Todas las entradas por Javier Pérez Tarruella

Doctorando en la Universidad de Salamanca, investigando sobre cambios climáticos del pasado. Divulgando Geología y Ciencia en general. Hay algo mejor que acercarse a conocer nuestro planeta: compartirlo.

GEOLODÍA 24. Qué es una Glaciación

Llamamos glaciaciones a los momentos de la historia de la Tierra en los que ha habido hielo permanente en forma de glaciares. O al menos a aquellos en los que tengamos evidencias de ello. Es decir: ¡Estamos en una glaciación! De hecho, a nuestra especie le ha tocado vivir en el periodo más frío y con más hielo de los últimos 300 millones de años.

Desde hace al menos 33 millones de años tenemos hielo permanente en la Antártida (Stickley et al., 2004), mientras que desde los últimos 3,3 millones de años tenemos hielo permanente en Groenlandia (Westerhold et al., 2020). Por tanto, estamos en una glaciación que afecta a ambos hemisferios (Figura 1).

En esta escala de millones de años, el principal condicionante de los casquetes glaciares es la distribución de los continentes y océanos. La apertura del Paso de Drake aislando la Antártida o el cierre del istmo de Panamá parecen momentos clave para la actual glaciación.

Las curvas del clima global de la Figura 1 representan isótopos de oxígeno en foraminíferos bentónicos, cuyos valores dependen de la cantidad de hielo en planeta y de la temperatura de los océanos. Si quieres saber cómo se obtienen estos registros del clima a lo largo de la historia de la Tierra te recomendamos la entrada «Así conocemos el clima del pasado«.

El hielo glaciar, así como el hielo marino son muy sensibles a pequeñas variaciones del clima, ya que tan sólo 1 ºC puede suponer la diferencia entre el estado sólido y el líquido. Esta sensibilidad del hielo hace que sutiles alteraciones como las asociadas a pequeños cambios en la órbita de la Tierra, deriven en cambios climático extremos. Es por esto que en los últimos millones de años, en el período Cuaternario, con glaciación en ambos hemisferios, tenemos cambios constantes y muchas veces abruptos en las cantidades de hielo en el planeta (Figura 1).

Esas grandes variaciones, que se dan cada decenas o centenas de miles de años, las dividimos en periodos glaciares e interglaciares. Las «glaciaciones» que esculpieron los valles glaciares de Gredos o la Serrota en Ávila son en realidad esos últimos periodos glaciares del Cuaternario (Figura 1). En esta escala de decenas-cientos de miles de años, los principales desencadenantes de los cambios climáticos son los ciclos de Milankovitch.

Además de las curvas de isótopos de oxígeno, que nos ayudan a conocer las variaciones de temperatura y hielo en el planeta, tenemos otras pistas para deducir la presencia de grandes glaciares en épocas muy remotas de la historia de la Tierra. Una de ellas son los «dropstones«: Rocas enormes incluidas en depósitos sedimentarios del fondo del océano. ¿Cómo pudieron llegar hasta allí, tan lejos de los continentes? Te dejamos un vídeo con el ejemplo de la localidad de Checa, en Teruel.

Este contenido forma parte del Geolodía 2024 de Ávila en Cepeda la Mora, Ávila (España).

Referencias

  • Lisiecki, L. E., & Raymo, M. E. (2005). A Pliocene‐Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography20(1).
  • Stickley, C. E., Brinkhuis, H., Schellenberg, S. A., Sluijs, A., Röhl, U., Fuller, M., … & Williams, G. L. (2004). Timing and nature of the deepening of the Tasmanian Gateway. Paleoceanography19(4).
  • Westerhold, T., Marwan, N., Drury, A. J., Liebrand, D., Agnini, C., Anagnostou, E., … & Zachos, J. C. (2020). An astronomically dated record of Earth’s climate and its predictability over the last 66 million years. Science369(6509), 1383-1387.
  • Imagen de portada: Cabra montesa frente a un circo glaciar de la sierra de Gredos. Javier P. Tarruella.

GEOLODÍA 23. Cuando el río suena… ¿Cuánta agua lleva?

En Arévalo tienen su encuentro el río Adaja y su afluente el Arevalillo. Entre ambos drenan un área de casi 2.000 km2, pero sin la interacción con el subsuelo acabarían totalmente secos tras apenas dos días sin precipitaciones. La participación de las aguas subterráneas, la Geología, la evapotranspiración de las plantas o la presencia de embalses y lagunas condicionan el volumen de agua que acaba saliendo por el río y a qué ritmo lo hace.

Los Modelos Digitales del Terreno (MDT) son archivos que contienen datos de elevación de la superficie en un mapa de píxeles, estos nos permiten hacer una radiografía completa de estas cuencas de drenaje gracias a las diferencias de altitud entre píxeles. En la figura 1 vemos cómo cada punto de la red se ha coloreado en función del área drenada, es decir, en función del número de píxeles que llegan a él desde una altitud mayor. El Adaja recibe la mayor parte de sus aportes aguas arriba de la ciudad de Ávila, además en sus cursos altos las precipitaciones son mucho mayores, así que la mayor parte del caudal proviene de estas zonas.

Si cada gota de lluvia que cayese sus cuencas de drenaje acabase en los ríos, en Arévalo el Arevalillo llevaría un caudal medio de 9 m3/s y el Adaja de 25 m3/s ¡El caudal medio del Tormes en Salamanca!. Sin embargo, sin la interacción con el subsuelo estos caudales serían muy irregulares, muy elevados los días de lluvia, y con los cauces secos los días sin lluvia. La evaporación y evapotranspiración reduce el caudal del Adaja en un 75%. En el Arevalillo esta reducción es mucho más acusada, y es que es una cuenca muy particular, con zonas donde la red de drenaje no se ha organizado y existen cuencas endorreicas desconectadas del río, como es el caso de la Laguna de El Oso.

Las modelizaciones combinando los MDTs con la información climática, como la precipitación máxima diaria, nos permite, por ejemplo, calcular el peligro de inundación simulando lluvias torrenciales sobre este terreno. Como vemos en el mapa de la figura 2, en Arévalo este peligro no se traduce en un riesgo importante para la población, ya que las zonas expuestas al peligro no están pobladas ni cuentan con actividad económica.

Este contenido forma parte del Geolodía 2023 de Ávila en Arévalo, Ávila (España).

¿Por qué algunos gases son ‘de efecto invernadero’?

Puedes escuchar esta entrada aquí:


Seguramente has escuchado que:

Sin embargo, la concentración de metano se mide en ppb «partes por billón», mientras que el dióxido de carbono se mide en ppm «partes por millón», pues la concentración de este último es cientos de veces superior. ¿Cómo es posible que gases tan marginales en nuestra atmósfera puedan tener un papel tan importante en el clima?

Habitualmente los «gases de efecto invernadero» envuelven el discurso en torno al cambio climático, pero sin entrar en qué tienen de especial estos gases para provocar el calentamiento.

Vamos a ver cómo los gases de efecto invernadero calientan el planeta, cuánto lo hacen, y por qué unos lo hacen más que otros.

¿Qué hace especial a un gas para captar calor o dejar de hacerlo?

Un vaso de agua es casi totalmente transparente a nuestra vista. Esto no es casualidad, nuestros ojos evolucionaron en el agua y sólo pudieron hacerlo captando el espectro de ondas que el agua dejaba pasar. Radiaciones con una longitud de onda más larga que el color rojo o más cortas que el violeta son absorbidas por el agua, así que de nada nos hubiese servido ser capaces de verlas en ese medio.

Igual que el agua, cada sustancia tiene su propio espectro de absorción, captan energía de determinadas frecuencias de la radiación, y son invisibles o dejan pasar al resto. Como una copa de cristal que se pone a vibrar si se somete a una nota musical concreta, con la que incluso puede llegar a romperse, pero que ni se inmutaría con un sonido más potente de una nota (frecuencia) diferente.

La radiación infrarroja de onda larga es la que emiten las superficies al calentarse, y, al igual que la luz, es una onda electromagnética (el sonido es una onda también, pero de presión).

En función de la temperatura de la superficie, la longitud de onda de la radiación emitida será diferente, con ondas más cortas (frecuencias más altas) cuanto mayor sea la temperatura, y viceversa. Así es como detectan la fiebre los termómetros sin contacto o las cámaras de los aeropuertos.

Algunos gases, igual que la copa de cristal sometida al sonido, pueden vibrar y calentarse al absorber radiación infrarroja, pero sólo producirán efecto invernadero si su espectro de absorción coincide con la frecuencia («las notas») del calor de nuestro planeta.

Las frecuencias de la Tierra y de los gases

Nuestro planeta es calentado por la radiación solar con el espectro propio de nuestra estrella, principalmente en forma de luz. Parte de la radiación es frenada antes de llegar a la Tierra. Por ejemplo, la capa de Ozono absorbe parte de la radiación ultravioleta en la estratosfera.

La radiación solar que llega calienta la superficie, y después ese calor es emitido en forma de radiación infrarroja de onda larga, una onda mucho más larga que la de la luz solar. De la misma forma que pasa con el ozono y los rayos UV del sol, también hay frecuencias de la radiación que emite nuestro planeta que son absorbidas antes de poder escapar al espacio.

Flujos de energía globales entre la atmósfera, la superficie terrestre y el espacio exterior. Las flechas amarillas representan la radiación solar de onda corta (luz, rayos UV, etc.), las flechas naranjas representan la radiación infrarroja de onda larga (Calor).
Figura 1. Flujos de energía globales entre la atmósfera, la superficie terrestre y el espacio exterior. Las flechas amarillas representan la radiación solar de onda corta (luz, rayos UV, etc.), las flechas naranjas representan la radiación infrarroja de onda larga (Calor). Su explicación se desarrolla más adelante.

Otro proceso por el cual la radiación solar no llega por completo a la superficie es la dispersión de Raileigh. Parte de la luz visible es atrapada y reemitida por las moléculas de la atmósfera, y las frecuencias altas, como el azul, son mucho más sensibles a este proceso. ¡Por eso el cielo es azul! En realidad, el azul del cielo es la parte azul de la luz solar que se queda «rebotando» por la atmósfera. También es el motivo de que los atardeceres sean rojos: cuando el sol está a baja altura, su luz debe atravesar mucha más atmósfera y las únicas frecuencias que consiguen sobrevivir hasta nuestros ojos son las bajas, los colores naranjas y rojos.

El vapor de agua (H2O), por ejemplo, tiene un espectro de absorción de calor muy amplio. De hecho es el principal agente del efecto invernadero en nuestro planeta, responsable de impedir que salgan al espacio unos 77 W(vatios)/m2. Algunas frecuencias del calor de la Tierra son totalmente absorbidas por este gas y hay otras frecuencias a las que deja escapar.

El CO2 tiene un espectro de absorción de calor mucho más estrecho, pero coincide con frecuencias que el agua dejaba pasar, y además sus frecuencias de absorción son las que con más intensidad emite nuestro planeta, así que tiene mucho calor disponible para absorber (ver gráfica 1). Por esta razón el dióxido de carbono tiene un papel tan importante en el efecto invernadero, impidiendo que escapen al espacio unos 39 W/m2 de calor.

Algunas frecuencias del calor de nuestro planeta no son absorbidas por ningún gas de la atmósfera y escapan directamente desde la superficie al espacio. Estas frecuencias son lo que llamamos Ventana atmosférica. Los gases de efecto invernadero son para este calor como el vidrio de una ventana para la luz: el calor los atraviesa.

La curva roja representa la radiación en forma de calor emitida por la superficie terrestre y el área en negro la que escapa de la atmósfera al espacio. El área encerrada entre estas dos curvas representa el calor que ha sido retenido por los diferentes gases de efecto invernadero en la atmósfera. El vapor de agua (H2O) absorbe mucha radiación en los laterales del espectro, el CO2 absorbe en unas frecuencias muy concretas en el centro de la curva y el metano (CH4) en una longitud de onda más corta. En la ventana atmosférica el calor no es absorbido por ningún gas y por lo tanto escapa casi por completo al espacio (poca diferencia entre el área negra y la curva roja). Imagen: Javier P. T. Datos de Zhong & Haigh (2013)
Gráfica 1: La curva roja representa la radiación en forma de calor emitida por la superficie terrestre, y el área en negro la que escapa de la atmósfera al espacio. El área encerrada entre estas dos curvas representa el calor que ha sido retenido por los diferentes gases de efecto invernadero en la atmósfera. El vapor de agua (H2O) absorbe mucha radiación en los laterales del espectro, el CO2 absorbe en unas frecuencias muy concretas en el centro de la curva, y el metano (CH4), en una longitud de onda más corta. En la ventana atmosférica el calor no es absorbido por ningún gas y por lo tanto escapa casi por completo al espacio (hay poca diferencia entre el área negra y la curva roja). Imagen: Javier P. T. Datos de Zhong & Haigh (2013)

Los primeros en llegar se reparten el pastel

Es la hora del temido metano (CH4) . Su espectro de absorción no está cerca de la emisión principal de nuestro planeta, sólo absorbe unos 2 W/m2 y la molécula en sí no tiene ninguna propiedad especial que la haga mucho más eficiente a la hora de absorber calor. Si el CO2 tiene unas condiciones tan óptimas para ser gas de efecto invernadero… ¿Cómo es posible que emitir metano provoque 30 veces más efecto invernadero?

Una de las claves es que un gas de efecto invernadero no absorbe calor en una proporción lineal a su concentración. Es decir, aumentar al doble la concentración de un gas de efecto invernadero no va a causar el doble de efecto invernadero. De ser así estaríamos en un aprieto mucho mayor, ya que el CO2 captura una gran cantidad de calor y hemos aumentado su concentración en un 50%.

Así, las primeras moléculas del gas en entrar en la atmósfera ya absorben una gran cantidad de calor (ver gráfica 2). Este es el secreto del metano: que aún hay poco, y cada molécula que se añade tiene calor disponible en su frecuencia de absorción. No hay muchos comensales en su mesa y tendrá una buena ración de pastel. Mientras en la mesa del CO2, aunque hay mucho más pastel, ya hay muchos más comensales.

En otro momento de la Historia de la Tierra podría ser al revés: Si el metano tuviese una concentración mucho mayor y el CO2 mucho menor, añadir una molécula de CO2 contribuiría mucho más al efecto invernadero que una de metano. Es decir, que la importancia de la emisión de los diferentes gases de efecto invernadero es circunstancial.

Gráfica 2: Modelo de la cantidad de radiación absorbida por el CO2 atmosférico en función de su concentración en la atmósfera. Con bajas concentraciones ya se absorbe una gran cantidad de calor, y por cada pequeña cantidad de gas añadida, la contribución al efecto invernadero es muy grande. El metano se encuentra en esa fase de elevada pendiente de su curva. Modificado de Zhong & Haigh (2013)

Sabiendo esto, lo más peligroso para el cambio climático sería añadir gases nuevos que absorben en la ventana atmosférica: una mesa vacía, con el pastel sin tocar, y cada molécula que llegase podría coger calor hasta empacharse. En cambio, añadir un gas de efecto invernadero, pero que absorbe en una frecuencia en la que otros gases ya están absorbiendo casi toda la radiación disponible, no tendría un efecto significativo en el clima. La situación del CO2 es intermedia, sin contar con nuestra aportación ya absorbía una gran cantidad de calor, pero aún tiene bastante disponible.

La declaración de energía en el planeta: Nos sale a devolver

Al planeta llegan de media 341 W/m2 de radiación solar. Un 30% de esta es reflejada por nubes, hielo o desiertos, y devuelta al espacio sin ser absorbida (albedo), quedando un aporte de 239 W/m2 al sistema climático. La atmósfera absorbe parte de la radiación solar antes de que llegue al suelo, manteniendo el cielo azul o protegiéndonos de los rayos UVA. Al final, a la superficie llegan aproximadamente 161 W/m2 de radiación solar (ver figura abajo).

El calor contenido en la atmósfera y sus gases de efecto invernadero devuelven mucho calor al suelo, este se calienta y lo envía de nuevo a la atmósfera, de forma que la energía total que emite la superficie terrestre es 396 W/m2, mucha más de la que entra del sol al sistema climático. Esos 157 W/m2 extra permiten que la temperatura media de nuestro planeta sea de 15ºC en lugar de -18ºC, la que tendría si no existiesen los gases de efecto invernadero ni la atmósfera.

Flujos de energía globales entre la atmósfera, la superficie terrestre y el espacio exterior. Las flechas amarillas representan la radiación solar de onda corta (luz, rayos UV, etc.), las flechas naranjas representan la radiación infrarroja de onda larga (Calor). Otros colores indican otras transferencias de energía como el movimiento de masas de aire (negro), o el calor latente en forma de vapor (azul). Datos de Trenberth y Fasullo (2012). Cuando el el clima se está calentando la cantidad de calor saliente disminuye, ese calor se acumula en las capas bajas de la atmósfera mientras las capas altas se enfrían.
Figura 1 (bis). Flujos de energía globales entre la atmósfera, la superficie terrestre y el espacio exterior. Las flechas amarillas representan la radiación solar de onda corta (luz, rayos UV, etc.), las flechas naranjas representan la radiación infrarroja de onda larga (Calor). Otros colores indican otras transferencias de energía como el movimiento de masas de aire (negro), o el calor latente en forma de vapor (azul). Datos de Trenberth y Fasullo (2012). Cuando el el clima se está calentando la cantidad de calor saliente disminuye, ese calor se acumula en las capas bajas de la atmósfera mientras las capas altas se enfrían.

Según las estimaciones, el aumento en la concentración de gases de efecto invernadero está ampliando ese calor extra en casi 3 W/m2. Calor que está siendo absorbido principalmente por el CO2 y en menor medida por el metano y otros gases, cada uno en sus frecuencias concretas.

Otras actividades humanas, en cambio, están enfriando el planeta compensando más de 0,5 W/m2. Por ejemplo, el humo contribuye a enfriar el planeta (sí), ya que los aerosoles y cenizas ayudan a formar neblinas que impiden que la radiación solar llegue al suelo. También la deforestación (sí), pues las zonas deforestadas tienen mayor albedo. Esto deja el balance en aprox. + 2 W/m2. (IPCC, 2021)

Para ponerlo en contexto, en el último máximo glacial se estima un balance de -8 W/m2 con respecto al actual. Más de la mitad era debido a la mayor cantidad de hielo y el polvo atmosférico, que reflejaban la radiación solar entrante, y el resto debido a la menor concentración de gases de efecto invernadero. En este periodo la temperatura era nada menos que 8ºC inferior a la actual (Osman et al., 2021). Según la media de las estimaciones, la magnitud del balance de radiación que ya hemos cambiado es un 30% del que acabó con la última glaciación. Una cosa está clara: La cantidad de calor que se queda en nuestro planeta sigue aumentando de forma constante, y los efectos se espera que sean cada vez más notables.

La ubicación del final de las glaciaciones está controlada por factores astronómicos externos, conocidos como «Ciclos de Milankovitch«. Estos factores no alteran la cantidad total de radiación que llega al planeta, sólo cambian la distribución de la radiación entre ambos hemisferios y a lo largo del año. Esto da lugar a cambios en los balances de energía que hemos desarrollado en este artículo, modificando los valores de albedo o la concentración de gases de efecto invernadero, que son los que realmente controlan la mayoría de cambios climáticos del planeta cuando se retroalimentan entre sí. Los factores externos habitualmente controlan cuándo se producen los cambios, pero no son capaces de llevarlos a cabo por sí mismos.

Referencias

  • IPCC. (2021). Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. Cambridge University Press. In Press.
  • L. C. Skinner, E. Bard, (2022). Radiocarbon as a Dating Tool and Tracer in Paleoceanography, Reviews of Geophysics, 60, 1,  https://doi.org/10.1029/2020RG000720
  • Maslin, M. (2014). Climate change: a very short introduction. OUP Oxford.
  • Osman, M.B., Tierney, J.E., Zhu, J. et al. (2021). Globally resolved surface temperatures since the Last Glacial Maximum. Nature 599, 239–244 https://doi.org/10.1038/s41586-021-03984-4
  • Trenberth, K.E.; Fasullo, J.T. (2012). Tracking Earth’s Energy: From El Niño to Global Warming. , 33(3-4), 413–426. https://doi.org/10.1007/s10712-011-9150-2  
  • Zhong, W., & Haigh, J. D. (2013). The greenhouse effect and carbon dioxide. Weather68(4), 100-105.
  • Imagen destacada: Embalse de Almendra (Salamanca). Por Javier Pérez Tarruella.

Raíces de carbonato. Calcretas y clima

En algunas paredes del laberinto de Villaflor podemos observar un patrón de líneas blancas. Son en realidad láminas de carbonato cálcico que han sido cortadas por la incisión de la red de drenaje.

Estas láminas se formaron gracias a la actividad de raíces de plantas en simbiosis con microorganismos y hongos, y es lo que conocemos como calcretas.

En un clima semiárido los nutrientes y el agua son bienes muy preciados y los vegetales desarrollaron estas estructuras para ayudar a retenerlos cerca de sus raíces.

Así, la presencia de estas láminas nos habla de unas condiciones climáticas concretas, de aridez y temperaturas suaves o cálidas hace millones de años.

Calcretas laminares en la pared de un canal del laberinto. En realidad son láminas de carbonato cálcico expuestas al ser cortadas por el “cuchillo” de la red de drenaje. Imagen de Javier Pérez Tarruella.
Calcretas laminares en la pared de un canal del laberinto. En realidad son láminas de carbonato cálcico expuestas al ser cortadas por el “cuchillo” de la red de drenaje. Imagen de Javier Pérez Tarruella.

Cuando las calcretas se presentan en forma de láminas entrecruzadas y no como grandes capas, nos indican que la sedimentación era puntual y esporádica: en determinados eventos de tormenta se producía sedimentación, que provocaba la muerte de la lámina activa y la formación de nuevas láminas, que cortan a las anteriores.

Carbono para arriba, Carbono para abajo

Las rocas en las que están desarrolladas las calcretas de Villaflor no contienen carbonato, el carbonato era aportado en parte por el polvo en suspensión (como el de las invasiones de polvo del Sáhara que sufrimos actualmente).

Las calcretas fijan carbono en la corteza terrestre, así que tienen su papel en el ciclo del CO2 .

Las plantas absorben CO2 para convertirlo en hojas, madera y raíces, pero al morir la planta, estos elementos se oxidan y el carbono vuelve a la atmósfera. Sin embargo, el carbono fijado en la calcreta no se oxida, se fija y pasa a formar parte de la litosfera, hasta que la meteorización lo disuelva y vuelva a formar parte de la atmósfera.

Este es uno de los contenidos del Geolodía 22 de Ávila en Villaflor.

La prueba del ácido

Cuando echamos ácido clorhídrico en la calcreta para comprobar su contenido en carbonato cálcico, estos compuestos reaccionan y forman agua, CO2 que escapa formando burbujas y cloruro de calcio, que se disuelve en el agua.

Así, en este gesto devolvemos a la atmósfera Carbono que había sido retenido en la corteza terrestre durante millones de años.

Este es uno de los contenidos del Geolodía 2022 de Ávila.

Aprende más sobre las calcretas laminares de La Moraña

La Luna tiene colores: ¡Los de su geología!

¿De qué color es la Luna?

La respuesta parece fácil: Blanca, con zonas grises quizá… Aparentemente este es su aspecto, en «blanco y negro» como en la retransmisión del Apolo 11. Pero la tecnología de imagen actual, incluso una cámara de fotos réflex de aficionado, nos permite descubrir que en realidad no es así.

Sí tiene colores, pero son muy débiles, con muy poca saturación. Sin saturación cualquier color se convierte en un tono de gris. Además, el hecho de que veamos la Luna de noche, habitualmente con poca luz y en contraste con el cielo oscuro, hace que percibamos menos los colores. A oscuras los «conos» (las células de la retina receptoras del color) no funcionan bien, y son los «bastones» (receptores de luz) los que nos proporcionan la mayor parte de la información.

Gracias a la información que puede recoger el sensor de una cámara a través de un telescopio, podemos vislumbrar los colores que en realidad esconde nuestro satélite. Y por supuesto… ¡El resultado nos cuenta su propia historia geológica!

Fotografía lunar, con su coloración exagerada unas 30 veces. @jpereztar

Antes de seguir leyendo, es recomendable conocer la historia geológica de la Luna «en blanco y negro» y así entender su aspecto general.

La historia de la Luna: 4.500 Millones de años en 5 minutos

Los colores de la Luna

Los colores que más destacan son dos: El azul y el naranja de los maria lunares, que además son complementarios y hacen que nuestro satélite vaya muy bien conjuntado.

Los maria están formados por basaltos de las erupciones volcánicas del periodo Ímbrico y su color depende de la proporción de hierro y titanio en sus minerales.

Las zonas con mayor cantidad de titanio son más oscuras y azules, pues abunda el mineral ilmenita.

Las zonas con menor proporción de titanio (mayor de hierro) son anaranjadas, por la mayor proporción de piroxeno y olivinos de tipo fayalita. Esta división por colores permite deducir diferentes fases del relleno de basalto que cubre los cráteres gigantes de la Luna.

La zona más azulada, el «Mare Tranquilitatis» tiene una concentración de titanio 10 veces superior (hasta un 13%) a la mayor hallada en la Tierra. Esto lo convierte en un candidato ideal para el establecimiento de un asentamiento lunar, pues de la ilmenita podría extraerse hierro, titanio y oxígeno.

Recorte donde se observa el color azul vivo del Mare Tranquilitatis, las distintras fases de relleno del Mare Imbrium (izquierda) y el brillo de los impactos meteoríticos más recientes.

Las zonas de las tierras altas, con más cantidad de feldespato plagioclasa, tienen un color más claro, rosado-verdoso.

Mientras que los cráteres de impactos meteoríticos más recientes y sus eyectas aparecen como manchas realmente blancas, pues la roca que funden al impactar se convierte en un vidrio muy reflectante, que se va tornando opaco y oscuro con el paso del tiempo.

Actividades docentes relacionadas

PRÁCTICA RECOMENDADARealizar un mapa mineralógico de la Luna a partir de una fotografía.

Referencias

El microclima del Valle del Tiétar

Por qué llueve tanto en Candeleda

El municipio de Candeleda y la comarca del Valle del Tiétar en general tienen un clima muy diferente al del norte de la provincia de Ávila. Tanto es así que se suele hablar de «la Andalucía de Ávila» o del «microclima del Valle del Tiétar», caracterizado por inviernos suaves y muy húmedos, veranos calurosos y secos y también por precipitaciones puntuales intensas que provocan importantes avenidas torrenciales.

Tanta es la diferencia a uno y otro lado de la Sierra de Gredos que en Candeleda llueve un 250% más que en la capital, a pesar de que Ávila está situada a mayor altura y más al norte.

Mapa de precipitaciones anuales en la península Ibérica. El sur de la provincia de Ávila es mucho más húmedo que el norte. (Fuente AEMET)

El efecto Coriolis

Gran parte de la culpa de esta diferencia en las precipitaciones la tiene la rotación de la Tierra, que provoca el efecto Coriolis: como la Tierra gira alrededor del eje norte-sur, los puntos más cercanos al ecuador se mueven muy rápido (a unos 1600 km/h) mientras en los polos el movimiento es nulo. Por ello el aire que se desplaza hacia el ecuador se ve arrastrado por la rotación de la tierra, y el que se desplaza hacia los polos se adelanta a la rotación.

Para saber más sobre el efecto Coriolis: ¿Por qué el aire gira alrededor del centro de un huracán? – El Efecto Coriolis (vídeo en inglés con subtítulos).

Así, todo lo que se mueve en el hemisferio norte se desvía hacia la derecha, mientras que en el hemisferio sur lo hace hacia la izquierda.

El aire en nuestro planeta se desplaza para equilibrar las diferencias de presión, desde las zonas de altas presiones (anticiclones) a las zonas de bajas presiones (borrascas):

  • El aire que se mueve hacia el centro de las borrascas se desvía a la derecha, provocando que las borrascas giren en sentido contrario a las agujas del reloj.
  • Mientras, el aire escapa de los anticiclones y provoca que giren en el sentido de las agujas del reloj.

Abundantes precipitaciones

Este giro antihorario hace que los frentes de precipitación que acompañan a las borrascas desde el Atlántico impacten contra el Sistema Central, obligándoles a ascender por el desnivel de la cara sur de Gredos.

El aire se va a enfriar rápidamente al ascender por la ladera, se condensa y genera precipitaciones copiosas y a veces muy intensas en el Valle del Tiétar como sucedió en diciembre de 2019 con la borrasca Elsa.

Cuando estos frentes llegan a la ciudad de Ávila ya han descargado mucha humedad en la cara sur, dejando pocas lluvias en la capital y en la meseta en general.

Mapa de previsión meteorológica para el día 21 de marzo de 2020, con una situación típica de una borrasca entrando desde el Atlántico, provocando precipitaciones abundantes en la cara sur de Gredos. (Fuente: modelo ECMWF).
Mapa de precipitaciones asociadas a la borrasca Elsa el 19 de diciembre de 2019, en las zonas de color rojo oscuro se superaron los 200 mm en un día. (Fuente: RTVE).

Episodios de lluvias intensas

El efecto Coriolis en combinación con el fuerte desnivel en la cuenca de drenaje propician importantes avenidas de carácter torrencial en la Garganta de Santa María. Las precipitaciones intensas asociadas a frentes atlánticos, que además suelen provocar deshielos en invierno y primavera, son las que dan vida al abanico aluvial de Candeleda.

Para saber qué es un abanico aluvial: El abanico aluvial de Candeleda, la huella de una montaña vaciada

Este abanico apenas sufre cambios graduales durante la temporada normal y se activa fundamentalmente durante estos eventos de alta energía, en los que el caudal se multiplica, se transporta mucho sedimento (con clastos de hasta varias toneladas), se erosiona y se producen cambios en el canal principal.

Imagen comparativa del antes (arriba) y después (abajo) de la borrasca Elsa. Este evento en diciembre de 2019 cambió completamente el canal principal de la Garganta de Santa María, transportando todo tipo de sedimentos, incluyendo clastos de granito de varias toneladas (y algún electrodoméstico de gran tamaño). Imágenes: Javier Pérez Tarruella.

Veranos cálidos y secos

En verano las altas temperaturas y la ausencia de precipitaciones en la zona se deben a que domina el «anticiclón de las Azores» situado en el Atlántico.

Al contrario que las borrascas, el anticiclón gira en el sentido de las agujas del reloj, enviando aire desde el Norte. Este aire pierde la poca humedad que conserva al ascender la cara norte de Gredos y al bajar al Valle del Tiétar se calienta en proporción al enorme desnivel de la cara sur.

¿SABÍAS QUÉ?… En Nueva York llueve tanto en verano como en invierno, ya que allí el anticiclón de las Azores envía aire muy húmedo desde el trópico. Debido al efecto Coriolis, los huracanes que se forman en zonas tropicales desvían su trayectoria hacia la derecha (hacia el Norte) afectando al Caribe y llegando a la mitad este de Estados Unidos.

Bibliografía

Así conocemos el clima del pasado

Sabemos que el clima de la Tierra ha cambiado constantemente. En el Mesozoico (la era de los dinosaurios, hace entre 252 y 66 millones de años) apenas había hielo en los polos. Aragón o Castilla y León tenían playa, en una península ibérica que no era tal sino una isla tropical. Hace solo unos miles de años, ya con nuestra especie extendida por todos los continentes, el planeta se encontraba en una intensa glaciación.

Saber si algún momento del pasado ha sido más frío más que en la actualidad es relativamente sencillo: los glaciares esculpen valles en forma de U y dejan en ellos unos depósitos sedimentarios característicos, o pulen la roca (rocas aborregadas) y dejan arañazos en ella (estrías glaciares). A día de hoy encontramos muchos de estos valles y morfologías sin hielo. Podemos deducir entonces, que si en el pasado había más hielo en ese lugar, es probable que las temperaturas fuesen más bajas.

Vista del circo glaciar y valle en U de la garganta de La Vega, cerca de El Barco de Ávila (España). Imagen de Javier Pérez Tarruella. Además de la morfología, podemos observar grandes bloques erráticos en el centro del valle.

Pero… ¿Cómo saber cuáles eran las temperaturas o qué cantidad total de hielo había en el planeta? ¿Cómo podemos conocer el clima de hace millones de años?

De esto se encarga la ciencia de la Paleoclimatología, que utiliza indicadores o «Datos Proxy« que pueden ser de lo más variados. Y en esta entrada veremos un par de ejemplos: isótopos y foraminíferos.

Un dato «Proxy» es un dato indirecto. Como no es posible medir directamente la temperatura o la precipitación del pasado, se utilizan registros de otras variables a partir de las cuales se pueden deducir las primeras, igual que en el ejemplo de los glaciares. La interpretación de estos datos «Proxy» está basada siempre en principios físicos, químicos o biológicos.

El registro paleoclimático más completo que existe abarca los últimos 65 Millones de años, y utiliza como Proxy los isótopos de Oxígeno (Zachos et al., 2001).

1. Los isótopos de Oxígeno y el hielo

La mayoría de átomos de oxígeno están formados por 8 protones y 8 neutrones en su núcleo, lo que conocemos como el isótopo «Oxígeno 16». Sin embargo, existe una pequeña proporción de estos átomos que tiene 8 protones y 10 neutrones: el isótopo «Oxigeno 18».

Dos isótopos de un mismo elemento, en este caso Oxígeno 16 y 18 tienen idénticas propiedades químicas al tener el mismo número de protones y electrones. Pero su diferente masa les hace tener comportamientos diferentes frente a procesos como la evaporación o la condensación.

Así, existen moléculas de agua (H2O) con Oxígeno 16 y otras con Oxígeno 18, y la proporción entre ellas nos permite deducir cambios climáticos gracias a una serie de procesos que denominamos «fraccionamiento isotópico»:

  • Las moléculas con O-16 se evaporarán con mayor facilidad por su menor masa. Así, las nubes tienen más O-16 que el agua del océano que las formó. Y el océano se verá enriquecido en O-18 por la pérdida de O-16.
  • Las moléculas de agua con O-18 se condensan con mayor facilidad (tienen mayor masa), por lo que el agua de lluvia tiene más O-18 que el vapor que la formó.
  • Las nubes van perdiendo agua al enfriarse hacia los polos, por formación de lluvia y por la disminución de la evaporación en estas zonas. Por ello, cuanto más cerca de los polos nos encontremos y cuanto menor sea la temperatura, menor será la cantidad de O-18 en las precipitaciones.
  • La nieve que cae sobre los polos y forma el hielo del casquete glaciar tiene mucho O-16, pero esta señal isotópica cambia con los cambios en la temperatura a lo largo del tiempo en la zona. Por esto la señal isotópica de los hielos de Groenlandia o la Antártida nos permite reconstruir temperaturas para los últimos cientos de miles de años.
Fraccionamiento de los isótopos de oxígeno en el planeta. Distintos procesos hacen que cambie la proporción de átomos de Oxígeno-18/Oxígeno-16. Gracias a los registros marinos de conchas de microorganismos como los foraminíferos, y a los registros del hielo de los casquetes polares, podemos conocer estos cambios isotópicos que reflejan el clima del pasado. Gráfico: Javier Pérez Tarruella.

Como el hielo de los casquetes polares y glaciares acumula isótopos ligeros O-16 y el océano se enriquece en isótopos pesados O-18 durante las glaciaciones, los sedimentos de fondos oceánicos nos permiten conocer en qué momentos ha habido más o menos hielo en el planeta. Así, los periodos glaciares se muestran en forma de valores elevados de los isótopos de oxígeno en los sedimentos oceánicos.

2. Foraminíferos, pequeños historiadores del clima

Los minerales que componen las partes duras de los organismos contienen oxígeno (especialmente conchas de carbonato de organismos acuáticos) , y su proporción O-18/O-16 nos puede aproximar a la temperatura a la que se formaron. Cuando la temperatura es baja, las conchas asimilan más O-18, y viceversa.

Algunos de los organismos con concha más abundantes del planeta son los foraminíferos (imagen de portada). Son unicelulares y pertenecen al reino Protista. Muchos tienen aspecto de palomitas de maíz, miden menos de 1mm y fosilizan con facilidad, por lo que podemos encontrarlos en casi cualquier roca sedimentaria de origen marino.

Imagen SEM de muestras de diversos foraminíferos planctónicos. Tomado de Pados, T. (2014). Recent planktic foraminifera in the Fram Strait : ecology and biogeochemistry. (Autoría: Paul Pearson, Cardiff University).

El indicador que se utiliza para conocer los cambios de temperatura GLOBALES del pasado es la señal isotópica de la concha de foraminíferos que habitan en los fondos profundos de los océanos (organismos bentónicos), pues la temperatura de las aguas profundas cambia muy lentamente y es un buen reflejo del clima global. Esa señal isotópica depende tanto de la temperatura como de la cantidad de hielo sobre los continentes. Valores elevados en 18O indican bajas temperaturas y/o mayor cantidad de hielo glaciar.

Otros foraminíferos, los planctónicos, viven en las aguas superficiales. Las especies de este grupo llevan sin cambios desde hace unos 500.000 años, así que podemos estudiar en qué condiciones de temperatura vive cada especie actualmente y qué agrupaciones de especies hay a diferentes temperaturas. De esta forma, conociendo las diferentes especies que se encuentran en un sedimento antiguo y sus proporciones (cuáles son más abundantes), podemos conocer la temperatura del agua superficial en el momento en que vivieron, gracias a los datos del mundo actual. Esto es un buen ejemplo de la aplicación del Actualismo.

Sabías que… Para conseguir los preciados foraminíferos se utilizan grandes buques científicos especiales, equipados con una torre de perforación muy similar a la que se emplea en el mundo del petróleo. Así se obtienen sondeos del fondo marino donde se han ido enterrando los foraminíferos bentónicos que allí vivían. Los planctónicos que vivían en el agua superficial cayeron y se depositaron una vez muertos. Cuanto mayor haya sido esta acumulación y durante más tiempo se haya producido de forma continua, mejor será el registro climático que se podrá obtener.

Otros indicadores Proxy

Aunque sólo hemos hablado de hielo y organismos marinos, el clima del pasado se puede conocer a través de muchos otros indicadores Proxy: depósitos en lagos, espeleotemas en cuevas, estudios de pólenes en sedimentos, depósitos de turberas, estudios geoquímicos e isotópicos en dientes de mamíferos o incluso a través de los anillos de los árboles (Dendrocronología), etc.

Referencias

Cráteres de impacto: Las cicatrices que dejan los meteoritos en nuestro planeta y cómo encontrarlas

En nuestro planeta existen cerca de 200 estructuras confirmadas como cráteres de impacto, es decir, cráteres producidos por el impacto de un meteorito. Parecen pocos comparados con los miles que plagan la superficie lunar. Sin embargo la Tierra ha recibido muchos más impactos que su satélite por su mayor gravedad y tamaño.

La mayor parte han sido borrados por los efectos de la meteorización y la tectónica de placas, otros han quedado sepultados por rocas sedimentarias y algunos siguen expuestos en superficie conservando su estructura original, o no.

Pero… ¿Cómo saber que un cráter ha sido producido por un meteorito y no por una erupción volcánica u otro proceso?

A la izquierda, el cráter de impacto Barringer, también conocido como «Meteor Crater», fue la primera estructura de impacto confirmada en nuestro planeta. A la derecha la caldera volcánica del Tambora. Fuente: NASA Image Gallery.

El impacto y sus consecuencias

Un impacto meteorítico se produce a una gran velocidad, entre 20 y 60 km/s aproximadamente. La naturaleza explosiva de un contacto a más de 100.000 Km/h hace que la forma de los cráteres sea casi perfectamente circular, a pesar de que los impactos pueden producirse con ángulos bajos y no siempre perpendiculares a la superficie terrestre.

Este contacto genera una gran explosión y una gran compresión de la roca impactada (basamento). Se estima que el impacto que acabó con los dinosaurios ( Chicxulub), producido por un meteorito de 10-15 Km, generó momentáneamente una cavidad de 40 Km de profundidad en la corteza terrestre, suponiendo una energía igual a 7.000 millones de bombas de Hiroshima.

Inmediatamente después se produce la descompresión, un rebote elástico del terreno que es el que genera la mayor parte de la eyecta (material impulsado violentamente a la atmósfera) en los grandes impactos, lo que sería la metralla de estas explosiones cósmicas. La eyecta está compuesta por:

  • Roca fundida (tectitas), ya que se alcanzan más de 2000 ºC durante el impacto.
  • Aerosoles producto de la vaporización total de las rocas que han alcanzado una presión de más de 100 Gpa (1.000.000 atm) durante el impacto.
  • Fragmentos de la roca impactada (depositada en forma de brecha).
  • Y en menor medida fragmentos del propio meteorito.

Evidencias del impacto

Fue en 1960 cuando se produjo la primera confirmación de una estructura de impacto en nuestro planeta, la del Cráter Barringer por parte del geólogo Eugene Shoemaker, quien revolucionó las ciencias planetarias. Hasta entonces se asumía un origen volcánico de la mayoría de cráteres, incluso se planteaba para los de la Luna.

Una de las evidencias principales del impacto suele ser la eyecta, que puede encontrarse en la zona del cráter o incluso a miles de kilómetros de distancia en los grandes impactos. Ésta puede estar formada por pequeños fragmentos de roca alterada por el calor y la presión del impacto: fundidos vítreos (tectitas), esférulas de carbono, agregados de restos minerales pulverizados y otras partículas como cuarzo chocado o nanodiamantes .

Por otra parte existen unas estructuras muy comunes en el basamento llamadas conos astillados (shatter cones) que son también habituales evidencias de impacto.

A) Esférula de Carbono microscópica (Wittke et al. 2013); B) Conos astillados en muestra de mano (Johannes Baier); C) Cuarzo chocado visto en lámina delgada al microscopio óptico (Martin Schmieder); D) Tectitas en muestra de mano (BrokenInAGlory).

La geoquímica también puede ser clave para identificar un impacto meteorítico. Así, concentraciones anómalas de elementos raros en zonas de la superficie terrestre o en las rocas sedimentarias como Platino, Iridio u Oro han servido para constatar impactos meteoríticos, incluso cuando su estructura original ha desaparecido por completo.

No todos los cráteres son iguales

A grandes rasgos, existen dos tipos principales de cráteres de impacto:

  • Cráteres simples: Es el primero que nos imaginamos, con forma de cuenco y con los bordes elevados sobre el terreno circundante. De este tipo son los cráteres de pequeño tamaño, pueden tener desde metros hasta pocos kilómetros. El famoso «Meteor Crater» o Cráter Barringer de Arizona es de este tipo.
  • Cráteres complejos: En los cráteres complejos existe, al menos, una elevación central producida por la descompresión y rebote elástico posteriores al impacto, lo que en los cráteres lunares se bautizó como «central peak«. De este tipo son los grandes cráteres del planeta y los más vistosos de la Luna (Tycho y Copernicus). Su estructura puede ser mucho más compleja y a veces presentan varios anillos de elevaciones además de la elevación central, sistemas de fallas y otras estructuras de deformación frágil y dúctil.
Ilustración: Javier Pérez Tarruella

¡Explora nuestro mapa de cráteres de impacto en la Tierra!

En este mapa puedes encontrar más de 80 estructuras de impacto confirmadas. Haciendo clic en ellas encontrarás curiosidades sobre su formación, su descubrimiento o las consecuencias que tuvieron. Algunos cambiaron por completo la vida en nuestro planeta. Los marcados en azul son los que consideramos más interesantes, ¡pero merece la pena explorarlos todos!

Sabías qué… Las cenizas de Eugene Shoemaker, geólogo pionero de las Ciencias Planetarias, descansan en un cráter cerca del polo Sur de la Luna llamado cráter Shoemaker. Son los únicos restos humanos que hay en nuestro satélite. Existe otro gran cráter en Australia llamado Shoemaker en su honor. Eugene no sólo demostró y destacó la importancia de los impactos meteoríticos en la historia de nuestro planeta, también estudió asteroides y cometas, siendo el descubridor principal del cometa Shoemaker-Levy 9, que en julio de 1994 impactó contra Júpiter, un suceso que es considerado el evento astronómico más importante del siglo XX.

Si quieres saber mucho más sobre Cráteres de impacto

En esta charla en directo te cuento muchas más curiosidades!

Referencias

  • French B.M. (1998). Traces of Catastrophe: A Handbook of Shock-Metamorphic Effects in Terrestrial Meteorite Impact Structures. 119pp. Lunar and Planetary Institute. Houston.
  • Grieve R.A.; Shoemaker, E.M. (1994). The Record of Past Impacts on Earth in Hazards due to Comets and Asteroids, T. Gehrels, Ed.; University of Arizona Press, Tucson, AZ, pp. 417–464.
  • Wittke, J. H., Weaver, J. C., Bunch, T. E., Kennett, J. P., Kennett, D. J., Moore, A. M. T., … Firestone, R. B. (2013). Evidence for deposition of 10 million tonnes of impact spherules across four continents 12,800 y ago. Proceedings of the National Academy of Sciences, 110(23)
  • NASA Image Gallery

Younger Dryas: cambios climáticos que condicionaron el paisaje abulense y la vida humana

Autor (texto y gráficos) – Javier Pérez Tarruella

Hace 18.000 años nuestro planeta se encontraba inmerso en el último máximo glacial. La nieve caída sobre los continentes no llegaba a fundirse en verano, formándose grandes acumulaciones de hielo. Y como el agua de precipitación no retornaba al océano el nivel del mar descendió hasta 125 metros por debajo del actual.

18.000 años es un parpadeo en términos geológicos. Y es que el periodo en el que le ha tocado vivir a nuestra especie (el Cuaternario) se caracteriza por un clima que cambia rápidamente (fig. 1).

Figura 1. Variación climática en los últimos 500.000 años. A grandes rasgos se diferencian 5 glaciaciones y 5 periodos interglaciales, en el último de los cuales nos encontramos ahora. En este artículo nos centraremos en la transición de la última glaciación al presente Interglacial (la ¨Última Terminación»). Datos de Lisiecki & Raymo (2005).

Estos cambios climáticos, que a grandes rasgos dan lugar a una glaciación y un periodo interglacial cada 100.000 años aproximadamente, son debidos a:

Estos factores astronómicos siempre han existido, pero el hecho de que hayamos llegado a tener casquetes de hielo en ambos polos (algo rarísimo en la Historia de la Tierra) ha hecho mucho más vulnerable y cambiante al sistema climático.

El enfriamiento súbito del Younger Dryas

Estos cambios no siempre son graduales. Si estudiamos en detalle la última glaciación vemos que hay decenas de cambios bruscos en las temperaturas. Cuando parecía que la glaciación se retiraba definitivamente en el hemisferio Norte, dio un último coletazo hace unos 12.800 años con el llamado Younger Dryas (también conocido como Dryas Reciente o Joven Dryas).

Este enfriamiento súbito fue el responsable del último periodo de actividad del mar de dunas de La Moraña, y es que la precipitación en Ávila disminuyó. Al reducirse la evaporación del Atlántico Norte por las bajas temperaturas, la disponibilidad de humedad hacia la penísula Ibérica también se redujo. Seguramente este sistema dunar estuvo también activo en varios momentos de la última glaciación, coincidiendo con los eventos Heinrich (hace 16.000, 24.000, 30.000, 39.000, 48.000 y 62.000 años aproximadamente).

Para saber más sobre el mar de dunas de La Moraña.

La hipótesis más aceptada durante mucho tiempo sobre el origen de este cambio climático fue la del vaciado del Lago Agassiz. Este lago se formó por el deshielo del casquete glaciar de Norteamérica, en la región de los Grandes Lagos, alcanzando un tamaño similar al de la Península Ibérica (figura 2). En determinado momento este lago habría vertido sus aguas al Atlántico, deteniendo las corrientes oceánicas y enfriando especialmente el Atlántico Norte. Aunque ya no se asocie el Younger Dryas al lago Agassiz, sí se ha confirmado la relación del conocido como evento 8.2 ka (hace 8200 años) con el último vaciado de este lago (You et al., 2023).

Figura 2. El Lago Agassiz y las posibles vías de vertido de sus aguas al océano.

¿Sabías que…? La película Ice Age 2 está basada en la hipótesis del Lago Agassiz. Los protagonistas viven junto a una presa de hielo que retiene el agua del deshielo acumulada en el Lago Agassiz y deben escapar antes de que se rompa y el lago se vacíe de golpe, es decir: ¡antes de que comience el Younger Dryas!

El final del Younger Dryas y el inicio de la agricultura

Como se observa en la figura 3, a pesar de que los factores astronómicos aumentaban la insolación de verano sobre el hemisferio norte, la temperatura disminuyó, y con ella la precipitación.

Sin embargo, más destacable que el enfriamiento del Younger Dyas fue su final. Y es que ese calentamiento y deshielo que se habían visto frustrados remontaron rápidamente, con una subida del nivel del mar de más de 40 mm/año durante unos siglos y un calentamiento de más de 7ºC en Groenlandia para ese periodo.

Figura 3. Gráfica que muestra 5.000 años de evolución climática, incluyendo el Younger Dryas. La temperatura y la precipitación en el Atlántico Norte disminuyeron en este periodo, a pesar del aumento de la insolación de verano en el hemisferio Norte. El enfriamiento finalizó de golpe, provocando la fusión masiva de glaciares y un aumento brusco del nivel del mar.

Los registros arqueológicos muestran que el inicio de la agricultura y las civilizaciones complejas (el Neolítico) coincide con el final del Younger Dryas, el calentamiento que dio paso al presente Interglacial. Ahora, gracias a unos sondeos en el Mar Muerto, en el entorno de Mesopotamia o “Cuna de la Civilización” sabemos que esta coincidencia es exacta. La incipiente actividad agrícola y el pastoreo habrían provocado un aumento de la erosión y por tanto el incremento de la sedimentación observado en la zona.

Por una parte, parece que un cambio ambiental tan brusco obligó a modificar el modo en que obteníamos el alimento; y por otra parte, la relativa estabilidad climática del presente periodo Interglacial (Holoceno) nos permitió perfeccionar la técnica hasta llegar a los tractores que hoy aran La Moraña.

Quizá sin el Younger Dryas no habría surgido este nuevo paradigma de vida de nuestra especie, o quizá hubiese aparecido 2.000 años antes. En cualquier caso, fue un evento que nos invita a preguntarnos cuánto han condicionado los cambios climáticos la historia de la Humanidad.

¿Sabías que…? Otra de las hipótesis utilizadas para explicar el cambio climático del Younger Dryas es el impacto de un meteorito en Groenlandia. Esta hipótesis se lanzó en 2007 y en 2018 se descubrió bajo el casquete glaciar de Groenlandia un enorme cráter de impacto de 30 km de diámetro. Los cálculos sugieren que un meteorito de 1 km impactó contra la Tierra hace entre 10.000 y 2 millones de años, de momento es el único sospechoso que tenemos como culpable cósmico del Younger Dryas. Además, se han encontrado evidencias de impacto en más de 60 yacimientos de todo el planeta. Sin embargo, estos cambios tan abruptos son habituales en el transcurso de los periodos glaciales, y en su mayoría son explicados por la propia dinámica del sistema climático sometido a la vulnerabilidad de los glaciares y del hielo de la banquisa.

Referencias