Archivo de la categoría: Paleoclima

El estudio del clima del pasado o paleoclima puede darnos pistas sobre la evolución climática del futuro.

Ostrácodos, los señores del agua

Texto e imágenes: Blanca Martínez

Los lectores habituales de este blog ya conocéis algunas de las herramientas o proxys más utilizadas para poder reconstruir los climas del pasado, como los isótopos de oxígeno, los foraminíferos o el polen. Pues aquí os voy a presentar una nueva, los ostrácodos.

RECUERDA QUE. Un dato “proxy” es un dato indirecto. Como no es posible medir directamente la temperatura o la precipitación del pasado, se utilizan registros de otras variables a partir de las cuales se pueden deducir las primeras. La interpretación de estos datos “proxy” está basada siempre en principios físicos, químicos o biológicos.

Qué son los ostrácodos

Los ostrácodos son un grupo de microcrustáceos, primo-hermanos de los cangrejos, con un tamaño generalmente inferior a 1 mm, que viven en cualquier ambiente acuático.

Balsa construida en Bardenas Reales de Navarra para recoger el agua de lluvia para su aprovechamiento en el regadío y como abrevadero. Entre la fauna acuática que la ha convertido en su hogar se encuentran los ostrácodos.

Aunque cuando ves su aspecto no te acuerdas precisamente de los cangrejos, ya que tienen dos valvas carbonatadas que recubren el cuerpo blando y que son las que quedan preservadas en el sedimento.

Pequeño vídeo de lupa binocular de varios ejemplares de una misma especie presentes en una muestra de agua de una balsa de Bardenas Reales de Navarra. Fijaos lo activos que son, no paran de moverse. Vídeo: Blanca Martínez.

Como el resto de los crustáceos, los ostrácodos crecen por mudas. Segregan valvas cada vez más grandes para adecuarse al crecimiento de su cuerpo, desprendiéndose de las valvas previas más pequeñas. Y aunque tienen un ciclo de vida corto, ya que generalmente viven sólo un año, de media sufren hasta 8 mudas.

Parecen unos animalitos muy simplones, pero si prestamos atención a su biología, nos damos cuenta de que son apasionantes.

¿SABÍAS QUE…? La mayoría tienen un único ojo con forma de prisma rectangular situado en la parte superior frontal del caparazón. Algunas especies marinas son bioluminscentes; otras resisten vivas el paso por el tracto digestivo de los peces; y otras, incluso, son capaces de atacar en manada a organismos más grandes.

Fotografías de lupa binocular de tres especies de ostrácodos vivos presentes en una balsa construida en Bardenas Reales de Navarra. Si os fijáis con detalle en la parte superior derecha de los dos últimos ejemplares, veréis una manchita negra brillante. Eso es el ojo. Y para que os hagáis una idea del tamaño de estos ostrácodos, el rectángulo negro representa una escala gráfica de 0,1 mm.

Curiosidades de su ciclo reproductivo

Pero las curiosidades más llamativas las encontramos en su ciclo reproductivo:

  • Algunos ostrácodos tienen el tamaño del pene vez y media el tamaño de su cuerpo.
  • Otros producen espermatozoides con una longitud hasta ocho veces el tamaño de su cuerpo.
  • Y el primer macho de la historia del registro fósil es un ostrácodo de hace más de 400 millones de años.
  • Aunque también tienen una parte más “feminista”, ya que hay especies que tienen una reproducción asexual en la que las hembras ponen huevos de los que nacen nuevas hembras fértiles, sin necesidad de machos.

Indicadores paleoambientales

Aunque mejor dejo de hablar de las intimidades de los ostrácodos y vuelvo al tema que nos ocupa, su utilidad como herramientas paleoambientales.

Detalle de un muestreo en rocas del Mioceno de Bardenas Reales de Navarra. Una vez en el laboratorio, hay que lavar y tamizar ese material para separar el tamaño de grano que nos interesa (más de 0,125 mm) y armarse de paciencia frente a una lupa binocular, con la que separamos y clasificamos las valvas de los ostrácodos una a una.

Y es que ya he comentado que viven en cualquier ambiente acuático, desde un charco de lluvia en la alta montaña hasta los fondos oceánicos más profundos. Pero cada especie únicamente soporta unos rangos muy concretos de ciertos parámetros ecológicos, como son la temperatura, salinidad o energía del agua, el tipo de sedimento o la cantidad de vegetación acuática. De tal manera que la más mínima variación en esos parámetros ecológicos provoca cambios en la asociación de especies de ostrácodos presente en el medio acuático.

Vamos, que sólo hay dos posibilidades de respuesta para nuestros amigos ante los más pequeños cambios ambientales: o se mueren, o se van a otra parte, dejando vía libre para nuevas especies mejor adaptadas a esas nuevas condiciones ecológicas.

Así que, estudiando cómo han cambiado las asociaciones de especies de ostrácodos a lo largo del registro geológico, podemos hacer reconstrucciones paleoambientales de antiguos medios acuáticos. De esta manera, podemos identificar diversos ciclos climáticos “árido-húmedo” consecutivos durante el Mioceno en toda la Península Ibérica, con avances y retrocesos de extensos lagos poco profundos.

Fotografía de Microscopio Electrónico de Barrido de tres especies de ostrácodos continentales del Mioceno presentes en las rocas de Bardenas Reales de Navarra. Su presencia nos indica que hace más de 15 millones de años había ríos que desembocaban en lagos poco profundos pero muy extensos en lo que hoy es una zona semidesértica. El rectángulo blanco representa una escala de 0,1 mm.

O la llegada al Mar Cantábrico de masas de agua procedentes del norte de Escandinavia durante los momentos más fríos de la última glaciación, que se retiraron de nuevo a latitudes altas con la llegada del clima actual más cálido.

Fotografía de Microscopio Electrónico de Barrido de tres especies de ostrácodos recientes encontrados en el sedimento del fondo del Mar Cantábrico. Las especies marinas pueden tener valvas muy ornamentadas, como los ejemplares fotografiados. Así pueden defenderse de sus depredadores y soportar la energía de las corrientes marinas. El rectángulo blanco equivale a 0,1 mm.

Incluso, nos permiten detectar cualquier influencia humana en épocas históricas en estos ambientes acuáticos, ya sea contaminación, desecación o construcción de barreras que alteraron el ciclo natural de los mismos. Vamos, que los ostrácodos son unos chivatos medioambientales excelentes.

Detalle de la marisma vegetada del estuario de Oriñón, en Cantabria. Los ostrácodos permiten detectar rápidamente cualquier influencia del ser humano en estos ambientes tan sensibles.

Por eso son uno de los grupos faunísticos más empleados no sólo para hacer reconstrucciones paleoambientales, sino también para monitorizar y regenerar humedales degradados o para determinar el límite del dominio marítimo-terrestre en zonas litorales.

Panorámica del estuario de Oyambre, en Cantabria. Para que cualquier construcción pueda cumplir con la Ley de Costas, es básico delimitar correctamente la zona de influencia marina. Y para eso también sirven los ostrácodos.

Sobre todo, son de lo más útiles en medios en los que otros grupos no pueden sobrevivir, pero en los que los ostrácodos campan a sus anchas, como las aguas estancadas de las cuevas o los medios con una elevada salinidad. Los ostrácodos son unos auténticos supervivientes, mejores que Bear Grylls.

Creo que con esto ya conocéis un poquito mejor a estos animalitos, aunque no os lo he contado todo. Seguro que la próxima vez que os crucéis con una charca cubierta de vegetación no la veréis de la misma manera, porque os la imaginaréis plagada de ostrácodos. Y tendréis razón 😉

Para saber más

¿SABÍAS QUE…? Los humedales de La Moraña, como la laguna de El Oso, son medios ideales para la proliferación de ostrácodos. Y estos sirven de alimento a otras especies, como el famoso “fósil vivientetriops cancriformis. Aunque lo más curioso es que los ostrácodos pueden “pegarse” a las patas y las plumas de las aves y las utilizan como vehículo para conquistar otros cuerpos de agua.

Laguna de El Oso, Ávila.

VÍDEO | La montaña vaciada. El abanico aluvial de candeleda (ávila)

El microclima del Valle del Tiétar

Por qué llueve tanto en Candeleda

El municipio de Candeleda y la comarca del Valle del Tiétar en general tienen un clima muy diferente al del norte de la provincia de Ávila. Tanto es así que se suele hablar de “la Andalucía de Ávila” o del “microclima del Valle del Tiétar”, caracterizado por inviernos suaves y muy húmedos, veranos calurosos y secos y también por precipitaciones puntuales intensas que provocan importantes avenidas torrenciales.

Tanta es la diferencia a uno y otro lado de la Sierra de Gredos que en Candeleda llueve un 250% más que en la capital, a pesar de que Ávila está situada a mayor altura y más al norte.

Mapa de precipitaciones anuales en la península Ibérica. El sur de la provincia de Ávila es mucho más húmedo que el norte. (Fuente AEMET)

El efecto Coriolis

Gran parte de la culpa de esta diferencia en las precipitaciones la tiene la rotación de la Tierra, que provoca el efecto Coriolis: como la Tierra gira alrededor del eje norte-sur, los puntos más cercanos al ecuador se mueven muy rápido (a unos 1600 km/h) mientras en los polos el movimiento es nulo. Por ello el aire que se desplaza hacia el ecuador se ve arrastrado por la rotación de la tierra, y el que se desplaza hacia los polos se adelanta a la rotación.

Para saber más sobre el efecto Coriolis: ¿Por qué el aire gira alrededor del centro de un huracán? – El Efecto Coriolis (vídeo en inglés con subtítulos).

Así, todo lo que se mueve en el hemisferio norte se desvía hacia la derecha, mientras que en el hemisferio sur lo hace hacia la izquierda.

El aire en nuestro planeta se desplaza para equilibrar las diferencias de presión, desde las zonas de altas presiones (anticiclones) a las zonas de bajas presiones (borrascas):

  • El aire que se mueve hacia el centro de las borrascas se desvía a la derecha, provocando que las borrascas giren en sentido contrario a las agujas del reloj.
  • Mientras, el aire escapa de los anticiclones y provoca que giren en el sentido de las agujas del reloj.

Abundantes precipitaciones

Este giro antihorario hace que los frentes de precipitación que acompañan a las borrascas desde el Atlántico impacten contra el Sistema Central, obligándoles a ascender por el desnivel de la cara sur de Gredos.

El aire se va a enfriar rápidamente al ascender por la ladera, se condensa y genera precipitaciones copiosas y a veces muy intensas en el Valle del Tiétar como sucedió en diciembre de 2019 con la borrasca Elsa.

Cuando estos frentes llegan a la ciudad de Ávila ya han descargado mucha humedad en la cara sur, dejando pocas lluvias en la capital y en la meseta en general.

Mapa de previsión meteorológica para el día 21 de marzo de 2020, con una situación típica de una borrasca entrando desde el Atlántico, provocando precipitaciones abundantes en la cara sur de Gredos. (Fuente: modelo ECMWF).
Mapa de precipitaciones asociadas a la borrasca Elsa el 19 de diciembre de 2019, en las zonas de color rojo oscuro se superaron los 200 mm en un día. (Fuente: RTVE).

Episodios de lluvias intensas

El efecto Coriolis en combinación con el fuerte desnivel en la cuenca de drenaje propician importantes avenidas de carácter torrencial en la Garganta de Santa María. Las precipitaciones intensas asociadas a frentes atlánticos, que además suelen provocar deshielos en invierno y primavera, son las que dan vida al abanico aluvial de Candeleda.

Para saber qué es un abanico aluvial: El abanico aluvial de Candeleda, la huella de una montaña vaciada

Este abanico apenas sufre cambios graduales durante la temporada normal y se activa fundamentalmente durante estos eventos de alta energía, en los que el caudal se multiplica, se transporta mucho sedimento (con clastos de hasta varias toneladas), se erosiona y se producen cambios en el canal principal.

Imagen comparativa del antes (arriba) y después (abajo) de la borrasca Elsa. Este evento en diciembre de 2019 cambió completamente el canal principal de la Garganta de Santa María, transportando todo tipo de sedimentos, incluyendo clastos de granito de varias toneladas (y algún electrodoméstico de gran tamaño). Imágenes: Javier Pérez Tarruella.

Veranos cálidos y secos

En verano las altas temperaturas y la ausencia de precipitaciones en la zona se deben a que domina el “anticiclón de las Azores” situado en el Atlántico.

Al contrario que las borrascas, el anticiclón gira en el sentido de las agujas del reloj, enviando aire desde el Norte. Este aire pierde la poca humedad que conserva al ascender la cara norte de Gredos y al bajar al Valle del Tiétar se calienta en proporción al enorme desnivel de la cara sur.

¿SABÍAS QUÉ?… En Nueva York llueve tanto en verano como en invierno, ya que allí el anticiclón de las Azores envía aire muy húmedo desde el trópico. Debido al efecto Coriolis, los huracanes que se forman en zonas tropicales desvían su trayectoria hacia la derecha (hacia el Norte) afectando al Caribe y llegando a la mitad este de Estados Unidos.

Bibliografía

Así conocemos el clima del pasado

Sabemos que el clima de la Tierra ha cambiado constantemente. En el Mesozoico (la era de los dinosaurios, hace entre 252 y 66 millones de años) apenas había hielo en los polos. Aragón o Castilla y León tenían playa, en una península ibérica que no era tal sino una isla tropical. Hace solo unos miles de años, ya con nuestra especie extendida por todos los continentes, el planeta se encontraba en una intensa glaciación.

Por ejemplo, saber si algún momento del pasado ha sido más frío más que en la actualidad es relativamente sencillo: los glaciares esculpen valles en forma de U y dejan en ellos unos depósitos sedimentarios característicos, o pulen la roca (rocas aborregadas) y dejan arañazos en ella (estrías glaciares). A día de hoy encontramos muchos de estos valles sin hielo. Por tanto, si en el pasado había más hielo es probable que las temperaturas fuesen más bajas.

Vista del valle en U desde la laguna glacial de El Duque, cerca de El Barco de Ávila, provincia de Ávila (España). Imagen de Gabriel Castilla.

Pero… ¿Cómo saber cuáles eran las temperaturas o qué cantidad total de hielo había en el planeta? ¿Cómo podemos conocer el clima de hace millones de años?

De esto se encarga la ciencia de la Paleoclimatología, que utiliza indicadores o Datos Proxy que pueden ser de lo más variados. Y en esta entrada veremos un par de ejemplos: isótopos y foraminíferos.

Un dato “Proxy” es un dato indirecto. Como no es posible medir directamente la temperatura o la precipitación del pasado, se utilizan registros de otras variables a partir de las cuales se pueden deducir las primeras, igual que en el ejemplo de los glaciares. La interpretación de estos datos “Proxy” está basada siempre en principios físicos, químicos o biológicos.

El registro paleoclimático más completo que existe abarca los últimos 65 Millones de años, y utiliza como Proxy los isótopos de Oxígeno (Zachos et al., 2001).

1. Los isótopos de Oxígeno y el hielo

La mayoría de átomos de oxígeno están formados por 8 protones y 8 neutrones en su núcleo, lo que conocemos como el isótopo “Oxígeno 16”. Sin embargo, existe una pequeña proporción de estos átomos que tiene 8 protones y 10 neutrones: el isótopo “Oxigeno 18”.

Dos isótopos de un mismo elemento, en este caso Oxígeno 16 y 18 tienen idénticas propiedades químicas al tener el mismo número de protones y electrones. Pero su diferente masa les hace tener comportamientos diferentes frente a procesos como la evaporación o la condensación.

Así, existen moléculas de agua (H2O) con Oxígeno 16 y otras con Oxígeno 18, y la proporción entre ellas nos permite deducir cambios climáticos gracias a una serie de procesos que denominamos “fraccionamiento isotópico”:

  • Las moléculas con O-16 se evaporarán con mayor facilidad por su menor masa. Así, las nubes tienen más O-16 que el agua del océano que las formó. Y el océano se verá enriquecido en O-18 por la pérdida de O-16.
  • Las moléculas de agua con O-18 se condensan con mayor facilidad (tienen mayor masa), por lo que el agua de lluvia tiene más O-18 que la nube que la formó.
  • Las nubes van perdiendo agua al enfriarse hacia los polos, por formación de lluvia y por la disminución de la evaporación en estas zonas. Por ello, cuanto más cerca de los polos nos encontremos y cuanto menor sea la temperatura, menor será la cantidad de O-18 en las precipitaciones.
  • La nieve que cae sobre los polos y forma el hielo del casquete glaciar tiene mucho O-16, pero esta señal isotópica cambia con los cambios en la temperatura a lo largo del tiempo en la zona. Por esto la señal isotópica de los hielos de Groenlandia o la Antártida nos permite reconstruir temperaturas para los últimos cientos de miles de años.
Fraccionamiento de los isótopos de oxígeno en el planeta. Distintos procesos hacen que cambie la proporción de átomos de Oxígeno-18/Oxígeno-16. Gracias a los registros marinos de conchas de microorganismos como los foraminíferos, y a los registros del hielo de los casquetes polares, podemos conocer estos cambios isotópicos que reflejan el clima del pasado. Gráfico: Javier Pérez Tarruella.

Como el hielo de los casquetes polares y glaciares acumula isótopos ligeros O-16 y el océano se enriquece en isótopos pesados O-18 durante las glaciaciones, los sedimentos de fondos oceánicos nos permiten conocer en qué momentos ha habido más o menos hielo en el planeta.

2. Foraminíferos, pequeños historiadores del clima

Los minerales que componen las partes duras de los organismos (especialmente conchas de organismos acuáticos) contienen oxígeno, y su proporción O-18/O-16 nos puede aproximar a la temperatura a la que se formaron. Cuando la temperatura es baja, las conchas asimilan más O-18 y viceversa.

Algunos de los organismos con concha más abundantes del planeta son los foraminíferos (imagen de portada). Son unicelulares y pertenecen al reino Protista. Muchos tienen aspecto de palomitas de maíz, miden menos de 1mm y fosilizan con facilidad, por lo que podemos encontrarlos en casi cualquier roca sedimentaria de origen marino.

Imagen SEM de muestras de diversos foraminíferos planctónicos. Tomado de Pados, T. (2014). Recent planktic foraminifera in the Fram Strait : ecology and biogeochemistry. (Autoría: Paul Pearson, Cardiff University).

El indicador que se utiliza para conocer los cambios de temperatura GLOBALES del pasado es la señal isotópica de la concha de foraminíferos que habitan en los sedimentos de los fondos profundos de los océanos (organismos bentónicos), pues la temperatura de las aguas profundas cambia muy lentamente y es un buen reflejo del clima global.

Otros foraminíferos, los planctónicos, viven en las aguas superficiales. Como el número de especies lleva sin cambios desde hace unos 500.000 años, podemos estudiar en qué condiciones de temperatura vive cada especie actualmente y qué agrupaciones de especies hay a diferentes temperaturas.

De esta forma, conociendo las diferentes especies que se encuentran en un sedimento antiguo y sus proporciones (cuáles son más abundantes), podemos conocer la temperatura del agua superficial en el momento en que vivieron. Esto es un buen ejemplo de la aplicación del Actualismo.

Sabías que… Para conseguir los preciados foraminíferos se utilizan grandes buques científicos especiales, equipados con una torre de perforación muy similar a la que se emplea en el mundo del petróleo. Así se obtienen sondeos del fondo marino donde se han ido enterrando los foraminíferos bentónicos que allí vivían. Los planctónicos que vivían en el agua superficial cayeron y se depositaron una vez muertos. Cuanto mayor haya sido esta acumulación y durante más tiempo se haya producido de forma continua, mejor será el registro climático que se podrá obtener.

Otros indicadores Proxy

Aunque sólo hemos hablado de hielo y organismos marinos, el clima del pasado se puede conocer a través de muchos otros indicadores Proxy: depósitos en lagos, espeleotemas en cuevas, estudios de pólenes en sedimentos, depósitos de turberas, estudios geoquímicos e isotópicos en dientes de mamíferos o incluso a través de los anillos de los árboles (Dendrocronología).

Referencias

Dendrocronología: contando anillos

Texto y gráficos – Ana Isabel Casado

Fotografías – Gabriel Castilla

La palabra dendrocronología proviene del griego antiguo:

  • dendro- significa “árbol
  • -crono- significa “tiempo
  • –logía significa “estudio

Por lo que dendrocronología quiere decir literalmente “estudio del tiempo de los árboles”.

Y es que este método de datación se basa en el crecimiento de los árboles (y algunos arbustos leñosos) para poder contar el tiempo. La edad máxima que se ha llegado a datar con este método es de 10.000 años.

Los anillos de los árboles

Los árboles que viven en zonas con clima estacional crecen generando un anillo cada año, como si fueran las capas de una cebolla. De esta manera, la capa más externa del tronco se está generando en el año actual y el centro se formó en su primer año de crecimiento.

1 anillo = 1 año

Al poder obtener un valor numérico de años, se considera un método de datación absoluta (permite precisar la edad concreta).

Pero, además, los anillos de los árboles nos aportan mucha información de las condiciones en las que han vivido los árboles en cada momento, no solo los años que tienen (Fig. 1).

Fig. 1: Esquema de la sección del tronco de un pino. El desarrollo de los árboles se produce generando anillos año a año. Estos anillos registran las condiciones en las que se ha desarrollado el árbol. Sus anillos de épocas lluviosas son anchos mientras que los de épocas secas son estrechos. También se pueden ver cicatrices si el árbol sufrió alguna lesión, por un incendio o los golpes de las piedras de una avalancha, por ejemplo.

En cada anillo se pueden diferenciar dos zonas:

  • Zona ancha y clara: se corresponde con el crecimiento de primavera/principios del verano, cuando las lluvias y los aportes de nutrientes son mayores y el árbol se desarrolla más.
  • Zona estrecha y oscura: se forma con el crecimiento de finales de verano y el final del crecimiento por ese año. Su color oscuro y su poco grosor son la consecuencia de una menor disponibilidad de agua y nutrientes por parte del árbol.

Además, el tamaño de los anillos de unos años a otros varía en función de si fueron años lluviosos y cálidos (anillos amplios) o si hubo sequías y frío (anillos angostos). Los árboles de la misma zona tendrán un desarrollo del grosor de sus anillos similar ya que vivirán en las mismas condiciones ambientales.

¿Cómo podemos estudiar los anillos de los árboles sin tener que talarlos?

Cuando se realiza un estudio mediante los anillos de los árboles, se necesitan muestras de distintos individuos e incluso de distintas especies para poder llegar a una conclusión global. Con el fin de NO dañar a los árboles en este tipo de estudios, se utiliza un utensilio llamado barrena Pressler.

Esta barrena se introduce girándola manualmente en el árbol gracias a que está provista de un tornillo con filos en su punta (Fig. 2).

Según penetra la barrena en el árbol va generando un testigo cilíndrico que queda dentro de la propia barrena. De esta manera, podemos extraer del árbol testigos de unos 0,5 cm de diámetro y de largo variable (15-20 cm suele ser suficiente).

Fig. 2: Esquema del funcionamiento de la Barrera Pressler para obtener testigos de los anillos de los árboles. La barrena se introduce en el tronco haciéndola girar de manera manual a la vez que se presiona, gracias al tornillo afilado que posee en la punta. Al ir penetrando la barrena, corta perpendicularmente los anillos del árbol de fuera hacia dentro obteniéndose el registro completo del desarrollo del árbol. Lo que se consigue es un testigo cilíndrico donde se ven las secciones de los anillos como si fuera el “código de barras” del árbol.

En estos testigos se pueden observar los grosores de los anillos y tener así el registro completo de los años de vida del árbol sin dañarlo (Fig. 3). El pequeño orificio que queda en el tronco se cubre con cera para evitar posibles bacterias e insectos que pudieran perjudicar al árbol.

Fig. 3. Testigo de pino obtenido con una barrena Pressler.

¿Y cómo podemos datar hasta 10.000 años de antigüedad con los árboles?

Para poder datar mediante este método es necesario tener un registro de madera lo más continuo posible.

Partiendo de testigos de árboles vivos que nos ayuden a situarnos en el tiempo, se hacen coincidir los anillos de los primeros años de vida de los árboles con los últimos años registrados en la madera arqueológica de construcciones (como puentes e iglesias) hechas con árboles de la zona (Fig. 4).

Siendo capaces de encontrar este solapamiento del código que forman los anillos de los árboles en maderas cada vez más antiguas, se puede llegar a completar el patrón de crecimiento de los anillos de los árboles con restos de troncos conservados en el registro sedimentario, como en los sedimentos de dunas o de lagunas.

La fecha más antigua que se ha llegado a contabilizar mediante este método es de aproximadamente 10.000 años, coincidiendo con el comienzo del Neolítico (cuando las sociedades humanas pasaron a ser agrícolas-ganaderas y se valían de la madera para hacer sus construcciones).

Fig. 4: Para poder contar anillos/años que permitan hacer dataciones arqueológicas e incluso geológicas, es necesario tener un registro continuo del patrón de crecimiento de los anillos de los árboles de esa zona. Se parte de madera de árbol actual, donde se tienen localizados los años a los que pertenecen sus anillos. Se busca la coincidencia de los primeros años de vida del árbol con madera arqueológica de construcciones de la zona (de construcciones antiguas como iglesias). Esta misma metodología se repite sobre madera cada vez más antigua hasta llegar a emplear restos de madera conservados en sedimentos como dunas o depósitos lacustres. Con toda esa información, se obtiene el registro continuo del desarrollo de los anillos de los árboles de esa zona (líneas marrones sobre testigo blanco).

Una vez se ha obtenido el patrón de crecimiento de los árboles de una zona, se pueden datar tanto restos leñosos (de manera directa) como eventos en los que se ve implicada la madera. Para ello, hay que hacer coincidir los anillos de los restos de madera que se quiere datar con el del patrón de crecimiento de los anillos de la zona.

Por ejemplo, si se encuentra un tronco en los sedimentos de un lago (Fig. 5), podremos comparar los anillos del tronco encontrado con los anillos del registro de la zona, obteniendo una edad para ese tronco. Pero, además, como ese tronco está dentro de un depósito sedimentario, podemos decir que la sedimentación fue posterior al tronco, obteniendo así una datación relativa del momento de la sedimentación.

Fig. 5: Ejemplo de datación dendrocronológica. Conociéndose la relación de los anillos de los árboles en cada momento, se compara ésta con los restos de troncos encontrado en los sedimentos de relleno de un lago. Se obtiene que el árbol vivió al menos entre los años 1250 y 1310. Además, como su enterramiento fue posterior a la muerte del árbol, podemos saber que el sedimento donde se encuentran éstos troncos se depositó posteriormente al año 1310.

Para realizar la datación mediante los anillos de los árboles, se identifica el patrón de crecimiento de los restos de árboles que se quieren datar en el registro dendrocronológico de la zona donde se han encontrado.

¿Cómo es el código de los anillos de los árboles de Ávila de los últimos años?

El factor que más condicionará la anchura de los anillos de los árboles es la disponibilidad de agua, principalmente la lluvia.

En la Figura 6 podemos ver el registro de lluvias del centro de la Península de los últimos años. Para que sea más fácil de diferenciar, se han coloreado en verde las barras correspondientes a los años más lluviosos y en rojo las de los años más secos.

Al observar los anillos de un testigo de pino, somos capaces de reconocer algunos de los años en función del grosor de su anillo correspondiente:

  • Años más lluviosos y por tanto anillos más anchos (años 1972, 1997 y 2010).
  • Y años más secos con anillos más estrechos (años 1954, 1983 y 2005).
Fig. 6: Registro de las precipitaciones del centro de la Península Ibérica desde 1940 a 2018. Se han marcado de color verde los años más lluviosos y de color rojo los más secos. Cuando se compara el registro de lluvias con los anillos de crecimiento de un pino de la zona, se puede comprobar cómo es posible identificar dichos años porque los anillos más anchos se corresponden con los años lluviosos y los anillos estrechos con los años más secos. Este patrón de crecimiento de los anillos será similar en los árboles que se han desarrollado en esta misma zona.

¿Sabías que… el árbol apodado Matulasen era el árbol vivo más viejo del mundo, con 4850 años. En 2016 se descubrió un árbol aún más viejo, se estima que tiene unos 5067 años. Ambos árboles perteneces a la especie Pino longevo (Pinus longaeva) y se encuentran en el Bosque Nacional de Inyo, en las Montañas Blancas de California (Estados Unidos) pero su ubicación exacta no se ha desvelado para evitar su destrucción?

Ejemplar de Pino longevo (Pinus Longaeva) en las Montañas Blancas de California (Estados Unidos). Imagen: Rick Goldwater Wikimedia Commons.

¿Sabías que… el árbol más viejo de España, y de los más viejos de Europa, se encuentra en la Sierra de Cazorla (Jaén). Se trata de un Tejo Milenario (Taxus baccata) y tiene más de 2500 años?

El tejo milenario (Taxus baccata) de más de 2500 años, en la Sierra de Cazorla (Jaén), es el árbol más viejo de España.

En la provincia de Ávila (España) hay algunos ejemplares de árboles con solera, como la llamada “encina milenaria” del castro vetón de la Mesa de Miranda, en Chamartín, o el ejemplar de castaño conocido como “El Abuelo”, en el castañar de El Tiemblo.

¿Quieres saber más sobre métodos de datación?

Método de datación por radiocarbono (o Carbono-14)

Organismos que colonizan los granitos: la liquenometría

Estudio de la evolución paleoclimática a partir de las turberas

El análisis de los pigmentos minerales. Espectroscopía Raman

Referencias

Las calcretas laminares de Viñegra de Moraña

Texto y gráficos – Alberto Martín. Imágenes – Gloria Martín Alonso

En regiones semiáridas, como lo fue La Moraña durante épocas pasadas, las plantas necesitan desarrollar mecanismos especiales para acumular nutrientes. Cuando las capas superficiales del suelo son permeables, el sustento que las plantas necesitan se acumula en los primeros metros, por lo que las raíces tratan de ocupar la mayor cantidad de superficie posible para conseguir alimento y agua.

En ocasiones podemos ver vestigios de cómo esos vegetales llevaron a cabo sus tácticas de supervivencia. En la localidad de Viñegra de Moraña encontramos un excepcional ejemplo.

Figura 1. Corte en la vía del tren donde se ven calcretas laminares.
Figura 1. Corte en la vía del tren.
Figura 2. Calcretas laminares.
Figura 2. Calcretas laminares.

En la segunda imagen se observan unas líneas blancas que se disponen de manera paralela al suelo. Son la evidencia que dejaron las raíces de las plantas que allí vivieron: los vegetales necesitaron disponer sus raíces de forma que ocuparan la máxima extensión posible; en este caso lo hicieron en forma de mallas para así impedir que los nutrientes escaparan tierra abajo.

Durante la vida de la planta, su raíz y los microorganismos asociados ayudan a la acumulación de carbonato en el entorno de la raíz y también en sus células. El proceso puede seguir después de la muerte de la planta. Esta acumulación de carbonato cálcico da lugar a lo que se conoce como calcretas.

Para ser más precisos, en el caso de Viñegra de Moraña hablamos de calcretas laminares (láminas de carbonato cálcico).

Si viéramos el corte donde se tomaron las fotografías de cerca, podríamos observar que alrededor de las calcretas principales aparecen unos hilos blanquecinos de menor tamaño. Esto indica que las raíces tenían una actividad fúngica a su alrededor. Estos hongos juegan un papel clave a la hora de fijar en las raíces el carbonato cálcico presente en el suelo.

Figura 3. Proceso de formación de calcretas.

Indicadores paleoclimáticos

Podemos encontrarnos calcretas con otras formas en la naturaleza, como nodulares, pulvurentas o muy compactas.

En regiones áridas, el polvo y las escasas precipitaciones realizan el aporte del carbonato cálcico. Por tanto, una calcreta es un excelente indicador paleoclimático, debido a que casi siempre se van a formar en zonas con precipitaciones muy bajas.

¿SABÍAS QUE…? El tiempo para que se forme un perfil de calcreta (sucesión vertical completa de los distintos horizontes o capas morfológicamente diferentes) depende de muchos factores: vegetación, clima y estadio de madurez. Puede darse una variación tan grande que pueden tardar entre 3.000 y 1 millón de años.

Para saber más sobre otros indicadores paleoclimáticos: Estudio de la evolución paleoclimática a partir de las turberas.

Actividades docentes relacionadas

RECURSO DIDÁCTICOA web tutorial for the petrographic analysis of carbonate rocks

Bibliografía

El paisaje de La Moraña. La geología invisible

Autor – Javier Elez

El paisaje de gran parte de la comarca de La Moraña se caracteriza por un relieve bastante plano del que sobresalen de tanto en tanto algunos cerros de dimensiones muy modestas, con pendientes suaves y un conjunto atravesado por los valles de los ríos Zapardiel, Arevalillo y Adaja. Domina en toda la comarca el cultivo del cereal y destacan en el horizonte los pinares autóctonos.

A pesar de la monotonía aparente de la llanura, desde el punto de vista geológico se sobreimponen en esta comarca una serie de procesos geológicos relevantes que le confieren su forma y características actuales. Estos procesos, la geología de los últimos millones de años, son identificables para el ojo experto. Pero si no lo eres, quizá necesites una pequeña guía para empezar a leer la geología aparentemente invisible de La Moraña. ¡Aquí va!

La formación del paisaje

La forma plana general de toda la comarca responde a un fenómeno de gran alcance geográfico relacionado con lo que los geólogos denominamos cuenca sedimentaria neógena del Duero.

¿SABÍAS QUE…? El período Neógeno comprende desde hace unos 23 millones de años hasta el comienzo del período Cuaternario hace 2,6 millones de años. Si quieres saber más sobre el tiempo geológico, consulta la tabla cronoestratigráfica internacional..

Pulsa sobre la imagen para ver la tabla cronoestratigráfica completa.

Una cuenca geológica o sedimentaria es una depresión en la corteza terrestre que tiene un origen tectónico y en la que se acumulan sedimentos. No confundir con cuenca hidrográfica. La cuenca sedimentaria del Duero tiene unos límites diferentes a la cuenca hidrográfica actual del río y un significado geológico distinto.

Para saber más, consulta: Qué es una cuenca hidrográfica

El desarrollo general y las causas de la formación de la cuenca sedimentaria del Duero son muy similares a las que explicamos en otro artículo sobre la cuenca sedimentaria de Amblés, pero en este caso los límites de la del Duero son: al sur, el Sistema Central; al este, la Cordillera Ibérica; al norte, la Cordillera Cantábrica. Mira este mapa para verlo más claro:

Figura 1. En naranja se marca el área ocupada por la cuenca geológica o sedimentaria neógena del Duero. Esta es una depresión de origen tectónico que está rellena por sedimentos del periodo Neógeno.
En rojo aparecen marcados los límites de la cuenca hidrográfica actual del río Duero.

Para saber más sobre la formación y características de la cuenca sedimentaria de Amblés, mira el artículo: Geomorfología del Valle de Amblés.

Al igual que la cuenca sedimentaria de Amblés, la del Duero se rellenó hasta arriba de sedimentos con capas prácticamente horizontales y paralelas que van marcando el paso del tiempo, con las más recientes arriba.

  1. Los sistemas montañosos circundantes aportaron sedimentos hasta que ya no cabían más. La cuenca se colmató (rellenó), dejando arriba una superficie horizontal muy extensa.
  2. Sobre esa superficie de colmatación se fue desarrollando después el resto de procesos geológicos que la modifican ligeramente, pero que han sido incapaces de borrar completamente su impronta.

A este proceso de colmatación de la cuenca sedimentaria del Duero debemos fundamentalmente el aspecto llano de la meseta castellano-leonesa.

¿SABÍAS QUE…? Los datos de subsuelo indican que amplios sectores del centro y norte de la cuenca sedimentaria del Duero tienen espesores de entre 1,5 y 2 km de sedimentos neógenos.

Sedimentación, erosión y cerros testigos

La cuenca sedimentaria del Duero era de tipo endorreico: no drenaba hacia el Atlántico y el agua y los sedimentos que entraban en la cuenca se quedaban allí. El relleno de la cuenca sedimentaria del Duero es un proceso muy largo que ocupa una parte importante del período Neógeno.

Sin embargo, desde hace unos 2,5 millones de años se rompe esta dinámica y se empiezan a desarrollar los ríos que conocemos en la actualidad. Es en este momento, a lo largo del período Cuaternario, cuando finalmente el río Duero termina conectando las cabeceras de montaña con el océano Atlántico, haciendo de cinta transportadora de agua y sedimentos y erosionando la antigua cuenca sedimentaria del Duero.

El desarrollo inicial de esta red de drenaje fluvial, precursora de la actual del río Duero, excava ligeramente la superficie de colmatación, erosiona las capas más fáciles y deja las más difíciles de erosionar prácticamente intactas, elaborando un paisaje dominantemente plano.

Esta erosión incipiente deja esparcidos pequeños cerros de suaves laderas y cimas planas que son los únicos testigos que quedan de unos sedimentos que han sido erosionados. A estas formas se las denomina cerros testigos en geología. La parte más alta de estos cerros está ocupada por capas sedimentarias más resistentes a la erosión y los protegen de ser completamente desmantelados.

Figura 2.
Formación de cerros testigos.
1) Esquema general de la disposición del relieve montañoso del Sistema Central y la cuenca geológica del Duero.
2) Modelo de desarrollo de un cerro testigo.
Figura 3. Dos imágenes en las que se pueden observar en distintos planos el relieve dominantemente llano, la superficie de colmatación, los cerros testigos y al fondo el Sistema Central. Imágenes tomadas en las cercanías de El Oso y Hernansancho, en la provincia de Ávila (España). Fotos de Gabriel Castilla.

La Geología como ciencia histórica

Sobre este relieve antiguo (paleo-relieve) de La Moraña, los cambios en el clima relacionados con el episodio climático conocido como Younger Dryas, hace unos 12.800 años, proporcionan las condiciones adecuadas para que se instalen espectaculares cinturones de dunas eólicas . Al final de este período frío, hace unos 11.700 años, el ascenso de las temperaturas deja las circunstancias ideales para que comience la “revolución neolítica” y el tránsito hacia sociedades sedentarias agrícolas. Pero esa es otra historia.

Los procesos descritos en este artículo hablan de la historia geológica de esta parte del mundo que es la comarca de La Moraña. Por esto decimos que la Geología es una ciencia histórica, porque nos cuenta cómo ha evolucionado el planeta y los procesos que le dan forma a lo largo de su propia historia, que es muy larga: unos 4.550 millones de años.

Para saber más sobre el período climático Younger Dryas: Younger Dryas: cambios climáticos que condicionaron el paisaje abulense y la vida humana.

Conoce más sobre las dunas de La Moraña y cómo y cuándo se formaron en: Un mar de dunas en La Moraña.

Fuentes de consulta

Reconstruyendo el paisaje a partir de un puñado de arena

Autores – Gabriel Castilla y Davinia Díez Canseco

Cuando nos detenemos a contemplar un paisaje, ya sea en el campo o en una fotografía, hay una pregunta que surge casi de manera espontánea: ¿cómo se formó el relieve que observamos? Intuimos que las llanuras, valles y montañas debieron originarse por la acción lenta pero continuada durante mucho tiempo del agua, el hielo o el viento; agentes que pueden arrancar materiales de un sitio para reubicarlos en otros. La experiencia nos induce a pensar que las rocas que configuraban el relieve primordial fueron disueltas o arrancadas, trituradas y transportadas lejos de allí.

La siguiente pregunta también surge por sí misma: ¿dónde fueron a parar todos estos materiales? Podemos deducir que viajaron hasta un lugar tranquilo donde el agua, el hielo o el viento perdieron su energía, depositándolos en forma de sedimentos (arcilla, limo, arena o grava) en una depresión del terreno o tal vez en el mar.

Y así, razonando paso a paso, construimos las nociones de erosión, transporte y sedimentación.

Figura 1. Cárcavas del río Adaja cerca de Blascosancho. En esta imagen se aprecian los tres procesos básicos que han modelado el paisaje: erosión, transporte y sedimentación. Foto: Gabriel Castilla.

Pero estas nociones son tan generales que apenas nos permiten conocer detalles sobre el tipo de rocas que formaban el relieve desaparecido, los procesos geológicos que actuaron o la distancia que recorrieron las partículas o clastos (minerales, fragmentos de roca y fósiles) antes de sedimentar. Para aclarar cómo se formó el paisaje y dónde fueron a parar los materiales que faltan es preciso detenerse antes en dos conceptos clave: selección y madurez.

Proceso de selección de materiales

Existe una relación directa entre los clastos que encontramos en un sedimento y la roca de la que proceden. En el caso del granito, la roca más abundante de la provincia de Ávila, tres son los minerales que lo constituyen: cuarzo, feldespato y mica.

Para saber más sobre el granito y su composición: Qué es el granito y cómo se forma.

Los tres minerales son liberados cuando el granito se ve alterado por procesos químicos (como la hidrólisis del feldespato) y físicos (fracturación por cambios de presión y temperatura).

Descubre más sobre la alteración del granito en: La formación de los suelos.

En los continentes la reubicación de estos minerales la realizan fluidos como el agua (ya sea líquida o en forma de hielo) y el viento. El viaje entre el lugar donde se produce la erosión y la zona de sedimentación puede ser muy agresivo, por lo que algunos minerales se pueden romper y alterar químicamente hasta desaparecer.

Figura 2. Arena próxima a la laguna de El Ejido, formada por la erosión del granito y el transporte del sedimento. Foto: Gabriel Castilla.

Los agentes de transporte realizan un doble proceso de selección:

  1. El primero tiene que ver con la composición, pues el agua altera y degrada químicamente el feldespato y la mica mientras que mantiene el cuarzo (por ser químicamente estable y mecánicamente resistente).
  2. El segundo es una selección por tamaños, pues cuanto más baja es la energía o la densidad del fluido (como el aire) su capacidad de erosión y carga es menor, por lo que solo puede transportar clastos de unos milímetros de grosor. Sin embargo, cuando la energía y densidad del fluido es alta (como le sucede al agua líquida, al hielo o al barro), su capacidad de transportar material de todos los tamaños es mayor. 
Figura 3. Tipos de selección en función de la capacidad de carga y del medio de transporte. La selección del viento es alta (dunas) mientras que la de los ríos es más baja. Gráfico tomado de Corbí, H. y Martínez-Martínez, J. (2015).

Madurez de los materiales

Los geólogos llamamos arena al sedimento formado por clastos de rocas disgregadas cuyo tamaño oscila entre los 0,06 y los 2 milímetros de diámetro.

Cuando el viaje de la arena ha sido largo solo sobreviven las partículas más duras, cuyos bordes se van desgastando. Podemos decir entonces que:

  • Una arena es madura cuando está formada por granos de cuarzo que presentan forma redondeada y un tamaño similar entre ellos.
  • Por el contrario, diremos que una arena es poco madura cuando contiene minerales blandos (micas y feldespatos), de aspecto anguloso y con tamaños muy desiguales.

Figura 4. El grado de redondez que muestran los granos de cuarzo son un indicador del desgaste que han experimentado durante su transporte. Gráfico extraído de Carta de sorting estándar. Australian Government, Geoscience Australia (www.ga.gov.au).

¿Qué información podemos deducir del estudio de la madurez de un sedimento?

  • Una arena madura nos habla de un relieve montañoso lejano, de llanuras y zonas tectónicamente tranquilas, de un transporte largo e intenso en el que pueden haber participado muchos procesos geológicos, entre ellos el viento.
  • Una arena poco madura nos habla de un relieve montañoso cercano y de un transporte enérgico pero corto, propio de zonas montañosas tectónicamente activas, donde son frecuentes los torrentes y pueden ocurrir episodios de alta energía como las llamadas “vejigas” (deslizamientos de ladera en zonas de alta pendiente).

Para saber más sobre las llamadas “vejigas” : Reconciliando la tradición oral de las “vejigas” con la geología y el estudio de los riesgos naturales parte 1 y parte 2 (el caso concreto de Venero Claro).

Figura 5. Muestra de arena, sobre papel milimetrado, tomada en una duna al Noroeste de El Oso. Podemos apreciar una selección media-alta con partículas finas, pero también cantos de unos 2 mm tanto de cuarzo redondeado como de feldespato anguloso. Podemos comparar esta muestra con arena del desierto del Sáhara que presenta clastos redondeados y sedimento con clastos angulosos de un río seco de Black Mountain en Alberta (Canadá). Foto: Gabriel Castilla.

De dónde viene la arena de las dunas de La Moraña

Las dunas de La Moraña están formadas por cuarzo (62,5%), feldespato (35%) y fragmentos de roca y micas (2,5%).  En algunas encontramos arena de grano muy fino y bien seleccionadas, mientras que en otras las arenas son más gruesas y están peor seleccionadas. Esto significa que el viento formó las dunas movilizando clastos de dos áreas de origen muy distintas:

  1. Las arenas maduras que se encontraban en las terrazas y llanuras de inundación de los ríos de la cuenca del Duero.
  2. Y los sedimentos menos maduros formados por la erosión rápida de relieves montañosos del Sistema Central.
Figura 6. Grano de cuarzo de una duna de la Moraña visto al microscopio electrónico de barrido (MEB) a diferentes escalas. Podemos apreciar bordes redondeados, escamas en la superficie y el “piqueteo” formado por el continuo choque con otros granos de cuarzo.
Fotos realizadas por Jaime Cuevas González en el MEB de la Universidad de Alicante.

Como hemos podido ver la arena tiene historias que contarnos, relatos que han quedado escritos en la composición, forma y selección de los granos que la conforman. Además, al observar detalladamente un grano de cuarzo de una de las dunas de La Moraña con un microscopio electrónico de barrido (MEB), podemos apreciar en su superficie rasgos producidos por la acción prolongada del viento que nos hablan de las condiciones climáticas de extrema aridez que azotaron esta región hace 11.600 años.

Para saber más sobre la evolución climática de La Moraña: Youger Dryas: cambios climáticos que condicionaron el paisaje abulense y la vida humana.

Completa lo que sabes sobre las dunas de La Moraña en: Un mar de dunas en La Moraña y Descubrir los cinturones de dunas de Ávila.

Fuentes de consulta

Humedales en tierras de labor

Texto y gráficos – Fina Muñoz

Imágenes – Gabriel Castilla

El paisaje que puede verse al dar un paseo por los alrededores de El Oso, en Ávila, es un relieve bastante llano con una red de drenaje apenas marcada por las curvas de nivel del terreno.

El agua de lluvia se acumula en pequeñas lagunas sin salida a ningún cauce o lago y se va desecando por infiltración lenta junto a ciclos diurnos de evaporación. En períodos de estiaje, el embalsamiento deja zonas encharcadas con agua que se va enriqueciendo en sales. Estas sales proceden de la propia lluvia y del lavado de los materiales de alrededor que arrastra sales disueltas.

Lagunas endorreicas de La Moraña

A este tipo de humedal lo denominamos habitualmente como lagunas endorreicas (fig. 1). Es decir, son cuencas continentales donde la superficie del terreno corta al nivel freático y el aporte de agua se debe a la escorrentía superficial cuando llueve.

Figura 1: Modelo conceptual de la laguna endorreica de El Ejido, en el término municipal de Riocabado.

¿SABÍAS QUE…? La geografía española del interior de la península está salpicada por este tipo de lagunas. Algunas de las más conocidas: Villafáfila (Zamora), Gallocanta (Aragón), Pétrola (Albacete) o del Hito (Cuenca).

En el caso de la Moraña, la interacción con las aguas subterráneas es mínima o nula. La tendencia natural de estas lagunas es a la colmatación con los sedimentos (Martín et al., 2010), que acabarán rellenando la cuenca.

La laguna del Ejido, en Riocabado

La etimología latina del nombre de la laguna del Ejido (exitus: salida) se relaciona con un terreno colectivo, indiviso, sin posibilidad de venderse o heredarse situado en las afueras de un pueblo. En las sucesivas series cartográficas de la Dirección General del Instituto Geográfico y Catastral de los años 1941, 1989 y 2015 se pueden ver ligeros cambios de los límites (Fig. 2) de la laguna del Ejido.

Fig. 2. Cartografía de la laguna del Ejido en los años señalados. (Fuente: CNIG)

Sin embargo, en las diferentes ortoimágenes del Instituto Geográfico Nacional de los años 1956, 2000 y 2015 (Fig. 3) se aprecia cómo los terrenos de la laguna siempre se han mantenido sin arar y el perímetro apenas si ha variado.

Fig. 3. Ortoimagen de la laguna del El Ejido en los años señalados. (Fuente: CNIG)

Desecación por drenaje

Al igual que en otras zonas húmedas de España, los humedales de La Moraña han sufrido una modificación a cargo de manos humanas. Un claro ejemplo son los canales excavados por debajo de la superficie freática para drenar los terrenos encharcados y ganar terrenos agrícolas. De la misma manera, en los bordes de los caminos que sirven de vías de acceso se drenan los campos alrededor de la laguna del Ejido (figura 4). Los canales con trazados rectilíneos como el Arroyo de los Collados o el Reguero de San Juan aprovechan líneas de máxima pendiente hacia los puntos más deprimidos de la topografía para facilitar así la evacuación del agua.

Figura 4. Canal de drenaje y aguas encharcadas al borde del camino cerca de la laguna del Ejido, en Riocabado.

Cómo se mantiene el agua en un sustrato arenoso

En este humedal el régimen natural de inundación depende tanto de las condiciones climáticas como de la relación entre las rocas que hay en profundidad. Como si fuera el fondo impermeable de una piscina que retiene el agua, el sustrato arenoso dunar empapado sobre el que se asientan las lagunas está contenido en un vaso de rocas de baja permeabilidad: las areniscas arcillosas del Mioceno. Esta capa situada por debajo de las arenas dunares frena el drenaje rápido de las aguas estancadas en la superficie (ver fig. 1).

Las arenas dunares conforman el acuífero de Los Arenales que se sitúa entre el sur del Duero y el Sistema Central con casi una extensión de 7600 km2 (IGME, 1999) y un espesor no superior a los 20 m (Navarro et al, 1993). Tienen mayor porosidad y son más permeables que las areniscas arcillosas del Mioceno que no transmiten el agua con facilidad.

Para saber más sobre el mar de dunas de La Moraña.

Qué pasa cuando se desecan las lagunas

Al desaparecer el humedal, las plantas que aparecen en algunos sectores son halófilas (Martín et al, 2010), es decir, tienen afinidad por un sustrato salino, depositado por el agua que ha sido evaporada. Tras largos períodos sin lluvia, estos suelos arcillosos quedan cuarteados con grietas de retracción y un tapizado vegetal ya deshidratado (fig. 5 y 6). Entre la población local, estas zonas son denominadas saladares o salobrales.

Figura 5. Grietas de desecación en suelo areno-arcilloso.
Figura 6. Tapiz de algas secas en el saladar, cerca de El Oso (Ávila).

En el Geolodía 2019 veremos, además del funcionamiento de las lagunas endorreicas, cómo en la zona se abastecen de agua potable sin que ello afecte al hábitat natural de las aves en la laguna de El Oso. ¡No te lo pierdas!

Recursos docentes relacionados

RECURSO DIDÁCTICO. Temas y prácticas de hidrogeología e hidrología superficial

RECURSO DIDÁCTICO. Serie documental que repasa cuestiones fundamentales del agua subterránea

Referencias

Younger Dryas: cambios climáticos que condicionaron el paisaje abulense y la vida humana

Autor (texto y gráficos) – Javier Pérez Tarruella

Hace 18.000 años nuestro planeta se encontraba inmerso en el último máximo glaciar. La nieve caída sobre los continentes no llegaba a fundirse en verano, formándose grandes acumulaciones de hielo. Y como el agua de precipitación no retornaba al océano el nivel del mar descendió hasta 125 metros por debajo del actual.

18.000 años es un parpadeo en términos geológicos. Y es que el periodo en el que le ha tocado vivir a nuestra especie (el Cuaternario) se caracteriza por un clima que cambia rápidamente (fig. 1).

Figura 1. Variación climática en los últimos 250.000 años. A grandes rasgos se diferencian 3 glaciaciones y 3 periodos interglaciares, en el último de los cuales nos encontramos ahora. En este artículo nos centraremos en la transición de la última glaciación al presente interglaciar en el que nos encontramos.

Estos cambios climáticos, que a grandes rasgos dan lugar a una glaciación y un periodo interglaciar cada 100.000 años aproximadamente, son debidos a:

Estos factores astronómicos siempre han existido, pero el hecho de que hayamos llegado a tener casquetes de hielo en ambos polos (algo rarísimo en la Historia de la Tierra) ha hecho mucho más vulnerable y cambiante al sistema climático.

El enfriamiento súbito del Younger Dryas

Estos cambios no siempre son graduales. Si estudiamos en detalle el final de la última glaciación vemos que, cuando parecía que se retiraba definitivamente, dio un último coletazo hace unos 12.000 años con el llamado Younger Dryas (también conocido como Dryas Reciente o Joven Dryas).

Este enfriamiento súbito del clima fue el responsable de la aparición del mar de dunas de La Moraña, y es que la precipitación en Ávila disminuyó al reducirse la evaporación del Atlántico Norte por las bajas temperaturas.

Para saber más sobre el mar de dunas de La Moraña.

La hipótesis más aceptada sobre el origen de este cambio climático es la del vaciado del Lago Agassiz. Este lago se formó por el deshielo del casquete glaciar de Norteamérica, cerca de los Grandes Lagos, alcanzando un tamaño similar al de la Península Ibérica (figura 2). En un determinado momento este lago vertió sus aguas al Atlántico, deteniendo las corrientes oceánicas y enfriando especialmente el Atlántico Norte.

Figura 2. El Lago Agassiz y las posibles vías de vertido de sus aguas al océano.

¿Sabías que…? La película Ice Age 2 está basada en la hipótesis del Lago Agassiz. Los protagonistas viven junto a una presa de hielo que retiene el agua del deshielo acumulada en el Lago Agassiz y deben escapar antes de que se rompa y el lago se vacíe de golpe, es decir: ¡antes de que comience el Younger Dryas!

El final del Younger Dryas y el inicio de la agricultura

Como se observa en la figura 3, a pesar de que los factores astronómicos aumentaban la insolación sobre el hemisferio norte, el clima se enfrió y con ello disminuyó la precipitación.

Sin embargo, más destacable que el enfriamiento del Younger Dyas fue su final. Y es que ese calentamiento y deshielo que se habían visto frustrados remontaron rápidamente, con una subida del nivel del mar de más de 40 mm/año durante unos 3 siglos y un calentamiento de más de 7ºC en Groenlandia para ese periodo.

Figura 3. Gráfica que muestra 5.000 años de evolución climática, incluyendo el Younger Dryas. La temperatura y la precipitación en el Atlántico Norte disminuyeron en este periodo, a pesar del aumento de la insolación. El enfriamiento finalizó de golpe, provocando la fusión masiva de glaciares y un aumento brusco del nivel del mar.

Los registros arqueológicos muestran que el inicio de la agricultura y las civilizaciones complejas (el Neolítico) coincide con el final del Younger Dryas, el calentamiento que dio paso al presente Interglaciar. Ahora, gracias a unos sondeos en el Mar Muerto, en el entorno de Mesopotamia o “Cuna de la Civilización”, sabemos que esta coincidencia es exacta.

Estos sondeos indican que el espesor de las capas de sedimento en la cuenca del Mar Muerto se incrementa a partir del fin del Younger Dryas. La incipiente actividad agrícola y el pastoreo provocarían un aumento de la erosión y por tanto el incremento de la sedimentación observado en la zona.

Por una parte, parece que un cambio ambiental tan brusco obligó a modificar el modo en que obteníamos el alimento; y por otra parte, la relativa estabilidad climática del Interglaciar nos permitió perfeccionar la técnica hasta llegar a los tractores que hoy aran La Moraña.

Quizá sin el Younger Dryas no habría surgido este nuevo paradigma de vida de nuestra especie, o quizá hubiese aparecido 2.000 años antes al no retrasarse el fin de la glaciación. En cualquier caso, fue un evento que nos permite aprender cuánto han condicionado los cambios climáticos la historia de la Humanidad.

¿Sabías que…? Otra de las hipótesis utilizadas para explicar el cambio climático del Younger Dryas es el impacto de un meteorito en Groenlandia. Esta hipótesis se lanzó en 2007 y en 2018 se descubrió bajo el casquete glaciar de Groenlandia un enorme cráter de impacto de 30 km de diámetro. Los cálculos sugieren que un meteorito de 1 km impactó contra la Tierra hace entre 10.000 y 2 millones de años, de momento es el único sospechoso que tenemos como culpable cósmico del Younger Dryas.

Referencias