 16 y otras con Oxígeno 18, y la proporción entre ellas nos permite deducir cambios climáticos gracias a una serie de procesos que denominamos «fraccionamiento isotópico»:

  • Las moléculas con O-16 se evaporarán con mayor facilidad por su menor masa. Así, las nubes tienen más O-16 que el agua del océano que las formó. Y el océano se verá enriquecido en O-18 por la pérdida de O-16.
  • Las moléculas de agua con O-18 se condensan con mayor facilidad (tienen mayor masa), por lo que el agua de lluvia tiene más O-18 que el vapor que la formó.
  • Las nubes van perdiendo agua al enfriarse hacia los polos, por formación de lluvia y por la disminución de la evaporación en estas zonas. Por ello, cuanto más cerca de los polos nos encontremos y cuanto menor sea la temperatura, menor será la cantidad de O-18 en las precipitaciones.
  • La nieve que cae sobre los polos y forma el hielo del casquete glaciar tiene mucho O-16, pero esta señal isotópica cambia con los cambios en la temperatura a lo largo del tiempo en la zona. Por esto la señal isotópica de los hielos de Groenlandia o la Antártida nos permite reconstruir temperaturas para los últimos cientos de miles de años.
Fraccionamiento de los isótopos de oxígeno en el planeta. Distintos procesos hacen que cambie la proporción de átomos de Oxígeno-18/Oxígeno-16. Gracias a los registros marinos de conchas de microorganismos como los foraminíferos, y a los registros del hielo de los casquetes polares, podemos conocer estos cambios isotópicos que reflejan el clima del pasado. Gráfico: Javier Pérez Tarruella.

Como el hielo de los casquetes polares y glaciares acumula isótopos ligeros O-16 y el océano se enriquece en isótopos pesados O-18 durante las glaciaciones, los sedimentos de fondos oceánicos nos permiten conocer en qué momentos ha habido más o menos hielo en el planeta. Así, los periodos glaciares se muestran en forma de valores elevados de los isótopos de oxígeno en los sedimentos oceánicos.

2. Foraminíferos, pequeños historiadores del clima

Los minerales que componen las partes duras de los organismos contienen oxígeno (especialmente conchas de carbonato de organismos acuáticos) , y su proporción O-18/O-16 nos puede aproximar a la temperatura a la que se formaron. Cuando la temperatura es baja, las conchas asimilan más O-18, y viceversa.

Algunos de los organismos con concha más abundantes del planeta son los foraminíferos (imagen de portada). Son unicelulares y pertenecen al reino Protista. Muchos tienen aspecto de palomitas de maíz, miden menos de 1mm y fosilizan con facilidad, por lo que podemos encontrarlos en casi cualquier roca sedimentaria de origen marino.

Imagen SEM de muestras de diversos foraminíferos planctónicos. Tomado de Pados, T. (2014). Recent planktic foraminifera in the Fram Strait : ecology and biogeochemistry. (Autoría: Paul Pearson, Cardiff University).

El indicador que se utiliza para conocer los cambios de temperatura GLOBALES del pasado es la señal isotópica de la concha de foraminíferos que habitan en los fondos profundos de los océanos (organismos bentónicos), pues la temperatura de las aguas profundas cambia muy lentamente y es un buen reflejo del clima global. Esa señal isotópica depende tanto de la temperatura como de la cantidad de hielo sobre los continentes. Valores elevados en 18O indican bajas temperaturas y/o mayor cantidad de hielo glaciar.

Otros foraminíferos, los planctónicos, viven en las aguas superficiales. Las especies de este grupo llevan sin cambios desde hace unos 500.000 años, así que podemos estudiar en qué condiciones de temperatura vive cada especie actualmente y qué agrupaciones de especies hay a diferentes temperaturas. De esta forma, conociendo las diferentes especies que se encuentran en un sedimento antiguo y sus proporciones (cuáles son más abundantes), podemos conocer la temperatura del agua superficial en el momento en que vivieron, gracias a los datos del mundo actual. Esto es un buen ejemplo de la aplicación del Actualismo.

Sabías que… Para conseguir los preciados foraminíferos se utilizan grandes buques científicos especiales, equipados con una torre de perforación muy similar a la que se emplea en el mundo del petróleo. Así se obtienen sondeos del fondo marino donde se han ido enterrando los foraminíferos bentónicos que allí vivían. Los planctónicos que vivían en el agua superficial cayeron y se depositaron una vez muertos. Cuanto mayor haya sido esta acumulación y durante más tiempo se haya producido de forma continua, mejor será el registro climático que se podrá obtener.

Otros indicadores Proxy

Aunque sólo hemos hablado de hielo y organismos marinos, el clima del pasado se puede conocer a través de muchos otros indicadores Proxy: depósitos en lagos, espeleotemas en cuevas, estudios de pólenes en sedimentos, depósitos de turberas, estudios geoquímicos e isotópicos en dientes de mamíferos o incluso a través de los anillos de los árboles (Dendrocronología), etc.

Referencias

Younger Dryas: cambios climáticos que condicionaron el paisaje abulense y la vida humana

Autor (texto y gráficos) – Javier Pérez Tarruella

Hace 18.000 años nuestro planeta se encontraba inmerso en el último máximo glacial. La nieve caída sobre los continentes no llegaba a fundirse en verano, formándose grandes acumulaciones de hielo. Y como el agua de precipitación no retornaba al océano el nivel del mar descendió hasta 125 metros por debajo del actual.

18.000 años es un parpadeo en términos geológicos. Y es que el periodo en el que le ha tocado vivir a nuestra especie (el Cuaternario) se caracteriza por un clima que cambia rápidamente (fig. 1).

Figura 1. Variación climática en los últimos 500.000 años. A grandes rasgos se diferencian 5 glaciaciones y 5 periodos interglaciales, en el último de los cuales nos encontramos ahora. En este artículo nos centraremos en la transición de la última glaciación al presente Interglacial (la ¨Última Terminación»). Datos de Lisiecki & Raymo (2005).

Estos cambios climáticos, que a grandes rasgos dan lugar a una glaciación y un periodo interglacial cada 100.000 años aproximadamente, son debidos a:

Estos factores astronómicos siempre han existido, pero el hecho de que hayamos llegado a tener casquetes de hielo en ambos polos (algo rarísimo en la Historia de la Tierra) ha hecho mucho más vulnerable y cambiante al sistema climático.

El enfriamiento súbito del Younger Dryas

Estos cambios no siempre son graduales. Si estudiamos en detalle la última glaciación vemos que hay decenas de cambios bruscos en las temperaturas. Cuando parecía que la glaciación se retiraba definitivamente en el hemisferio Norte, dio un último coletazo hace unos 12.800 años con el llamado Younger Dryas (también conocido como Dryas Reciente o Joven Dryas).

Este enfriamiento súbito fue el responsable del último periodo de actividad del mar de dunas de La Moraña, y es que la precipitación en Ávila disminuyó. Al reducirse la evaporación del Atlántico Norte por las bajas temperaturas, la disponibilidad de humedad hacia la penísula Ibérica también se redujo. Seguramente este sistema dunar estuvo también activo en varios momentos de la última glaciación, coincidiendo con los eventos Heinrich (hace 16.000, 24.000, 30.000, 39.000, 48.000 y 62.000 años aproximadamente).

Para saber más sobre el mar de dunas de La Moraña.

La hipótesis más aceptada durante mucho tiempo sobre el origen de este cambio climático fue la del vaciado del Lago Agassiz. Este lago se formó por el deshielo del casquete glaciar de Norteamérica, en la región de los Grandes Lagos, alcanzando un tamaño similar al de la Península Ibérica (figura 2). En determinado momento este lago habría vertido sus aguas al Atlántico, deteniendo las corrientes oceánicas y enfriando especialmente el Atlántico Norte. Aunque ya no se asocie el Younger Dryas al lago Agassiz, sí se ha confirmado la relación del conocido como evento 8.2 ka (hace 8200 años) con el último vaciado de este lago (You et al., 2023).

Figura 2. El Lago Agassiz y las posibles vías de vertido de sus aguas al océano.

¿Sabías que…? La película Ice Age 2 está basada en la hipótesis del Lago Agassiz. Los protagonistas viven junto a una presa de hielo que retiene el agua del deshielo acumulada en el Lago Agassiz y deben escapar antes de que se rompa y el lago se vacíe de golpe, es decir: ¡antes de que comience el Younger Dryas!

El final del Younger Dryas y el inicio de la agricultura

Como se observa en la figura 3, a pesar de que los factores astronómicos aumentaban la insolación de verano sobre el hemisferio norte, la temperatura disminuyó, y con ella la precipitación.

Sin embargo, más destacable que el enfriamiento del Younger Dyas fue su final. Y es que ese calentamiento y deshielo que se habían visto frustrados remontaron rápidamente, con una subida del nivel del mar de más de 40 mm/año durante unos siglos y un calentamiento de más de 7ºC en Groenlandia para ese periodo.

Figura 3. Gráfica que muestra 5.000 años de evolución climática, incluyendo el Younger Dryas. La temperatura y la precipitación en el Atlántico Norte disminuyeron en este periodo, a pesar del aumento de la insolación de verano en el hemisferio Norte. El enfriamiento finalizó de golpe, provocando la fusión masiva de glaciares y un aumento brusco del nivel del mar.

Los registros arqueológicos muestran que el inicio de la agricultura y las civilizaciones complejas (el Neolítico) coincide con el final del Younger Dryas, el calentamiento que dio paso al presente Interglacial. Ahora, gracias a unos sondeos en el Mar Muerto, en el entorno de Mesopotamia o “Cuna de la Civilización” sabemos que esta coincidencia es exacta. La incipiente actividad agrícola y el pastoreo habrían provocado un aumento de la erosión y por tanto el incremento de la sedimentación observado en la zona.

Por una parte, parece que un cambio ambiental tan brusco obligó a modificar el modo en que obteníamos el alimento; y por otra parte, la relativa estabilidad climática del presente periodo Interglacial (Holoceno) nos permitió perfeccionar la técnica hasta llegar a los tractores que hoy aran La Moraña.

Quizá sin el Younger Dryas no habría surgido este nuevo paradigma de vida de nuestra especie, o quizá hubiese aparecido 2.000 años antes. En cualquier caso, fue un evento que nos invita a preguntarnos cuánto han condicionado los cambios climáticos la historia de la Humanidad.

¿Sabías que…? Otra de las hipótesis utilizadas para explicar el cambio climático del Younger Dryas es el impacto de un meteorito en Groenlandia. Esta hipótesis se lanzó en 2007 y en 2018 se descubrió bajo el casquete glaciar de Groenlandia un enorme cráter de impacto de 30 km de diámetro. Los cálculos sugieren que un meteorito de 1 km impactó contra la Tierra hace entre 10.000 y 2 millones de años, de momento es el único sospechoso que tenemos como culpable cósmico del Younger Dryas. Además, se han encontrado evidencias de impacto en más de 60 yacimientos de todo el planeta. Sin embargo, estos cambios tan abruptos son habituales en el transcurso de los periodos glaciales, y en su mayoría son explicados por la propia dinámica del sistema climático sometido a la vulnerabilidad de los glaciares y del hielo de la banquisa.

Referencias