Todas las entradas por Gabriel Castilla Cañamero

La actitud es la última libertad

La naturaleza fractal de las redes fluviales

El mundo está construido a partir de unas pocas piezas básicas que siguen reglas estrictas, aunque extrañas y nada familiares.

Las diez claves de la realidad. Frank Wilczek, 2022

¿Por qué hay ríos con forma de árbol?

Muchos ríos y torrentes se caracterizan por presentar un patrón geométrico dendrítico similar a las ramas de un árbol (dendron significa árbol en griego), donde el canal principal recuerda al tronco mientras que los afluentes se asemejan a las ramas superiores.  

A simple vista este patrón muestra un aspecto caótico, con ramificaciones extendiéndose en cualquier dirección. Sin embargo, bajo esta aparente aleatoriedad se esconden algunas reglas básicas de la Naturaleza, y para desentrañarlas es necesario enfocar el problema desde tres puntos de vista:

1. Geología

2. Geometría

3. Termodinámica

Figura 1. Nervadura de una hoja en descomposición, ramas de un árbol y red de afluentes de los ríos Duero y Ebro. Tres ejemplos de patrón dendrítico a diferentes escalas. Imágenes de Gabriel Castilla.

1. Cuando el azar se cruza con la Geología

Uno de los principales agentes modeladores de paisajes es el agua que, cuando se desplaza por la superficie terrestre como consecuencia de la lluvia o el deshielo, configura un patrón de drenaje impulsado por la fuerza de la gravedad.

Desde que se produce el impacto de las gotas de lluvia sobre el terreno hasta que se forman pequeños regueros y canales por la erosión, son muchas las variables que pueden entrar en juego, pues la erosión es un proceso que depende del azar a muchas escalas.

Figura 2. La lluvia no siempre erosiona homogéneamente una superficie sedimentaria, pues algunos cantos rodados, distribuidos al azar, pueden actuar como pequeños paraguas (izquierda) que condicionan el camino que inicialmente puede seguir la corriente. Poco a poco el agua escurre y va incidiendo en el terreno hasta que logra encauzarse en pequeñas canaladuras (centro) y regueros (derecha) que, como se puede apreciar en la imagen, ven alterada su distribución espacial por la presencia de obstáculos, en este caso raíces (derecha).
Figura 2. La lluvia no siempre erosiona homogéneamente una superficie sedimentaria, pues algunos cantos rodados, distribuidos al azar, pueden actuar como pequeños paraguas (izquierda) que condicionan el camino que inicialmente puede seguir la corriente. Poco a poco el agua escurre y va incidiendo en el terreno hasta que logra encauzarse en pequeñas canaladuras (centro) y regueros (derecha) que, como se puede apreciar en la imagen, ven alterada su distribución espacial por la presencia de obstáculos, en este caso raíces (derecha). Imágenes de Gabriel Castilla.

Pero más allá de la inicial concatenación de factores aleatorios (cantos, raíces, etc.), hay tres variables que condicionan la forma de una red de drenaje:

  1. El clima, que controla la cantidad e intensidad de la lluvia durante los episodios de tormenta, y por tanto la cantidad de agua que circula por la red.
  2. La litología, que condiciona la resistencia de las rocas y el sedimento a la erosión, pues los materiales blandos, permeables o poco consolidados permiten que el agua se abra paso con más facilidad.
  3. La tectónica, que determina desde las fracturas del terreno por donde se encauza el agua con más facilidad, hasta los cambios en el nivel de base (la desembocadura) hacia donde se desplaza el agua, normalmente depresiones del terreno o el nivel del mar. El descenso del nivel de base provoca un fenómeno conocido como erosión remontante (ver Figura 3), un proceso que favorece el crecimiento de la red de afluentes en la zona de cabecera.
Figura 3. El motor que impulsa el agua por una pendiente es la gravedad (izquierda). Un cambio en el nivel de base de un río o un torrente supone un aumento de la energía potencial del fluido. El agua salva esta diferencia con un aumento de la energía cinética (gana velocidad porque ha ganado altura). El resultado es un aumento de la erosión en sentido opuesto a la pendiente, o sea, remontando la corriente. Esto se traduce en una mayor incisión del agua, un lavado del sedimento que soporta las raíces de los árboles (centro) y el crecimiento de los canales en la zona de cabecera (derecha). Imágenes de Gabriel Castilla.

Como vemos, la configuración final de la red de drenaje parece ser un reflejo del sustrato geológico (litología y tectónica) junto con el  clima y el azar.

Los datos bibliográficos señalan que de las múltiples configuraciones posibles el patrón dendrítico es el más frecuente de todos, y éste suele desarrollarse sobre materiales que presentan una resistencia homogénea a la erosión.

Figura 4. Los tres patrones de drenaje más frecuentes: patrón angular (izquierda), que está condicionado por la existencia de un sistema de fracturas perpendiculares; patrón dendrítico (centro), que se desarrolla sobre terreno sedimentario blando y homogéneo o sobre batolitos; y patrón rectangular (derecha), muy frecuente en terrenos donde se intercalan capas duras y blandas.
Figura 4. Los tres patrones de drenaje más frecuentes: patrón angular (izquierda), que está condicionado por la existencia de un sistema de fracturas perpendiculares; patrón dendrítico (centro), que se desarrolla sobre terreno sedimentario blando y homogéneo o sobre batolitos; y patrón rectangular (derecha), muy frecuente en terrenos donde se intercalan capas duras y blandas.

2. Cuando el azar y la Geología se cruzan con la Geometría

En 1975 el matemático Benoît Mandelbrot acuñó el término fractal para referirse a aquellos patrones geométricos irregulares que se repiten a múltiples escalas. Desde este enfoque todas las redes fluviales dendríticas se consideran fractales, y por tanto se pueden expresar con lenguaje matemático.

Figura 5. Mapa que muestra la red de drenaje del torrente y las cárcavas de Villaflor (Ávila). El conjunto muestra un patrón dendrítico similar a diferentes escalas, desde los canales principales de mayor tamaño (en naranja y amarillo) hasta los afluentes más pequeños (azules y grises). Esta autosemejanza multiescalar es una característica propia de los fractales. Mapa elaborado por Javier Pérez Tarruella.
Figura 5. Mapa que muestra la red de drenaje del torrente y las cárcavas de Villaflor (Ávila). El conjunto muestra un patrón dendrítico similar a diferentes escalas, desde los canales principales de mayor tamaño (en naranja y amarillo) hasta los afluentes más pequeños (azules y grises). Esta autosemejanza multiescalar es una característica propia de los fractales. Mapa elaborado por Javier Pérez Tarruella.

Cualquier red de drenaje tiene una dimensión fractal (D), un valor numérico que se obtiene al relacionar las bifurcaciones (ramificaciones más o menos complejas) de la maraña de canales que lo forman respecto a su longitud total.

Según los datos bibliográficos, la mayoría de las redes dendríticas presentan dimensiones fractales comprendidas entre 1.6 y 1.8

¿Esto qué significa?

  • De forma intuitiva entendemos que las líneas abiertas y curvas que dibujamos sobre un papel tienen una sola dimensión y por tanto un valor D=1;
  • mientras que las formas cerradas que dibujamos en dos dimensiones (el área de un círculo o un cuadrado, por ejemplo) tienen un D=2;
  • y los cuerpos tridimensionales (con volumen) presentan un D=3.

Sin embargo, aunque existen objetos que pueden alojarse en espacios bidimensionales (2D) o tridimensionales (3D), su dimensión espacial no es necesariamente 2 o 3.

Figura 6. Representación de la dimensión fractal (D) para objetos de una, dos y tres dimensiones. Las nervaduras lineales de una hoja siguen un patrón dendrítico que tiende a rellenar una superficie, lo que le otorga una dimensión fractal comprendida entre 1 y 2.
Figura 6. Representación de la dimensión fractal (D) para objetos de una, dos y tres dimensiones. Las nervaduras lineales de una hoja siguen un patrón dendrítico que tiende a rellenar una superficie, lo que le otorga una dimensión fractal comprendida entre 1 y 2.

Las formas geométricas de gran complejidad adoptan valores fraccionarios de D (de ahí el término fractal, que literalmente significa roto o quebrado).

Una red fluvial similar a las nervaduras de una hoja muestra un patrón geométrico dendrítico que tiende a extenderse por el terreno hasta ocupar la mayor superficie posible.

¿Por qué?

3. Cuando el azar, la Geología y la Geometría se cruzan con la Termodinámica

Los ríos y torrentes que configuran la red de drenaje de una cuenca son sistemas termodinámicos, es decir, partes del Universo que podemos individualizar para estudiarlos desde el punto de vista de la energía, el calor y el movimiento.

En este contexto, y de forma muy simple, se podría decir que las redes de drenaje dendríticas se rigen por una única norma: la tendencia de todo sistema a alcanzar un equilibrio termodinámico, es decir, un estado de máxima entropía o desorden. Esta norma es el Segundo Principio de la Termodinámica y rige el destino de cualquier sistema cerrado y en equilibrio térmico del Universo.

Sin embargo, los ríos no pueden alcanzar este equilibrio porque son sistemas abiertos que intercambian materia y energía con su alrededor: entra agua (materia) periódicamente por tormentas, deshielo o escorrentía subterránea;  y disipan mucha energía en forma de calor debido a la fricción del agua con la superficie del terreno.

Puesto que el sistema río no puede alcanzar el equilibrio termodinámico, se conforma con la segunda mejor opción posible: lograr un equilibrio dinámico de flujo en el que se pierda la menor cantidad de energía posible. Desde este punto de vista, la forma fractal de una red de drenaje es el reflejo de este equilibrio o balance entre los factores que hacen que el sistema “pierda” energía y los que permiten “ahorrar” energía.

Figura 7. La energía disipada por la fricción del agua sobre el sedimento aumenta con la distancia recorrida y con la superficie de rozamiento; pero disminuye con el volumen de agua que transporta. Es por ello que cuando varias corrientes menores se funden en otra de mayor tamaño, la energía disipada del sistema disminuye, y esto la hace termodinámicamente más estable. Este es el origen de la jerarquización de una res de drenaje, desde pequeñas cárcavas (izquierda), pasando por la unión de varios canales (centro) y el desarrollo de canales de mayor tamaño y profundidad (derecha). Imágenes de Gabriel Castilla.
Figura 7. La energía disipada por la fricción del agua sobre el sedimento aumenta con la distancia recorrida y con la superficie de rozamiento; pero disminuye con el volumen de agua que transporta. Es por ello que cuando varias corrientes menores se funden en otra de mayor tamaño, la energía disipada del sistema disminuye, y esto la hace termodinámicamente más estable. Este es el origen de la jerarquización de una red de drenaje, desde pequeñas cárcavas (izquierda), pasando por la unión de varios canales (centro) y el desarrollo de canales de mayor tamaño y profundidad (derecha). Imágenes de Gabriel Castilla.

Ahora ya conocemos los tres factores que subyacen bajo el aparente caos de las redes de drenaje dendríticas: Geología, Geometría y Termodinámica; y por tanto estamos en condiciones de retomar la pregunta de partida pero con una pregunta más certera:

¿Cómo llega un río o un torrente a desarrollar un patrón dendrítico fractal?

El sistema de drenaje parte de una configuración inicial condicionada por el azar sobre un determinado sustrato geológico y poco a poco va probando las diferentes posibilidades energéticas.

Las posibilidades que resultan más favorables al ahorro de energía “sobreviven” durante más tiempo, mientras que las más alejadas del equilibrio tienden a desaparecer.

Con el paso del tiempo se establece un sistema complejo de naturaleza fractal que fluctúa (equilibrio dinámico) en torno a un estado ideal de mínima pérdida (disipación) de energía.

4º Si no hay factores geológicos (tectónicos, litológicos) que condicionen fuertemente el desarrollo de la red de drenaje, la forma arborescente tiende a ser la más estable termodinámicamente.

Este es uno de los contenidos del Geolodía 2022 de Ávila. ¡No te lo pierdas en directo el domingo 8 de mayo 2022 en Villaflor!

Bibliografía

  • García, M. y Fairén, V. (1980). Estructuras disipativas. Algunas nociones básicas /1. El Basilisco, Nº 10, mayo-octubre, pp. 8-13
  • Gutiérrez Elorza, M. (2008). Geomorfología. Pearson Educación, Madrid.
  • Mandelbrot, B. (1997). La geometría fractal de la naturaleza. Tusquets, Barcelona.
  • Martínez, F.; Ojeda, J. A. y Manríquez, H. (2020). Morfometría y Fractalidad en Redes de Drenaje de Cuencas Chilenas. Conferencia del XXIV Congreso Chileno de Ingeniería Hidráulica.
  • Ramírez-Hernández, R.; Rodríguez-Infante, A. y Ordaz-Hernández, A. (2017). Dimensión fractal de redes de drenaje controladas estructuralmente en cuencas hidrográficas de Pinar del Río, Cuba. Minería y Geología, Vol. 33 (2), pp.163-176.
  • Schlichting, H. J. (2015). La geometría de las redes fluviales. Investigación y Ciencia Nº 463 (abril), pp. 84-86.
  • Strahler, A. N. y Strahler, A. H. (1994). Geografía Física. Ediciones Omega, Barcelona.
  • Zucarelli, G. V. y Tabernig, D. (2009). Análisis Fractal de la Red de Drenaje del Arroyo Feliciano (Entre Ríos, Argentina). Cuadernos del CURIHAM, Vol. 15, pp. 31-42.

Día Internacional de las Montañas 2021. El Montsec

Este 11 de diciembre queremos celebrar el Día Internacional de las Montañas visitando el macizo del Montsec, un lugar emblemático del Prepirineo para los amantes de la Geología.

El macizo se levanta entre dos depresiones, la cuenca de Tremp al norte y la cuenca de Àger al sur; haciendo de divisoria natural entre dos comarcas leridanas: La Noguera  y el Pallars Jussà.

Vista general del macizo del Montsec con las principales cimas al fondo. Imagen de Gabriel Castilla.
Foto 1. Vista general del macizo del Montsec con las principales cimas al fondo. Imagen de Gabriel Castilla.

El macizo del Montsec está formado por rocas de la era Mesozoica (unos 250 millones de años de antigüedad), que contienen fósiles tanto de organismos marinos como de dinosaurios.

Vista panorámica del Montsec de Ares (1307 m de altitud) desde el Montsec de Rubies (1667 m). Ambas cimas se encuentran separadas por el acantilado de Tarradets. Imagen de Gabriel Castilla.
Foto 2. Vista panorámica del Montsec de Ares (1307 m de altitud) desde el Montsec de Rubies (1667 m). Ambas cimas se encuentran separadas por el acantilado de Terradets. Imagen de Gabriel Castilla.

El macizo del Montsec es un espléndido ejemplo de relieve tectónico formado por un gran cabalgamiento.

Fotografía de larga exposición del Montsec de Ares. Los trazos blancos son partículas de polvo y humedad desplazadas por el viento. Imagen de Gabriel Castilla.
Foto 3. Fotografía de larga exposición del Montsec de Ares. Los trazos blancos son partículas de polvo y humedad desplazadas por el viento. Imagen de Gabriel Castilla.

El cabalgamiento del Montsec es un pliegue que ha sufrido una presión tan intensa que se ha roto y se ha desplazado horizontalmente (en este caso unos 7 kilómetros) respecto del lugar donde originalmente se encontraban las capas dispuestas horizontalmente.  La serie sedimentaria ha «cabalgado» sobre sí misma y se ha duplicado en la vertical. Con el paso del tiempo el relieve es erosionado, formándose los valles y acantilados que lo perfilan.

Acantilados del Montsec de Rubies, cuya cima supera los 1600 m de altitud. Imagen de Gabriel Castilla.
Foto 4. Acantilados del Montsec de Rubies, cuya cima supera los 1600 m de altitud. Imagen de Gabriel Castilla.

Con el lema #MountainsMatter (#LasMontañasImportan), la ONU dedica este día al «turismo sostenible en las montañas». Descubre más sobre qué ver y cómo vivir estas montañas en la web del Geoparc Orígens.

#MountainsMatter #LasMontañasImportan

Braquiópodos, los otros bivalvos de la explosión cámbrica

Texto y fotos – Gabriel Castilla Cañamero.

“Es casi imposible para nosotros apreciar lo alejada en el tiempo que está la explosión cámbrica. Si pudieses viajar hacia el pasado a la velocidad de un año por segundo, te llevaría veinte años llegar al principio del periodo Cámbrico. Fue, en otras palabras, hace mucho tiempo.” 

Una breve historia de casi todo. Bill Bryson, 2006.
GIF animado de un Mucrospirifer del Devónico (hace entre 419 y 359 millones de años) de Canadá. Imagen: Gabriel Castilla

Si pudiéramos caminar por la orilla de un mar de hace 500 millones de años, encontraríamos en las playas y adheridos a las rocas de la zona mareal organismos con conchas formadas por un par de valvas, animales invertebrados que nos recordarían a las almejas y coquinas actuales.

Sin embargo, un examen más atento de su anatomía revelaría que en realidad son muy distintos a los moluscos que nos son tan familiares. Estos otros bivalvos, tan sorprendentes como desconocidos, y que constituyen un Filo propio dentro del reino animal, son los braquiópodos.

Braquiópodo del orden Rhynchonellida del Jurásico inferior (unos 200 millones de años) de Guadalajara. Imagen: Gabriel Castilla.
Braquiópodo del orden Rhynchonellida del Jurásico inferior (unos 200 millones de años) de Guadalajara. Imagen: Gabriel Castilla.

Una explosión de formas

Hace 542 millones de años es el momento señalado por la Geología como punto inicial tanto del Eón Fanerozoico (literalmente Eón de la vida animal visible) como de la Era Paleozoica (etimológicamente, Era de los animales antiguos).

El reino animal, hasta entonces dominado por formas de cuerpo blando, experimentó una importante diversificación con nuevos planes corporales que incluyen órganos, apéndices, conchas y exoesqueletos que, al poder conservarse con más facilidad, hacen que estos organismos sean más visibles en el registro fósil.

De los 31 filos en los que se reparten todos los animales, al menos 11 (entre los que se incluyen Mollusca, Artropoda y Chordata) hicieron su aparición en este período biológicamente convulso al que los expertos llaman explosión cámbrica, uno de los acontecimientos más importantes de la historia de la vida en la Tierra.

Tres vistas en detalle de un Mucrospirifer del Devónico de Canadá (hace entre 419 y 359 millones de años). Imagen: Gabriel Castilla.
Tres vistas en detalle de un Mucrospirifer del Devónico de Canadá (hace entre 419 y 359 millones de años). Imagen: Gabriel Castilla.

El estudio de Lingula, un braquiópodo actual muy similar al fósil Lingulella, que se remonta unos 505 millones de años (justo inmediatamente después de la explosión cámbrica), apunta a que el Filo Brachiopoda pudo surgir a partir de gusanos con forma de tubo y cuerpo blando que desarrollaron un par de conchas protectoras para sobrevivir en un mundo cada vez más hostil y competitivo.

Ejemplar de Lingula anatina. Considerado durante mucho tiempo el fósil viviente más antiguo conocido, este honor es hoy tema de controversia entre los expertos. Wikipedia Commons.
Ejemplar de Lingula anatina. Considerado durante mucho tiempo el fósil viviente más antiguo conocido, este honor es hoy tema de controversia entre los expertos. Wikipedia Commons.

Parecido no es lo mismo…

Los braquiópodos son organismos que, a diferencia de los verdaderos bivalvos del Filo Mollusca (al que pertenecen mejillones y berberechos), cuentan con un lofóforo, órgano en forma de corona provisto de tentáculos ciliados que rodea la boca, cuyo movimiento provoca una corriente de agua que atrae las partículas de las que se alimentan.

Muchos cuentan además con un pedúnculo con el que se adhieren al sustrato duro (ya sea una roca o una concha), apéndice que sale al exterior a través de un foramen situado en el borde de la articulación.

Pero la principal diferencia externa respecto a los moluscos estriba en que las valvas de los braquiópodos son distintas en tamaño y curvatura pero simétricas, es decir, la mitad de una valva es una imagen especular de la otra mitad.

Esquema con las principales características de los braquiópodos respecto a los moluscos bivalvos. Elaborado a partir de López Martínez (1988) y de Camacho y Longobucco (2008).

Un pasado glorioso

Hasta nosotros han llegado unas 300 especies de braquiópodos frente a las 30.000 descritas en el registro fósil.

Las especies vivientes tienen una amplia distribución geográfica, desde los mares polares hasta los arrecifes tropicales, y pueden alcanzar profundidades de unos 6000 metros.

El hecho de que la mayoría habiten en profundidades abisales, y que ni su concha ni su carne tengan valor comercial, ha hecho que este Filo de gran interés paleontológico (pues son útiles como fósiles guía para datar las rocas que los contienen) tenga un interés marginal para el resto de la comunidad científica.

Tres vistas de un braquiópodo del género Terebratula del Jurásico inferior de Guadalajara. Imagen: Gabriel Castilla.
Tres vistas de un braquiópodo del género Terebratula del Jurásico inferior de Guadalajara. Imagen: Gabriel Castilla.

Para saber más

¿Pueden vivir los fósiles? Un «fósil viviente» en Ávila.

¿Qué son los «fósiles guía»?

Prácticas relacionadas con fósiles y fósiles guía

Referencias

Amonites, el fósil de la divina proporción

Texto y fotos – Gabriel Castilla Cañamero.

GIF animado de un amonites del género Perisphinctes del Jurásico Superior (hace entre 163 y 145 millones de años). Imagen: Gabriel Castilla.
GIF animado de un amonites del género Perisphinctes del Jurásico Superior (hace entre 163 y 145 millones de años). Imagen: Gabriel Castilla.

 “Bastó el descubrimiento inicial de un amonites dorado reluciendo en la playa para que sucumbiera a la seductora emoción de hallar tesoros inesperados. Empecé a frecuentar las playas, aunque por aquel entonces pocas mujeres se interesaban por los fósiles. Se consideraba una actividad sucia y misteriosa, impropia de una dama. Me daba igual.” 

Las huellas de la vida. Tracy Chevalier, 2009.

Si hubiera que elegir un fósil como símbolo de la paleontología, muy probablemente ese privilegio le correspondería a los amonites. El singular atractivo de estos moluscos cefalópodos reside en la elegancia de su concha, cuya forma se aproxima en muchos casos a una espiral logarítmica de proporción aúrea.

Según cuenta Plinio el Viejo en su enciclopédica Historia Natural (siglo I d.C.), el llamado Cuerno de Amón era una de las piedras preciosas más sagradas y exóticas en la antigüedad por su color dorado y por su forma, similar a los cuernos de cordero que eran un atributo del dios Júpiter-Amón.

¿Por qué nos parecen tan bellos los amonites? Su forma de espiral cercana a la proporción áurea podría ser la respuesta. Imagen: Gabriel Castilla.

Parecido no es lo mismo

Los nautilus actuales y los ammonoideos fósiles son anatómicamente parecidos. Ambos cuentan con una concha espiral dividida en cámaras que están separadas por tabiques o septos. Las cámaras son atravesadas por un sifón, órgano que permite controlar la flotabilidad regulando la proporción de líquido y gas que tienen las cámaras.

Sin embargo, los amonites suelen tener el sifón desplazado hacia el borde de la concha, presentan septos ondulados y líneas de sutura (líneas donde las particiones internas se encuentran con la concha externa) con patrones fractales.

Esquema con las principales diferencias anatómicas entre nautiloideos y ammonoideos. Adaptado de García Ramos (1987), Lambert (1988) y elaboración propia.
Esquema con las principales diferencias anatómicas entre nautiloideos y ammonoideos. Adaptado de García Ramos (1987), Lambert (1988) y elaboración propia.
Detalle de una línea de sutura de tipo ammonítica en un fósil del género Perisphinctes. Imagen: Gabriel Castilla.
Detalle de una línea de sutura de tipo ammonítica en un fósil del género Perisphinctes. Imagen: Gabriel Castilla.

Gracias a las bacterias

Los amonites ocupaban una posición intermedia en la pirámide trófica, es decir, eran cazadores pero a su vez eran cazados. Además, presentaban dimorfismo sexual entre machos y hembras.

Su concha era de aragonito, una variedad de carbonato cálcico que tiende a disolverse, por lo que la mayoría de los fósiles son en realidad los moldes internos de las cámaras que quedaron rellenas de sedimento tras la muerte del organismo.

Cuando el proceso de descomposición orgánica tenía lugar en ambientes con poco oxígeno, las bacterias reductoras del sulfato facilitaban la formación de una capa de pirita sedimentaria sobre la concha, de ahí el color dorado (se dice de estos fósiles que están piritizados) al que se refería Plinio.

Ejemplar cortado y pulido en el que se aprecia tanto el sedimento que rellena las cámaras como la distribución de los septos en espiral. Imagen: Gabriel Castilla.
Ejemplar cortado y pulido en el que se aprecia tanto el sedimento que rellena las cámaras como la distribución de los septos en espiral. Imagen: Gabriel Castilla.
¿Infantil o macho adulto? El principal rasgo de dimorfismo sexual en amonites es el tamaño, y puesto que la estrategia reproductiva consistía en generar y esparcir muchos óvulos, probablemente los machos eran más pequeños que las hembras. Imagen: Gabriel Castilla.
¿Infantil o macho adulto? El principal rasgo de dimorfismo sexual en amonites es el tamaño, y puesto que la estrategia reproductiva consistía en generar y esparcir muchos óvulos, probablemente los machos eran más pequeños que las hembras. Imagen: Gabriel Castilla.

Fósiles guía

La subclase Ammonoidea fue establecida en 1884 por el geólogo alemán Karl Alfred von Zittel (1839-1904), quien se inspiró en la tradición pliniana para establecer el nombre de estos parientes lejanos de sepias y calamares.

Hasta la fecha se han descrito más de 2000 géneros distintos y esta gran diversidad los convierte en un fósil guía de enorme importancia, pues permite datar con precisión rocas sedimentarias de origen marino en cualquier parte del mundo.

Los amonites poblaron los mares desde el Devónico hasta finales del Cretácico (hace entre 419 y 66 millones de años), cuando el impacto de un asteroide desencadenó la gran extinción que puso fin a la era mesozoica.

Para saber más

¿Pueden vivir los fósiles? Un «fósil viviente» en Ávila.

¿Qué son los «fósiles guía»?

Prácticas relacionadas con fósiles y fósiles guía

Referencias

Orthoceras, el predador submarino

Texto y fotos – Gabriel Castilla Cañamero.

GIF animado del molde interno de un Orthoceras del Devónico. Imagen: Gabriel Castilla.
GIF animado del molde interno de un Orthoceras del Devónico. Imagen: Gabriel Castilla.

“Veo que le interesa mi colección de conquiliología, señor profesor. En efecto, puede interesar a un naturalista; pero para mí tiene un encanto más, porque todos estos ejemplares los recogí con mis propias manos: ningún mar del globo se libró de mis exploraciones” 

20.000 leguas de viaje submarino. Julio Verne, 1869.

El submarino más famoso de la literatura debe su nombre a un fósil viviente, el Nautilus, perteneciente a un grupo de cefalópodos que hizo su aparición en el Cámbrico y que aún hoy, 500 millones de años después, habitan en las profundidades de los Océanos Índico y Pacífico.  

Ejemplar de Nautilus de Palaos. Fuente: Wikimedia Commons.
Ejemplar de Nautilus de Palaos. Fuente: Wikimedia Commons.

Nautilos significa “marinero”, y los nautiloideos son posiblemente el grupo más antiguo de todos los cefalópodos, ancestros lejanos de sepias y calamares.

Cuentan con una concha que está dividida en cámaras que se conectan entre sí por un sifúnculo, que a su vez conecta con el exterior a través de un sifón. Este órgano permite regular la proporción de agua y de gas que tienen las cámaras y, por tanto, controlar la flotabilidad a distintas profundidades. También les permite desplazarse por retropropulsión, es decir, lanzando chorros de agua a presión.

Esquema del molde interno de un Orthoceras. La concha tenía forma de torpedo, con una cámara de habitación (donde vive el animal) y un fragmocono (parte tabicada que controla la flotación). Adaptado de Meléndez (1983) y elaboración propia.
Esquema del molde interno de un Orthoceras. La concha tenía forma de torpedo, con una cámara de habitación (donde vive el animal) y un fragmocono (parte tabicada que controla la flotación). Adaptado de Meléndez (1983) y elaboración propia.

El registro paleontológico de los cefalópodos es muy amplio, habiéndose descrito más de 10.000 especies fósiles que constituyen una referencia muy importante para determinar la edad relativa de las rocas en las que se encuentran.

Los nautiloideos fósiles se clasifican según la forma de la concha y la distribución interna de las cámaras y el sifón.

Orthoceras

Del Ordovícico al Triásico (hace entre 485 y 300 millones de años) los océanos se poblaron de Orthoceras, un nautiloideo que se caracterizaba por presentar una concha recta y cónica.

Este nombre se lo debemos al naturalista y zoólogo francés Jean Guillaume Bruguière (1749-1798), quien describió este género de moluscos fósiles en 1789.

Como en casi todos los moluscos, la concha de Orthoceras debía ser de aragonito. Tras la muerte del animal esta concha puede quedar rellena de sedimento, mientras que el aragonito tiende a disolverse.

Es por ello que la mayoría de los fósiles son en realidad los moldes internos formados por sedimento que, durante el proceso de fosilización, es reemplazado y recristaliza en calcita, un mineral más estable.

Orthoceras fue un predador nectónico (nadador) que en su dieta incluía trilobites. Fue tal su abundancia que dio lugar a grandes acumulaciones de conchas en los fondos marinos, muchas veces perfectamente orientadas en la dirección de la corriente, formando un tipo de roca sedimentaria llamada caliza con Orthoceras.

Sección pulida de un molde interno en una muestra de caliza con Orthoceras del Devónico Medio de Marruecos. Imagen: Gabriel Castilla.
Sección pulida de un molde interno en una muestra de caliza con Orthoceras del Devónico Medio de Marruecos. Imagen: Gabriel Castilla.

Para saber más

¿Pueden vivir los fósiles? Un «fósil viviente» en Ávila.

¿Qué son los «fósiles guía»?

Prácticas relacionadas con fósiles y fósiles guía

Referencias

Glosopetras, de lenguas de piedra a dientes de tiburón

Texto y fotos – Gabriel Castilla Cañamero

“La glossopetra, similar a la lengua del hombre, no nace de la tierra. Se dice que cae del cielo durante los eclipses de la luna, es necesaria en la selenomancia y la alcahuetería, donde la vanidad de la promesa hace que se crea.” 

Plinio el Viejo. Historia Natural, Libro XXXVII. Siglo I d.C.
GIF animado de un diente de Carcharocles megalodon del Mioceno. Imagen: Gabriel Castilla.
GIF animado de un diente de Carcharocles megalodon del Mioceno. Imagen: Gabriel Castilla.

De «lenguas de piedra» bíblicas…

Desde hace siglos las glosopetras se usan como amuletos, una tradición que hunde sus raíces en el relato bíblico donde se narra el naufragio de Pablo de Tarso en la isla de Malta.

Según los Hechos de los Apóstoles (27,13-44), mientras Pablo recogía leña para hacer una hoguera con la que entrar en calor tras el naufragio, fue picado por una víbora, pero la mordedura venenosa no le causó ningún daño.

Según una leyenda maltesa, el santo maldijo a todas las serpientes de la isla, por lo que sus lenguas se convirtieron en piedra. Así fue como las lenguas de San Pablo o glosopetras de Malta se convirtieron en objetos codiciados como elementos de protección frente a venenos y enfermedades.

Esquema de un diente de Carcharocles megalodon y reconstrucción de un ejemplar adulto del mayor tamaño estimado para esta especie. Adaptado de Meléndez (1983) y Cooper et al. (2020).
Esquema de un diente de Carcharocles megalodon y reconstrucción de un ejemplar adulto del mayor tamaño estimado para esta especie. Adaptado de Meléndez (1983) y Cooper et al. (2020).

…a dientes fósiles de tiburón

Las glosopetras son en realidad dientes fósiles de tiburón, entre los que destaca Carcharocles Megalodon, uno de los mayores depredadores que han conocido los océanos de la Tierra. 

Sin embargo, los naturalistas de la Edad Media y el Renacimiento interpretaron estos fósiles como lenguas de animales petrificadas. ¿Cómo fue posible semejante ceguera? Por tres motivos:

  1. Porque el estudio de la naturaleza se abordaba partiendo de la tradición grecolatina y la autoridad de pensadores como Plinio tenía mucho peso.
  2. Porque era condición indispensable asumir el relato bíblico de la creación como marco de referencia indiscutible.
  3. Porque se carecía de una herramienta intelectual como el actualismo.

Steno y el método inductivo

El primero en abordar científicamente este problema fue el médico y anatomista danés Nicolás Steno, y lo hizo aplicando el método inductivo, o sea, estableciendo primero una serie de premisas que permitan alcanzar una conclusión lo más acertada posible.

En 1666 pudo estudiar la anatomía de un tiburón blanco embarrancado en aguas de Liguria (Italia) y lo hizo comparando los dientes de aquella bestia con glosopetras.

Para explicar cómo los restos de un organismo marino pueden encontrarse en rocas alejadas de la costa, Steno realizó un exhaustivo trabajo de campo que le llevó a descubrir y proponer los conceptos de sedimento y estrato.

Con estas herramientas publicó en 1667 una obra fundamental en la historia de la Geología: Canis Carchariae, donde se establece por primera vez:

  • Que los mares de la tierra no han estado siempre donde están ahora.
  • Que las capas de la tierra son estratos formados por antiguos sedimentos que pueden contener los restos de organismos marinos.
  • Y que estos restos de organismos marinos pueden petrificar por el reemplazamiento de la materia orgánica por minerales.  
Diente de tiburón Squalicorax. Se trataba de un depredador costero de entre 2 y 5 metros de longitud que vivió a finales del Cretático, hace unos 70 millones de años. Imagen: Gabriel Castilla.
Diente de tiburón Squalicorax. Se trataba de un depredador costero de entre 2 y 5 metros de longitud que vivió a finales del Cretácico, hace unos 70 millones de años. Imagen: Gabriel Castilla.
Diente aserrado de Squalicorax. Imagen: Gabriel  Castilla.

¿Sabías que…? Los tiburones son peces cartilaginosos (condrictios), por lo que normalmente solo fosilizan la mandíbula y los dientes. Se estima que a lo largo de su vida un tiburón puede llegar a producir unas 24.000 piezas dentales.

El estudio de los dientes fósiles de tiburón mediante razonamiento inductivo y el uso de analogías sirvió para desterrar una superstición y motivó la redacción de una de las obras fundacionales de la Geología. Un texto imprescindible y ameno que merece ser redescubierto.

¿Quieres saber más?

Actualismo: el método científico que alumbró la geología moderna.

Referencias

Trilobites, una extraña mirada desde el Paleozoico

Texto y fotos – Gabriel Castilla Cañamero

“(…) había un fósil incrustado, que surgía en bajo relieve de la roca. Era un animal con ojos. Los ojos, muertos y transformados en piedra, estaban mirándole en este mismo instante. Se trataba de uno de los crustáceos primitivos llamados trilobites.” 

Thomas Hardy. Un par de ojos azules, 1873.
Gif animado de un ejemplar de Phacops en posición defensiva. Imagen: Gabriel Castilla.
Gif animado de un ejemplar de Phacops en posición defensiva: enrollado haciendo coincidir el cefalón con el pigidio frente a alguna amenaza del medio. Imagen: Gabriel Castilla.

Hace 15.000 años el ser humano ya mostraba interés por los trilobites como elementos  ornamentales o amuletos. Mucho tiempo después los lapidarios medievales se ocuparon de estas curiosidades de la naturaleza, que catalogaron bajo el término piedras escorpión, expresión que aún pervive en la cultura popular en ciertas zonas de Andalucía.

Todavía en el siglo XVII, la naturaleza de estos fósiles era tan incierta que incluso en la primera representación pictórica conocida de un trilobite, realizada por el naturalista galés Edward Lhuyd en 1698, aparece descrito como algún tipo de pez.

Fue el filósofo alemán Johann Ernst Immanuel Walch quien en 1771 acuñó el término trilobitae para referirse a este tipo de fósiles, en clara referencia a los tres lóbulos que presenta su cuerpo: cefalón, tórax y pigidio.

Anatomía general de un trilobites del género Phacops.
Anatomía general de un trilobites del género Phacops (literalmente ojo de lente) del Devónico. A la derecha vista frontal y lateral del mismo trilobites en posición defensiva (Modificado de Meléndez, 1983).

Estos tres rasgos son la base de su clasificación y la razón por la que se les asocia con la división más numerosa y diversa del reino animal, los artrópodos. También son artrópodos los crustáceos (cangrejos y cochinillas) y los arácnidos (escorpiones), a los que se asemeja pero sin estar emparentado evolutivamente con ellos.

Fósiles guía

Los trilobites son un tipo de artrópodo primitivo que contaba con un exoesqueleto orgánico, resistente pero articulado, que les permitía enrollarse (haciendo coincidir el cefalón con el pigidio) frente a las amenazas del medio.

Aparecieron hace unos 520 millones de años, en el Cámbrico y durante 300 millones de años conquistaron los océanos de todo el planeta, desde las luminosas playas fangosas hasta las oscuras llanuras abisales.

Su rápida evolución y amplia distribución geográfica hace de los trilobites un valioso fósil guía que permite ajustar la escala de tiempo geológico de la Tierra y correlacionar estratos rocosos muy alejados entre sí.

Los ojos de los trilobites

Pero como bien supo ver el escritor naturalista Thomas Hardy, el rasgo más destacado de los trilobites son sus ojos, compuestos por pequeñas unidades sensoriales (los omatidios) constituidas por cristales de calcita.

En el Devónico (hace 417 millones de años) hizo su aparición un tipo de órgano visual de gran complejidad y sin parangón en la historia del reino animal: el ojo esquizocroal.

El ojo esquizocroal es una innovación exclusiva de los trilobites del suborden Phacopina y se caracteriza por presentar cristalinos de calcita casi esféricos, dispuestos regularmente en un tapiz hexagonal. Las lentes de calcita son gruesas, biconvexas y cuentan con impurezas de magnesio en su interior que permiten alterar el índice de refracción del cristal para lograr enfocar con precisión.

Estos ojos saltones ofrecían una visión estereoscópica de gran campo en condiciones de poca luminosidad, de lo que se deduce que estos trilobites tenían hábitos nocturnos.

Esquema de un ojo esquizocroal y sección de una lente de calcita (Adaptado de Liñán, 1996 y Fortey, 2006).
Esquema de un ojo esquizocroal y sección de una lente de calcita (Adaptado de Liñán, 1996 y Fortey, 2006).

¿Cómo pudo surgir un órgano visual tan complejo en los albores de la historia evolutiva de los animales? Responder a esta pregunta es uno de los grandes retos de la Paleontología.

¿Quieres saber más?

Los trilobites son considerados fósiles guía. ¿Sabes qué son y para qué sirven los fósiles guía? ——-¿Fósiles guía en Ávila?

ACTIVIDAD DIDÁCTICA RELACIONADA en practicasgeologia.com——Características de los fósiles guía

Referencias

Nummulites, las misteriosas lentejas de Estrabón

Texto y fotos – Gabriel Castilla Cañamero

GIF animado de un Nummulites o «lenteja» de Estrabón.

La primera descripción de la roca con la que están construidas las pirámides de Egipto se la debemos al geógrafo griego Estrabón, que en el siglo I a.C. escribió:

Al pie de las pirámides se encuentran, amontonados, trozos de las piedras que saltaban de los bloques al cortarlas. Estos pedazos de piedras contienen otras más pequeñas que tienen la forma y el tamaño de lentejas. Algunas se distinguen porque tienen la forma de los granos de cebada a los que se les ha quitado la mitad de la corteza (Geografía XVII, 34).

Lo que nadie podía sospechar entonces es que aquellas lentejas eran en realidad los caparazones de organismos unicelulares muy sencillos pero capaces de fijar un esqueleto mineral de considerable tamaño. Estas formas de vida son los foraminíferos y desde hace unos 540 millones de años pueblan  prácticamente todos los mares y océanos del planeta.

El hecho de contar con un registro fósil amplio y muy completo, junto con su rápida capacidad para adaptarse a los cambios ambientales (evolución que queda registrada en las múltiples formas de su caparazón), hacen de los foraminíferos un reloj que permite conocer la edad de las rocas en las que se encuentran, y es por ello que se les considera fósiles guía. Además, permiten identificar la distribución de los continentes y océanos en los diferentes momento de la historia de la Tierra.

Las lentejas de Estrabón son Nummulites, un grupo de foraminíferos ya extintos que durante buena parte de la Era Cenozoica (hace entre 66 y 23 millones de años) poblaron los sedimentos del antiguo Mar de Tetis, depositándose en rocas sedimentarias calizas en el entorno del actual Mediterráneo, desde Girona hasta Egipto.

Galería de imágenes relacionadas

¿Quieres saber más?

Los foraminíferos son fósiles guía. ¿Sabes qué son y para qué sirven los fósiles guía? ——-¿Fósiles guía en Ávila?

También son un buen indicador para conocer la evolución de las temperaturas en estudios paleoclimáticos. Te lo contamos aquí: ——-Así conocemos el clima del pasado

Otro tipo de organismos, los ostrácodos, también se utilizan como indicadores paleoambientales: ——-Ostrácodos, los señores del agua

Referencias

Día Internacional de las Montañas 2020. Las montañas de la Luna

Imagen y texto de Gabriel Castilla

«Las montañas albergan el 15% de la población mundial y aproximadamente la mitad de la reserva de la diversidad biológica del mundo. Además, suministran agua dulce para más de la mitad de la humanidad. Su conservación resulta clave, tal cual especifica el Objetivo 15 de los ODS«.

El 11 de diciembre fue declarado por la ONU Día Internacional de las Montañas.
Foto de Gabriel Castilla, tomada desde el centro de Madrid con una cámara Nikon Coolpix P900 sobre trípode.

Las montañas de la Luna

Con ayuda de un pequeño telescopio podemos observar, desde la comodidad de nuestra casa, los Montes Apenninus de la Luna. Se trata de una cordillera de 600 km de longitud situada justo en el borde sur de Mare Imbrium, pues tiene su origen en el gran impacto que hace 3850 millones de años golpeó el satélite.

La montaña más alta de la Luna es Mons Huygens (5500 m de altitud) y se localiza en esta cordillera, flanqueada por Mons Ampere (1300 m) y Mons Bradley (4200 m).

Descarga el par estereoscópico en PDF de esta imagen de la Luna para ver en 3D con tu estereoscopio casero. Si no tienes uno aún, aprende aquí cómo hacerlo, es fácil y barato: Geología en 3D con un estereoscopio casero.

Para saber más sobre la geología de la Luna: La Luna tiene colores: ¡Los de su geología!

El abanico aluvial de Candeleda, la huella de una montaña vaciada

Texto y figuras: Gabriel Castilla y Javier Elez

El municipio de Candeleda se encuentra asentado en el ápice de uno de los muchos abanicos aluviales que podemos encontrar en la vertiente sur de la Sierra de Gredos. Por la gran extensión del abanico y el escaso relieve, resulta difícil abarcar con la mirada su forma en conjunto, razón por la que apenas se conoce el importante papel que juega en el modelado del paisaje de la zona.


Figura 1. Panorámica del abanico aluvial del municipio de Candeleda, Ávila, España (el municipio al fondo). Imagen: Gabriel Castilla.

Qué es un abanico aluvial

Es un conjunto de sedimentos aluviales (o sea, materiales arrastrados por un río de montaña o torrente) que se extiende radialmente ladera abajo desde el punto en el que el curso de agua abandona la zona montañosa. En planta suele tener forma de cono o abanico, de ahí su nombre.

Se originan habitualmente cuando una corriente de agua que se encuentra confinada entre montañas se frena y suelta su carga de sedimentos bruscamente al entrar en una zona desconfinada de menor pendiente, normalmente una llanura a la salida de un valle donde se desplaza con menor velocidad.

Por tanto, el material erosionado en la zona montañosa y transportado por el canal de desagüe se sedimenta en el abanico aluvial.

Figura 2a. Esquema general de un abanico aluvial. Figura: Gabriel Castilla.
Figura 2b. Localización general del abanico aluvial del río Garganta de Santa María en Candeleda. Modelo 3D: Javier Elez.
Figura 2c. Modelo de distribución de alturas (modelo hipsométrico) donde podemos apreciar el relieve del abanico de Candeleda. Modelo hipsométrico: Javier Elez.

Anatomía de un abanico aluvial

Como podemos apreciar en el esquema anterior, los abanicos aluviales presentan cuatro partes bien diferenciadas. Veámoslas en detalle.

1. Zona montañosa y canal de desagüe

Por las zonas montañosas de elevada pendiente discurren arroyos y torrentes, normalmente organizados en cuencas de drenaje, que se encargan de esculpir las rocas y modelar el paisaje, formando gargantas y valles como resultado de la erosión del sustrato rocoso y el consecuente transporte de los clastos (fragmentos de rocas y minerales que componen el sedimento) que se generan (Figura 3).

Figura 3a. Garganta de Santa María en Candeleda, zona de las piscinas naturales. Observa la diferencia entre este valle encajado y el valle abierto de la Figura 4. Imagen: Gabriel Castilla.

Para saber más sobre arroyos de montaña y cuencas de drenaje: Arroyos de montaña y Qué es una cuenca hidrográfica

También hay que tener en cuenta cómo después de una fuerte tormenta, o tras un repentino proceso de deshielo, la corriente de agua principal que forma el canal de desagüe del valle aumenta su capacidad de carga, llegando a desplazar clastos de tamaño muy dispar (de menos de un milímetro hasta más de un metro).

Figura 3b. Bloque de granito (flecha roja) cayendo por una de las paredes de la garganta. Imagen: Gabriel Castilla.

Si por alguna razón la pendiente del terreno disminuye, entonces la corriente del canal se frena, pierde su capacidad transportadora y se ve obligada a depositar la carga.

2. Cabecera

La parte más alta del abanico en sentido estricto es la zona de cabecera. En ella encontramos sedimentos con clastos de gran tamaño, pues tienen su origen en flujos de agua con gran capacidad de carga.

En esta zona se sitúa el ápice, que es el lugar donde se produce el cambio de pendiente y la corriente pasa de estar confinada a abrirse en una llanura. Normalmente el ápice suele encontrarse al pie de las montañas justo en el inicio de un valle (Figura 4).

Figura 4. Imagen tomada desde el Puente Viejo de Candeleda, donde vemos cómo el río ha pasado a un régimen más abierto comparado con el valle estrecho en la Figura 3. En esta zona es donde se sitúa el ápice del abanico de Candeleda. Imagen: Gabriel Castilla.

3. Cuerpo

En la parte intermedia del abanico se sitúa la zona de cuerpo. En ella predomina el transporte de materiales por un canal principal (canal de incisión) que en algunos casos puede mostrar aspecto trenzado (braided). Este canal principal es la continuación del canal de desagüe original.

Muy pronto publicaremos el contenido sobre Tipos de canales fluviales, en el que explicaremos también el «braided» o trenzado, como la Garganta de Santa María.

En esta zona la corriente ya tiene menor energía, por lo que se aprecia una selección de clastos más pequeños. Estos además están cada vez más redondeados por los continuos impactos a los que se han visto sometidos durante el transporte (como los que se aprecian en la Figura 5).

Figura 5. Panorámica del canal principal con clastos redondeados por los impactos durante el transporte. Imagen: Gabriel Castilla.

4. Pie

La parte más alejada del ápice es la zona de pie del abanico. En ella predomina la sedimentación de clastos más pequeños (arena y grava). Por ser la zona más llana y extensa, en ocasiones termina en el borde de un lago o en la llanura de inundación de un río de mayor tamaño (Figura 6).

En el caso del abanico de Candeleda, este acaba en la llanura de inundación del Tiétar donde termina de depositar el sedimento de tamaño más fino, normalmente en pequeños deltas de desembocadura.

Figura 6. Pequeño canal activo a orillas del Embalse de Rosarito. Imagen: Gabriel Castilla.

Resumiendo…

Recuerda las partes de un abanico aluvial que acabamos de ver 😉

Dinámica general

Los abanicos aluviales son sistemas muy dinámicos y cambiantes a lo largo del tiempo. Su forma es el resultado del desplazamiento lateral de los cauces principales desde el ápice.

Los canales cambian su posición dentro del abanico por múltiples razones. Por ejemplo:

  • Episodios de alta energía o eventos catastróficos que modifican el cauce. Como tormentas, deshielos, riadas…
  • Exceso de sedimentos.
  • Erosión de depósitos más recientes.

Estos desplazamientos de los canales tienen como consecuencia el desplazamiento de las zonas en las que se produce erosión y sedimentación.

Las crecidas del río Garganta de Santa María son frecuentes tras episodios de tormentas, lluvias persistentes o deshielo. Vídeo: Luis Blázquez.

Para saber más sobre cómo influyen el clima y los eventos meteorológicos en la formación y dinámica del abanico aluvial y cómo se activa y modifica incluso en periodos de tiempo muy cortos (por ejemplo, tras la tormenta del 20 de diciembre de 2019): El microclima del Valle del Tiétar.

El reparto de sedimentos desde el ápice de forma radial es el que finalmente genera la típica forma cónica o de abanico que les caracteriza.

En el caso del abanico de Candeleda todos estos procesos se llevan produciendo desde el Pleistoceno hasta la actualidad, es decir, desde hace unos 2,5 millones de años hasta hoy mismo.

Como podemos deducir, un abanico aluvial es la forma que van adoptando a la salida de un valle los materiales que previamente han sido arrancados de una montaña. Es, por así decirlo, la huella que deja una montaña que ha sido vaciada (Figura 7).

Figura 7. Vista general de la Sierra de Gredos desde la orilla del Embalse de Rosarito. La forma actual del relieve es el reflejo de los procesos geológicos que lo han esculpido. Imagen: Gabriel Castilla.

Echemos un último vistazo al abanico aluvial, esta vez en 3D y en movimiento (Figura 8).

Figura 8. Modelo 3D del abanico aluvial de Candeleda (en verde) con el límite de la cuenca de drenaje que alimenta el río Garganta de Santa María y transporta los clastos hasta sedimentarlos en el abanico ya en la llanura de inundación del río Tiétar. Modelo 3D: Javier Elez.

Bibliografía