Archivo de la etiqueta: Paleontología

Braquiópodos, los otros bivalvos de la explosión cámbrica

Texto y fotos – Gabriel Castilla Cañamero.

“Es casi imposible para nosotros apreciar lo alejada en el tiempo que está la explosión cámbrica. Si pudieses viajar hacia el pasado a la velocidad de un año por segundo, te llevaría veinte años llegar al principio del periodo Cámbrico. Fue, en otras palabras, hace mucho tiempo.” 

Una breve historia de casi todo. Bill Bryson, 2006.
GIF animado de un Mucrospirifer del Devónico (hace entre 419 y 359 millones de años) de Canadá. Imagen: Gabriel Castilla

Si pudiéramos caminar por la orilla de un mar de hace 500 millones de años, encontraríamos en las playas y adheridos a las rocas de la zona mareal organismos con conchas formadas por un par de valvas, animales invertebrados que nos recordarían a las almejas y coquinas actuales.

Sin embargo, un examen más atento de su anatomía revelaría que en realidad son muy distintos a los moluscos que nos son tan familiares. Estos otros bivalvos, tan sorprendentes como desconocidos, y que constituyen un Filo propio dentro del reino animal, son los braquiópodos.

Braquiópodo del orden Rhynchonellida del Jurásico inferior (unos 200 millones de años) de Guadalajara. Imagen: Gabriel Castilla.
Braquiópodo del orden Rhynchonellida del Jurásico inferior (unos 200 millones de años) de Guadalajara. Imagen: Gabriel Castilla.

Una explosión de formas

Hace 542 millones de años es el momento señalado por la Geología como punto inicial tanto del Eón Fanerozoico (literalmente Eón de la vida animal visible) como de la Era Paleozoica (etimológicamente, Era de los animales antiguos).

El reino animal, hasta entonces dominado por formas de cuerpo blando, experimentó una importante diversificación con nuevos planes corporales que incluyen órganos, apéndices, conchas y exoesqueletos que, al poder conservarse con más facilidad, hacen que estos organismos sean más visibles en el registro fósil.

De los 31 filos en los que se reparten todos los animales, al menos 11 (entre los que se incluyen Mollusca, Artropoda y Chordata) hicieron su aparición en este período biológicamente convulso al que los expertos llaman explosión cámbrica, uno de los acontecimientos más importantes de la historia de la vida en la Tierra.

Tres vistas en detalle de un Mucrospirifer del Devónico de Canadá (hace entre 419 y 359 millones de años). Imagen: Gabriel Castilla.
Tres vistas en detalle de un Mucrospirifer del Devónico de Canadá (hace entre 419 y 359 millones de años). Imagen: Gabriel Castilla.

El estudio de Lingula, un braquiópodo actual muy similar al fósil Lingulella, que se remonta unos 505 millones de años (justo inmediatamente después de la explosión cámbrica), apunta a que el Filo Brachiopoda pudo surgir a partir de gusanos con forma de tubo y cuerpo blando que desarrollaron un par de conchas protectoras para sobrevivir en un mundo cada vez más hostil y competitivo.

Ejemplar de Lingula anatina. Considerado durante mucho tiempo el fósil viviente más antiguo conocido, este honor es hoy tema de controversia entre los expertos. Wikipedia Commons.
Ejemplar de Lingula anatina. Considerado durante mucho tiempo el fósil viviente más antiguo conocido, este honor es hoy tema de controversia entre los expertos. Wikipedia Commons.

Parecido no es lo mismo…

Los braquiópodos son organismos que, a diferencia de los verdaderos bivalvos del Filo Mollusca (al que pertenecen mejillones y berberechos), cuentan con un lofóforo, órgano en forma de corona provisto de tentáculos ciliados que rodea la boca, cuyo movimiento provoca una corriente de agua que atrae las partículas de las que se alimentan.

Muchos cuentan además con un pedúnculo con el que se adhieren al sustrato duro (ya sea una roca o una concha), apéndice que sale al exterior a través de un foramen situado en el borde de la articulación.

Pero la principal diferencia externa respecto a los moluscos estriba en que las valvas de los braquiópodos son distintas en tamaño y curvatura pero simétricas, es decir, la mitad de una valva es una imagen especular de la otra mitad.

Esquema con las principales características de los braquiópodos respecto a los moluscos bivalvos. Elaborado a partir de López Martínez (1988) y de Camacho y Longobucco (2008).

Un pasado glorioso

Hasta nosotros han llegado unas 300 especies de braquiópodos frente a las 30.000 descritas en el registro fósil.

Las especies vivientes tienen una amplia distribución geográfica, desde los mares polares hasta los arrecifes tropicales, y pueden alcanzar profundidades de unos 6000 metros.

El hecho de que la mayoría habiten en profundidades abisales, y que ni su concha ni su carne tengan valor comercial, ha hecho que este Filo de gran interés paleontológico (pues son útiles como fósiles guía para datar las rocas que los contienen) tenga un interés marginal para el resto de la comunidad científica.

Tres vistas de un braquiópodo del género Terebratula del Jurásico inferior de Guadalajara. Imagen: Gabriel Castilla.
Tres vistas de un braquiópodo del género Terebratula del Jurásico inferior de Guadalajara. Imagen: Gabriel Castilla.

Para saber más

¿Pueden vivir los fósiles? Un “fósil viviente” en Ávila.

¿Qué son los “fósiles guía”?

Prácticas relacionadas con fósiles y fósiles guía

Referencias

Amonites, el fósil de la divina proporción

Texto y fotos – Gabriel Castilla Cañamero.

GIF animado de un amonites del género Perisphinctes del Jurásico Superior (hace entre 163 y 145 millones de años). Imagen: Gabriel Castilla.
GIF animado de un amonites del género Perisphinctes del Jurásico Superior (hace entre 163 y 145 millones de años). Imagen: Gabriel Castilla.

 “Bastó el descubrimiento inicial de un amonites dorado reluciendo en la playa para que sucumbiera a la seductora emoción de hallar tesoros inesperados. Empecé a frecuentar las playas, aunque por aquel entonces pocas mujeres se interesaban por los fósiles. Se consideraba una actividad sucia y misteriosa, impropia de una dama. Me daba igual.” 

Las huellas de la vida. Tracy Chevalier, 2009.

Si hubiera que elegir un fósil como símbolo de la paleontología, muy probablemente ese privilegio le correspondería a los amonites. El singular atractivo de estos moluscos cefalópodos reside en la elegancia de su concha, cuya forma se aproxima en muchos casos a una espiral logarítmica de proporción aúrea.

Según cuenta Plinio el Viejo en su enciclopédica Historia Natural (siglo I d.C.), el llamado Cuerno de Amón era una de las piedras preciosas más sagradas y exóticas en la antigüedad por su color dorado y por su forma, similar a los cuernos de cordero que eran un atributo del dios Júpiter-Amón.

¿Por qué nos parecen tan bellos los amonites? Su forma de espiral cercana a la proporción áurea podría ser la respuesta. Imagen: Gabriel Castilla.

Parecido no es lo mismo

Los nautilus actuales y los ammonoideos fósiles son anatómicamente parecidos. Ambos cuentan con una concha espiral dividida en cámaras que están separadas por tabiques o septos. Las cámaras son atravesadas por un sifón, órgano que permite controlar la flotabilidad regulando la proporción de líquido y gas que tienen las cámaras.

Sin embargo, los amonites suelen tener el sifón desplazado hacia el borde de la concha, presentan septos ondulados y líneas de sutura (líneas donde las particiones internas se encuentran con la concha externa) con patrones fractales.

Esquema con las principales diferencias anatómicas entre nautiloideos y ammonoideos. Adaptado de García Ramos (1987), Lambert (1988) y elaboración propia.
Esquema con las principales diferencias anatómicas entre nautiloideos y ammonoideos. Adaptado de García Ramos (1987), Lambert (1988) y elaboración propia.
Detalle de una línea de sutura de tipo ammonítica en un fósil del género Perisphinctes. Imagen: Gabriel Castilla.
Detalle de una línea de sutura de tipo ammonítica en un fósil del género Perisphinctes. Imagen: Gabriel Castilla.

Gracias a las bacterias

Los amonites ocupaban una posición intermedia en la pirámide trófica, es decir, eran cazadores pero a su vez eran cazados. Además, presentaban dimorfismo sexual entre machos y hembras.

Su concha era de aragonito, una variedad de carbonato cálcico que tiende a disolverse, por lo que la mayoría de los fósiles son en realidad los moldes internos de las cámaras que quedaron rellenas de sedimento tras la muerte del organismo.

Cuando el proceso de descomposición orgánica tenía lugar en ambientes con poco oxígeno, las bacterias reductoras del sulfato facilitaban la formación de una capa de pirita sedimentaria sobre la concha, de ahí el color dorado (se dice de estos fósiles que están piritizados) al que se refería Plinio.

Ejemplar cortado y pulido en el que se aprecia tanto el sedimento que rellena las cámaras como la distribución de los septos en espiral. Imagen: Gabriel Castilla.
Ejemplar cortado y pulido en el que se aprecia tanto el sedimento que rellena las cámaras como la distribución de los septos en espiral. Imagen: Gabriel Castilla.
¿Infantil o macho adulto? El principal rasgo de dimorfismo sexual en amonites es el tamaño, y puesto que la estrategia reproductiva consistía en generar y esparcir muchos óvulos, probablemente los machos eran más pequeños que las hembras. Imagen: Gabriel Castilla.
¿Infantil o macho adulto? El principal rasgo de dimorfismo sexual en amonites es el tamaño, y puesto que la estrategia reproductiva consistía en generar y esparcir muchos óvulos, probablemente los machos eran más pequeños que las hembras. Imagen: Gabriel Castilla.

Fósiles guía

La subclase Ammonoidea fue establecida en 1884 por el geólogo alemán Karl Alfred von Zittel (1839-1904), quien se inspiró en la tradición pliniana para establecer el nombre de estos parientes lejanos de sepias y calamares.

Hasta la fecha se han descrito más de 2000 géneros distintos y esta gran diversidad los convierte en un fósil guía de enorme importancia, pues permite datar con precisión rocas sedimentarias de origen marino en cualquier parte del mundo.

Los amonites poblaron los mares desde el Devónico hasta finales del Cretácico (hace entre 419 y 66 millones de años), cuando el impacto de un asteroide desencadenó la gran extinción que puso fin a la era mesozoica.

Para saber más

¿Pueden vivir los fósiles? Un “fósil viviente” en Ávila.

¿Qué son los “fósiles guía”?

Prácticas relacionadas con fósiles y fósiles guía

Referencias

Abecevidas | Mary Anning

Participamos con este retrato alfabético en la iniciativa de escritura creativa del mes de mayo 2020 de Café Hypatia #PVgeología #Polivulgadores

Acantilados exploraba cada día.

Blue Lias se llamaba la formación geológica donde trabajaba.

Formación Blue Lias en Lyme Regis, Dorset, Reino Unido. Imagen de Michael MaggsCC BY-SA 2.5.

Calizas y pizarras las rocas que pisaba.

Diseccionaba peces y sepias para aprender anatomía.

Esqueletos de piedras lo que ver sabía.

Fósiles de ammonites, belemnites y demás criaturas marinas siempre en su cesta.

Geólogos y coleccionistas iban a visitarla.

Hija de Molly y Richard, ebanistas humildes.

Ictiosaurio, el reptil marino que le dio la fama.

Dibujo de un artículo de 1814 de Everard Home para la Royal Society mostrando el cráneo de un ictiosauro encontrado por los Anning. Everard Home (1756 – 1832) – Philosophical Transactions of the Royal Society 1814. Dominio público.

Jurásico, la edad de los materiales que estudiaba.

Lyme Regis, costa jurásica en Reino Unido. Imagen de Johnnie Shannon en Pixabay.

Kilómetros de costa lo que sumaba cada día a sus zapatos.

Ilustración de Mary Anning buscando fósiles, por Henry De la Beche. Dominio público.

Lyme Regis, la ciudad donde nació, vivió y murió.

Mujer pobre y sin estudios que fascinó a los científicos con sus descubrimientos.

No fue reconocida como se merecía.

Placa situada en el lugar donde Mary Anning nació: «MARY ANNING. 1799-1847. Hoy es el Museo de Lyme Regis. La casa fue su hogar y tienda de fósiles hasta 1826. Imagen de Gaius Cornelius. Dominio público.

Ocupación diaria la de buscar fósiles, hiciera el tiempo que hiciera.

Pionera de la paleontología moderna.

Quiso leer la historia en las rocas.

Resucitó los lechos marinos jurásicos.

Su perro Tray la acompañaba cada día.

Retrato de Mary Anning. Imagen: ‘Mr. Grey’ in Crispin Tickell’s book ‘Mary Anning of Lyme Regis’ (1996) – Two versions side by side, Sedgwick Museum. Dominio público.

Thomas Birch fue quien se fijó primero en sus hallazgos.

Utilizada por los científicos de la época.

Vendió hasta los muebles de su casa para poder sobrevivir.

William Buckland, geólogo de Oxford, acudía cada Navidad a buscar fósiles con ella.

William Buckland (1784-1856)

Xilografió la vida pasada de Lyme Regis.

Yace en una austera tumba, junto a su hermano.

Tumba de Mary y Joseph Anning en St Michael’s parish church, Lyme Regis, Inglaterra. Imagen: Ballista de la Wikipedia en inglés.

Zarandeó la ciencia y contribuyó a las bases de la teoría de la evolución.

En resumen

Abecevidas | Mary Anning

¿Pueden vivir los fósiles? Un “fósil viviente” en Ávila

Texto Fina Muñoz

Imagen destacada TheUjulala en Pixabay

Unos meses después de celebrar el Geolodía 2019 en Ávila, nos sorprendió la noticia del descubrimiento de un organismo en las lagunas de El Oso que existe desde hace 250 millones de años (Pérmico).

Es un animal conocido comúnmente como “tortuguilla colilarga” (Triops cancriformes), una especie de crustáceo al que le gusta habitar los humedales de agua dulce. Su nombre científico se debe a que tiene tres ojos, dos compuestos y uno de tipo ciclópeo.

Este curioso animalito ya era conocido en otros lugares del norte de Europa. Sin embargo, el hallazgo en las lagunas de El Oso tiene gran importancia por ser la población más occidental en la que se ha hallado. Se cree que las aves migratorias han podido dispersar sus huevos trasladándolos en el interior de su sistema digestivo.

Laguna de El Oso, en la comarca de La Moraña, Ávila, España. Foto de Gabriel Castilla.

Qué es un fósil viviente

La expresión “fósil viviente” se usa a menudo cuando se habla de una especie dentro de los seres vivos que:

  • No se ha extinguido.
  • No ha sufrido cambios genéticos significativos en los últimos milenios.
  • Y no ha dado lugar a especies nuevas.

En consecuencia, una especie fósil viviente será considerablemente parecida a una que ha sido identificada también a través de fósiles.

Esta podría ser la definición no oficial de un término que no es rigurosamente científico, ya que carece de precisión. En concreto, en la dimensión tiempo y cambio genético. Todo lo contrario del concepto de fósil guía que desarrollaremos en otra entrada de este blog.

Pero, ¿qué es un fósil?

Un fósil es cualquier resto o señal de actividad de los seres vivos que ha quedado grabada en las rocas, siendo lo mas habitual encontrarlos en las rocas sedimentarias .

En este concepto se incluyen los restos de cualquier parte de los cuerpos de animales, plantas u otros seres vivos, hasta sus huellas de desplazamiento (bioturbación, icnitas), sus huevos o incluso sus excrementos (coprolitos).

La Paleontología es la rama de la ciencia que estudia los fósiles y que encontramos integrada tanto en la Geología como en la Biología, puesto que a partir de esos restos se puede extraer información del medio en el que habitaban (Paleogeografía) y de las relaciones con el entorno (Paleoecología) de los seres vivos que las produjeron.

SABÍAS QUE… Los fósiles son piedras, resultado de la transformación del resto del ser vivo original mediante una serie de complicados procesos físicos y químicos durante el enterramiento en el sedimento.

Fósil viviente y Paleontología

Los fósiles vivientes nos informan por tanto de las condiciones geográficas y ecológicas del medio donde se originaron esos seres vivos que han logrado perdurar tanto tiempo sin alterarse.

La relación entre fósil viviente y Paleontología es directa, ya que los “fósiles vivientes” dan muchísima información sobre el proceso de la evolución biológica y el medio sedimentario donde habitaban en el pasado.

No te pierdas el programa ¡Qué animal! de La2 dedicado a los fósiles vivientes.

Veamos sólo algunos ejemplos de estos animales que han formado parte de la historia de la Tierra desde hace miles o millones de años en algunos casos. Existen muchos más y muy interesantes. ¡Quizá tienes un fósil viviente de mascota y no te has enterado!

Algunos ejemplos de “fósiles vivientes”

Explora la infografía y sus elementos interactivos para ver la información de cada ejemplo de fósil viviente relacionado con el período geológico en el que aparecieron.

undefined SABÍAS QUE… El ginkgo es uno de los árboles más longevos. Puede alcanzar los 1500 años de edad. Capaz de resistir las extinciones atravesadas en sus 270 Ma de existencia, se empeñó en darnos pruebas de ello siendo una de las primeras especies en colonizar Hiroshima tan sólo un año después de las detonaciones de la bomba nuclear en 1945.

Fuentes de consulta

Así conocemos el clima del pasado

Sabemos que el clima de la Tierra ha cambiado constantemente. En el Mesozoico (la era de los dinosaurios, hace entre 252 y 66 millones de años) apenas había hielo en los polos. Aragón o Castilla y León tenían playa, en una península ibérica que no era tal sino una isla tropical. Hace solo unos miles de años, ya con nuestra especie extendida por todos los continentes, el planeta se encontraba en una intensa glaciación.

Por ejemplo, saber si algún momento del pasado ha sido más frío más que en la actualidad es relativamente sencillo: los glaciares esculpen valles en forma de U y dejan en ellos unos depósitos sedimentarios característicos, o pulen la roca (rocas aborregadas) y dejan arañazos en ella (estrías glaciares). A día de hoy encontramos muchos de estos valles sin hielo. Por tanto, si en el pasado había más hielo es probable que las temperaturas fuesen más bajas.

Vista del valle en U desde la laguna glacial de El Duque, cerca de El Barco de Ávila, provincia de Ávila (España). Imagen de Gabriel Castilla.

Pero… ¿Cómo saber cuáles eran las temperaturas o qué cantidad total de hielo había en el planeta? ¿Cómo podemos conocer el clima de hace millones de años?

De esto se encarga la ciencia de la Paleoclimatología, que utiliza indicadores o Datos Proxy que pueden ser de lo más variados. Y en esta entrada veremos un par de ejemplos: isótopos y foraminíferos.

Un dato “Proxy” es un dato indirecto. Como no es posible medir directamente la temperatura o la precipitación del pasado, se utilizan registros de otras variables a partir de las cuales se pueden deducir las primeras, igual que en el ejemplo de los glaciares. La interpretación de estos datos “Proxy” está basada siempre en principios físicos, químicos o biológicos.

El registro paleoclimático más completo que existe abarca los últimos 65 Millones de años, y utiliza como Proxy los isótopos de Oxígeno (Zachos et al., 2001).

1. Los isótopos de Oxígeno y el hielo

La mayoría de átomos de oxígeno están formados por 8 protones y 8 neutrones en su núcleo, lo que conocemos como el isótopo “Oxígeno 16”. Sin embargo, existe una pequeña proporción de estos átomos que tiene 8 protones y 10 neutrones: el isótopo “Oxigeno 18”.

Dos isótopos de un mismo elemento, en este caso Oxígeno 16 y 18 tienen idénticas propiedades químicas al tener el mismo número de protones y electrones. Pero su diferente masa les hace tener comportamientos diferentes frente a procesos como la evaporación o la condensación.

Así, existen moléculas de agua (H2O) con Oxígeno 16 y otras con Oxígeno 18, y la proporción entre ellas nos permite deducir cambios climáticos gracias a una serie de procesos que denominamos “fraccionamiento isotópico”:

  • Las moléculas con O-16 se evaporarán con mayor facilidad por su menor masa. Así, las nubes tienen más O-16 que el agua del océano que las formó. Y el océano se verá enriquecido en O-18 por la pérdida de O-16.
  • Las moléculas de agua con O-18 se condensan con mayor facilidad (tienen mayor masa), por lo que el agua de lluvia tiene más O-18 que la nube que la formó.
  • Las nubes van perdiendo agua al enfriarse hacia los polos, por formación de lluvia y por la disminución de la evaporación en estas zonas. Por ello, cuanto más cerca de los polos nos encontremos y cuanto menor sea la temperatura, menor será la cantidad de O-18 en las precipitaciones.
  • La nieve que cae sobre los polos y forma el hielo del casquete glaciar tiene mucho O-16, pero esta señal isotópica cambia con los cambios en la temperatura a lo largo del tiempo en la zona. Por esto la señal isotópica de los hielos de Groenlandia o la Antártida nos permite reconstruir temperaturas para los últimos cientos de miles de años.
Fraccionamiento de los isótopos de oxígeno en el planeta. Distintos procesos hacen que cambie la proporción de átomos de Oxígeno-18/Oxígeno-16. Gracias a los registros marinos de conchas de microorganismos como los foraminíferos, y a los registros del hielo de los casquetes polares, podemos conocer estos cambios isotópicos que reflejan el clima del pasado. Gráfico: Javier Pérez Tarruella.

Como el hielo de los casquetes polares y glaciares acumula isótopos ligeros O-16 y el océano se enriquece en isótopos pesados O-18 durante las glaciaciones, los sedimentos de fondos oceánicos nos permiten conocer en qué momentos ha habido más o menos hielo en el planeta.

2. Foraminíferos, pequeños historiadores del clima

Los minerales que componen las partes duras de los organismos (especialmente conchas de organismos acuáticos) contienen oxígeno, y su proporción O-18/O-16 nos puede aproximar a la temperatura a la que se formaron. Cuando la temperatura es baja, las conchas asimilan más O-18 y viceversa.

Algunos de los organismos con concha más abundantes del planeta son los foraminíferos (imagen de portada). Son unicelulares y pertenecen al reino Protista. Muchos tienen aspecto de palomitas de maíz, miden menos de 1mm y fosilizan con facilidad, por lo que podemos encontrarlos en casi cualquier roca sedimentaria de origen marino.

Imagen SEM de muestras de diversos foraminíferos planctónicos. Tomado de Pados, T. (2014). Recent planktic foraminifera in the Fram Strait : ecology and biogeochemistry. (Autoría: Paul Pearson, Cardiff University).

El indicador que se utiliza para conocer los cambios de temperatura GLOBALES del pasado es la señal isotópica de la concha de foraminíferos que habitan en los sedimentos de los fondos profundos de los océanos (organismos bentónicos), pues la temperatura de las aguas profundas cambia muy lentamente y es un buen reflejo del clima global.

Otros foraminíferos, los planctónicos, viven en las aguas superficiales. Como el número de especies lleva sin cambios desde hace unos 500.000 años, podemos estudiar en qué condiciones de temperatura vive cada especie actualmente y qué agrupaciones de especies hay a diferentes temperaturas.

De esta forma, conociendo las diferentes especies que se encuentran en un sedimento antiguo y sus proporciones (cuáles son más abundantes), podemos conocer la temperatura del agua superficial en el momento en que vivieron. Esto es un buen ejemplo de la aplicación del Actualismo.

Sabías que… Para conseguir los preciados foraminíferos se utilizan grandes buques científicos especiales, equipados con una torre de perforación muy similar a la que se emplea en el mundo del petróleo. Así se obtienen sondeos del fondo marino donde se han ido enterrando los foraminíferos bentónicos que allí vivían. Los planctónicos que vivían en el agua superficial cayeron y se depositaron una vez muertos. Cuanto mayor haya sido esta acumulación y durante más tiempo se haya producido de forma continua, mejor será el registro climático que se podrá obtener.

Otros indicadores Proxy

Aunque sólo hemos hablado de hielo y organismos marinos, el clima del pasado se puede conocer a través de muchos otros indicadores Proxy: depósitos en lagos, espeleotemas en cuevas, estudios de pólenes en sedimentos, depósitos de turberas, estudios geoquímicos e isotópicos en dientes de mamíferos o incluso a través de los anillos de los árboles (Dendrocronología).

Referencias

#PaisajeSonoro | La Historia de la Tierra grabada en las rocas y los fósiles

De Isabel Hernández

Pulsa Play y activa el audio para escuchar este Paisaje sonoro. Si tienes problemas para escucharlo en tu móvil pulsa AQUÍ. 

Para no perder el sentido de la Historia, la Historia Natural

La Historia de la Tierra ha sido larga. Se remonta a mucho antes de que el ser humano apareciera en ella y está registrada en las rocas y los fósiles.

Al “tocar” la Historia, el ser humano se encontró con una barrera psicológica: pensar en un tiempo geológico de millones de años ha sido un salto reciente en el conocimiento humano, que muchos no han dado todavía.

En esta reflexión sonora sobre qué papel juegan la Geología y la Paleontología en el conocimiento de la Historia Natural, ponemos voz y música a las hermosas palabras de la paleontóloga Nieves López en “Geología y Paleontología para aficionados”.

Texto: Geología y Paleontología para aficionados, de Nieves López Martínez.

Música: Elegi (Svanesang, Den Store Hvite Stillhet, Despotiets Vessen).

Arreglos y voz: Isabel Hernández. Grabado en el estudio de Manu Míguez.

Fotografía: Gabriel Castilla.