Archivo de la categoría: Historia de la Geología

Historia y evolución de la geología como disciplina científica y en el estudio de las ciencias de la tierra.

GEOLODÍA 23. Hotel de insectos

Autoría: María González Martín y Thibauld M. Béjard

La concienciación ambiental y el aumento del interés social por el cambio climático propicia la aparición de técnicas alternativas para mantener la biodiversidad. Una de ellas es la aparición de hoteles de insectos en diferentes puntos de la península, como en Arévalo (provincia de Ávila, Castilla y León). Un hotel de insectos es una estructura con diferentes secciones, tamaños y huecos que sirven de refugio a numerosos organismos, como abejas, saltamontes y diversos insectos polinizadores. Hoy en día se utilizan tanto para incrementar la biodiversidad local, tanto como forma ecológica de controlar plagas e invasiones en plantaciones y huertos. Actualmente, se considera que los insectos son unos de los grupos con mayor diversidad y éxito evolutivo, por lo que su impacto en los ecosistemas es muy importante. Pero, ¿ha sido siempre así? ¿Cuándo aparecieron por primera vez estos organismos? ¿En qué momento de la historia de la Tierra han un tenido su mayor éxito evolutivo?

Aparición de los insectos y características principales

El género Insecta apareció casi simultáneamente con las plantas terrestres, hace alrededor de 480 millones de años (Ma), durante el periodo Ordovícico. Estudios recientes muestran que los primeros insectos (por ejemplo, abejas y hormigas actuales) evolucionaron a partir de un grupo de crustáceos (como cangrejos y gambas). Hoy en día, hay alrededor de 1 millón de especies descritas, y se estima que podría haber entre 1.5-1.8 millones de especies en total, lo que representa el 90% de los organismos del planeta

Figura 1. Repartición de las especies del reino animal en función de si son vertebrados o invertebrados.

El cuerpo de los insectos se puede separar de manera sencilla en 3 partes: cabeza, tórax y abdomen. Una de sus características principales son sus 6 patas repartidas en 3 pares. De un punto de vista de su anatomía interna, destaca su sistema respiratorio: el aire entra a través de aperturas externas llamadas espiráculos, y se reparte a través del cuerpo por una red de tubos llamados tráqueas. En este sistema, el oxígeno se transporta directamente a las células del organismo, pero el aparato respiratorio no transporta los gases ni participa en la respiración de los tejidos, por lo que cualquier cambio en la concentración de oxígeno atmosférico tiene un impacto importante para lo insectos.

A lo largo de la historia de la Tierra, la diversidad y morfología de los insectos ha variado considerablemente en función de factores como la temperatura, la concentración de oxígeno en la atmósfera, la disponibilidad de alimento y la presencia de depredadores.

El Carbonífero y el Pérmico, los periodos de los insectos gigantes

El Carbonífero se desarrolló hace 358 a 298 Ma aproximadamente. Se caracteriza por unas temperaturas relativamente elevadas y una gran humedad. Estas condiciones favorecieron la aparición de los famosos bosques y pantanos del Carbonífero, un entorno favorable al desarrollo de la fauna y flora.

Durante este periodo, los insectos lograron una gran diversidad y tamaños gigantes. Entre otros, aparecieron los primeros insectos alados, como las cucarachas y las libélulas. En particular, dos especies: Meganeura monyi y americana (parecidas a las libélulas actuales) alcanzaron envergaduras de hasta 70cm, lo que las convierte en los mayores insectos voladores de la historia de la Tierra.

Comparativa del tamaño de insectos.
Figura 2. Comparación de la mayor libélula actual (Anax junius) con el mayor insecto volador de la historia (Meganeura monyi) y con una persona de estatura media.

Estos organismos llegaron a desarrollar tamaños tan grandes debido a la concentración en oxígeno en la atmósfera: 35%, en lugar de un 20% actual, la mayor concentración registrada hasta la actualidad; pero también debido a la ausencia de depredadores.

Durante el Pérmico, desde hace 298 a 250 Ma, aparecieron los primeros escarabajos, moscas y mariquitas. Este periodo representa el de mayor abundancia de insectos, donde su éxito evolutivo fue mayor, especialmente los blatoideos (cucarachas).

Al final del Pérmico, sucedió la mayor extinción registrada en la Tierra, la crisis del Pérmico-Triásico, donde casi 90% de todas las especies se extinguieron, sin embargo, “sólo” 30% de las especies de insectos desaparecieron.

El Jurásico y el Cretácico, aparición de las aves y disminución del tamaño

En el Jurásico (200 a 150 Ma), al igual que en el Carbonífero, el clima era cálido y húmedo. En este periodo, las aves comienzan a desarrollarse, siendo el fósil de Archaeopteryx la primera evidencia de la aparición de estos organismos. Los insectos voladores se ven ahora sometidos a la presión de los depredadores y en el registro fósil se observa un gran incremento de especies de insectos no voladores como escarabajos y cucarachas.

Figura 3. Fósil de archeopteryx, la primera ave descrita, en el museo de historia natural de Berlín. Fuente: https://www.museumfuernaturkunde.berlin

En el Cretácico (150 a 66 Ma), cuyo clima seguía siendo cálido y húmedo, las aves han desarrollado técnicas de vuelo especializadas, haciendo de ellas depredadores más eficaces. Estudios recientes muestran que el registro fósil presenta especies e individuos cada vez más pequeños y hasta extinciones localizadas de insectos voladores durante este periodo, aunque la concentración de oxígeno atmosférico haya aumentado. 

A partir de este periodo, la concentración en oxígeno o la temperatura ya no van a ser los factores principales que van a controlar la distribución de los insectos, ahora tienen depredadores.

Al terminar el Cretácico, vuelve a suceder… una extinción: la extinción del Cretácico-Terciario. Aunque haya sido menos extrema, es más conocida, pues es la responsable de la desaparición de los dinosaurios. 

Figura 4. Comparación de los mayores insectos voladores y no voladores actuales.

El Paleógeno, aparición de los géneros modernos

El Paleógeno (66 a 23 Ma) se conoce principalmente por su clima tropical y por la diversificación de los mamíferos. La aparición de las plantas con flores modernas propició la expansión de insectos polinizadores. La mayoría de insectos que conocemos actualmente, así como su distribución y abundancia, tienen su origen en este periodo.

Los insectos, a pesar de aparecer hace más de 400 millones de años, sobrevivir a dos extinciones masivas (y un sinfín de pequeños eventos extintivos) y aguantar la aparición de aves depredadoras, siguen siendo la clase con mayor biodiversidad del planeta. Su rápido ciclo reproductivo, así como su capacidad evolutiva hace pensar que va a seguir siendo así en el futuro. Desde libélulas de 70 cm de envergadura, a escarabajos peloteros, pasando por abejas y mosquitos, un hotel de insectos siempre encontrará huéspedes, ¡en cualquier periodo geológico, año, mes, o día de la semana!

Bibliografía

  • Barrientos, J.A., Abelló, P., 2004. Curso práctico de entomología. Universitat Autònoma de Barcelona ; CIBIO, Centro Iberoamericano de la Biodiversidad ; Asociación Española de Entomología, Bellaterra, Alicante, [S.l.]. ISBN: 978-84-490-2383-5.
  • Grimaldi, D.A., Engel, M.S., 2005. Evolution of the insects. Cambridge University Press, Cambridge [U.K.] ; New York. ISBN: 978-0-521-82149-0.
  • Kjer, K.M., Simon, C., Yavorskaya, M., Beutel, R.G., 2016. Progress, pitfalls and parallel universes: a history of insect phylogenetics. J. R. Soc. Interface. 13, 20160363. https://doi.org/10.1098/rsif.2016.0363
  • Wipfler, B., Letsch, H., Frandsen, P.B., Kapli, P., Mayer, C., Bartel, D., Buckley, T.R., Donath, A., Edgerly-Rooks, J.S., Fujita, M., Liu, S., Machida, R., Mashimo, Y., Misof, B., Niehuis, O., Peters, R.S., Petersen, M., Podsiadlowski, L., Schütte, K., Shimizu, S., Uchifune, T., Wilbrandt, J., Yan, E., Zhou, X., Simon, S., 2019. Evolutionary history of Polyneoptera and its implications for our understanding of early winged insects. Proc. Natl. Acad. Sci. U.S.A. 116, 3024–3029. https://doi.org/10.1073/pnas.1817794116

Este contenido forma parte del Geolodía 2023 de Ávila en Arévalo, Ávila (España).

GEOLODÍA 23. El Patrimonio Geológico como herencia y su conservación

Autor: Jaime Cuevas

Si lo prefieres, puedes escuchar este artículo aquí:

Cualquier forma de terreno natural que no haya sido modificada por la acción humana se ha formado o configurado por procesos geológicos. Tanto las discretas lomas en campo abierto como una imponente montaña tienen detrás procesos y materiales geológicos que generalmente se remontan a cientos, miles o millones de años.

Imagen de Monument Valley, Arizona, USA. Foto de Iván Pérez.
Monument Valley (Arizona, USA). Imagen de Iván Pérez.

La lentitud de estos procesos, junto con la profundidad del tiempo geológico, crea una abrumadora relación de escala comparada con la percepción humana del tiempo.

Para saber más sobre el tiempo geológico: Cómo se entiende el tiempo en geología.

Por esta razón, la destrucción de un fósil o la modificación del relieve por expansión de infraestructuras u obtención de recursos deja una sensación de proceso irreversible: si desaparece una forma o elemento del paisaje, sin duda los procesos geológicos la podrán repetir, pero probablemente no esté ya la humanidad para observarlo.

Por ello, tenemos la responsabilidad de cuidar y valorar una herencia de formas y elementos geológicos, para trasmitirla a futuras generaciones y que también puedan observarlas, estudiarlas o simplemente disfrutarlas. La idea de herencia entre generaciones es uno de los enfoques más claros para entender el concepto de Patrimonio Geológico.

¿Qué es el Patrimonio Geológico?

Bajo el marco de Patrimonio Geológico se hace referencia a aquellos lugares u objetos naturales de origen geológico que tienen valores científicos, culturales o educativos, tales como rocas, minerales, fósiles o paisajes.

Debido al largo tiempo necesario para formarse, estos objetos naturales contienen fragmentos de información sobre procesos del pasado que ayudan a comprender la historia de la Tierra, de la Vida e incluso del Universo.

Los avances tecnológicos actuales permiten llegar a un nivel de resolución muy preciso sobre esa información, pero obviamente esta resolución irá aumentando con futuras técnicas analíticas aún no desarrolladas.

Esta es otra buena razón para conocer, cuidar y mantener en las mejores condiciones posibles la herencia geológica que hemos recibido y que dejaremos a las futuras generaciones.

Evolución de la geoconservación

Las primeras iniciativas de geoconservación de lugares o elementos geológicos en España las promueve y coordina el Instituto Geológico y Minero de España (IGME).

Con la elaboración durante las décadas de los 70 y 80 del Mapa Geológico Nacional por parte del IGME se pone en marcha el Inventario Nacional de Puntos de Interés Geológico, un primer catálogo donde se recogen lugares emblemáticos desde el punto de vista geológico.

En la década de los 90 hay un creciente interés general por la geoconservación y surgen distintas iniciativas de catalogación por parte de algunas Comunidades Autónomas, pero con una cobertura muy desigual del territorio.

Hacia el final del siglo XX la UNESCO y la Sociedad Geológica Internacional (IUGS) promueven el proyecto Global Geosites, un catálogo de lugares de interés geológico que sigue unos criterios específicos para justificar su relevancia mundial.

Lógicamente, hay muchos otros lugares que no alcanzan ese grado de singularidad global, aunque no por ello sean menos interesantes y merecedores de una catalogación y puesta en valor.

Inventario Español de Lugares de Interés Geológico (IELIG)

Con el objetivo de hacer un inventario nacional completo y unificado, en 2011 el IGME pone en marcha el Inventario Español de Lugares de Interés Geológico (IELIG) que pretende unir y ampliar las anteriores propuestas de catalogación, tanto internacionales como de ámbito nacional y autonómico.

Actualmente el IELIG tiene más de 4.500 lugares de interés geológico que en la web info.igme.es/ielig/ se pueden consultar públicamente para que los conozca la ciudadanía, las instituciones y que, en última instancia, sean considerados en los planes de ordenación territorial de cada municipio. Además, este catálogo está abierto a seguir ampliándose incluyendo nuevas propuestas de lugares de interés geológico.

Imagen de la base de datos de Lugares de Interés Geológico (IELIG) del IGME. Permite realizar búsquedas por poblaciones o puntos geográficos.
Imagen de la base de datos de Lugares de Interés Geológico (IELIG) del IGME. Permite realizar búsquedas por poblaciones o puntos geográficos.

IELIGs en Arévalo

En el entorno de Arévalo hay actualmente tres puntos catalogados en el IELIG.

Mapa de localización de los tres lugares de interés geológico en las inmediaciones de Arévalo (Ávila).
Mapa de localización de los tres lugares de interés geológico en las inmediaciones de Arévalo (Ávila).

Dos de ellos son de interés geomorfológico, sedimentológico y estratigráfico y se encuentran en campos de dunas pleistocenas del último episodio glacial hace unos 10.000 años. Son formaciones geológicas de arenales naturales, donde en algunos puntos aún se pueden observar antiguas canteras para la extracción de áridos. Estas formaciones de dunas son importantes para los estudios paleoclimáticos ya que constituyen registros de una época con un clima en la región de Ávila muy distinto al actual.

Vista de los frentes de la cantera abandonada del LIG Dunas eólicas cuaternarias de Arévalo (DI127). Tomada de info.igme.es/ielig/
Vista de los frentes de la cantera abandonada del LIG Dunas eólicas cuaternarias de Arévalo (DI127). Tomada de info.igme.es/ielig/

Si quieres ampliar información sobre las dunas de Ávila, te recomendamos: Un mar de dunas en La Moraña | Herramientas para descubrir los cinturones de dunas de Ávila

El tercer LIG se encuentra en las márgenes del río Arevalillo y es el yacimiento de vertebrados de La Lugareja. En él se han encontrado fósiles de tortugas gigantes y del mamífero Hispanomerix, un pariente del actual ciervo almizclero asiático. Este yacimiento es del periodo Mioceno superior hace 9 millones de años y es de especial relevancia por su interés paleontológico.

Parte anterior del peto de Titanochelon bolivari encontrado en Arévalo (Ávila) y expuesto en la Sala de las Tortugas, en la Universidad de Salamanca. Hernández-Pacheco, 1917.

Apadrina una roca

En el contexto del IELIG está incluida la iniciativa “Apadrina una roca”.

Se trata de un programa de participación ciudadana en el que cualquier persona puede “apadrinar” un LIG que le resulte interesante y que pueda visitar con frecuencia.

Desde la página web del IELIG se puede participar mediante un formulario de datos básicos y con el compromiso de visitar regularmente el LIG para comprobar su estado.

El objetivo es crear un vínculo entre los participantes de esta iniciativa y los LIG que han elegido, de forma que tengan un canal de comunicación con el IGME para informar de incidencias que puedan amenazar su integridad.

Logo del proyecto de participación ciudadana Apadrina una Roca está promovido por el IGME para el cuidado y protección de los lugares de interés geológico
El proyecto de participación ciudadana Apadrina una Roca está promovido por el IGME para el cuidado y protección de los lugares de interés geológico.

Este contenido forma parte del Geolodía 2023 de Ávila en Arévalo, Ávila (España).

Cómo se entiende el tiempo en Geología

– Una de las particularidades de la Geología como ciencia es que es una ciencia histórica.

– ¿Qué quiere decir esto?

– Que los procesos que estudiamos y que son responsables de la dinámica de nuestro planeta se han dado en un espacio y sucesión temporal determinados.

Este orden es muy relevante, ya que mucho de lo que acontece en un momento dado suele estar fuertemente condicionado por su pasado más o menos inmediato.

Versión de 2021 de la Tabla Cronoestratigráfica Internacional en español publicada por la International Commission on Stratigraphy (ICS).
Versión de 2021 de la Tabla Cronoestratigráfica Internacional en español publicada por la International Commission on Stratigraphy (ICS).

¿Cómo entendemos el tiempo en los procesos geológicos?

Por lo general, en el imaginario colectivo se entiende que los procesos geológicos son todos lentos, que requieren de mucho tiempo (millones de años) para tener lugar y que solo el paso del tiempo constante y tenaz es capaz de generar cambios significativos en el planeta.

Pero esto no es así, necesariamente. Por ejemplo, la erupción de La Palma ha durado poco más de dos meses y sin embargo ha cambiado significativamente la topografía de un sector de la isla para los próximos miles de años.

Recopilatorio diario visual del volcán de la erupción de Cumbre Vieja, La Palma. IGME.

Es por eso que queríamos explicar aquí cómo se entiende el tiempo en Geología ⤵️.

Procesos lentos vs. rápidos

Es cierto que algunos procesos son constantes, progresivos y lentos. Y que necesitan de millones de años para que se observen los efectos. Por ejemplo:

Pero muchos otros son (extremadamente) rápidos. Por ejemplo:

  • Un terremoto puede cambiar la posición y topografía de una zona concreta del planeta en cuestión de minutos.
  • En los fondos marinos más profundos y tranquilos puede producirse sedimentación que registre decenas de millones de años de forma continua. Pero en otros contextos es muy habitual encontrarnos en el registro geológico sedimentos de fenómenos de tormenta, tsunamis, explosiones volcánicas, etc. que sabemos que solo pudieron durar unas pocas horas o minutos.

Además, que un proceso necesite de millones de años para culminar, como la formación de cordilleras, no quiere decir necesariamente que se produzca de forma lenta y pausada. Puede desarrollarse a pulsos, acelerando y desacelerando en función de un número importante de variables.

Tiempos diferentes, resultados similares

El mismo proceso se puede dar en intervalos temporales diferentes dando lugar a resultados muy similares.

  • Por ejemplo, los volcanes pueden estar activos durante millones de años, pero a veces hay edificios volcánicos pequeños que comienzan a funcionar en pocas semanas. De igual forma, su desaparición puede ser lenta y progresiva por erosión o corta y violenta si explotan.
  • También es posible encontrar sedimentos continuos de fondos tranquilos de lagos que abarcan solo unas pocas decenas de miles de años (los lagos se llenan rápidamente de sedimentos). En contraposición a los sedimentos de fondos marinos profundos que hemos comentado y que pueden abarcar decenas de millones de años.

Procesos únicos vs. procesos cíclicos

Algunos procesos son únicos y otros cíclicos, con independencia de su duración. Por ejemplo:

  • El clima ha ido oscilando de glaciación a deglaciación de forma cíclica (y por causas perfectamente conocidas) a lo largo de los últimos 2,5 millones de años (periodo Cuaternario) unas 55 veces.
Curva del nivel del mar y estadios isotópicos marinos (MIS) en los diferentes ciclos glaciares-interglaciares durante los últimos 200.000 años. Figura incluida en el artículo El Periodo Cuaternario: La Historia Geológica de la Prehistoria, de Silva, P.G.; Bardají, T.; Roquero, E.; Baena-Preysler, J.;Cearreta, A.; Rodríguez-Pascua, M.A.; Rosas, A.;Cari Zazo; Goy, J.L.

Curva del nivel del mar y estadios isotópicos marinos (MIS) en los diferentes ciclos glaciares-interglaciares durante los últimos 200.000 años. Figura incluida en el artículo El Periodo Cuaternario: La Historia Geológica de la Prehistoria, de Silva, P.G.; Bardají, T.; Roquero, E.; Baena-Preysler, J.;Cearreta, A.; Rodríguez-Pascua, M.A.; Rosas, A.;Cari Zazo; Goy, J.L.
  • Sin embargo, la formación de los océanos, probablemente a partir de un bombardeo de cometas de hielo procedentes de los márgenes exteriores del sistema solar, es un proceso único e irrepetible.

Interacción y condicionamiento

Y además el conjunto de procesos interacciona entre sí, de forma que unos procesos y sus resultados condicionan a otros y su desarrollo. En general, los intervalos temporales de los procesos se mezclan e interfieren entre ellos:

  • La evolución de unas especies en otras puede ser un fenómeno lento y progresivo. O completamente súbito por causas puramente evolutivas. A esto último lo llamamos radiación adaptativa.
Diversidad de picos en distintas especies de pinzones de las islas Galápagos, derivados de una misma especie ancestral y adaptados a distintos modos de alimentación. Darwin, 1845. Journal of researches into the natural history and geology of the countries visited during the voyage of H.M.S. Beagle round the world, under the Command of Capt. Fitz Roy, R.N. 2d edition. 1. Dominio público en Wikipedia Commons.
Diversidad de picos en distintas especies de pinzones de las islas Galápagos, derivados de una misma especie ancestral y adaptados a distintos modos de alimentación. Darwin, 1845. Journal of researches into the natural history and geology of the countries visited during the voyage of H.M.S. Beagle round the world, under the Command of Capt. Fitz Roy, R.N. 2d edition. 1. Dominio público en Wikipedia Commons.
  • Sin embargo, un fenómeno puntual como el impacto de un meteorito puede causar extinciones masivas y en cuestión de pocos años cambiar completamente la distribución de fauna a nivel planetario (sí, por ejemplo el de los dinosaurios, pero a diversas escalas hay muchos más ejemplos de meteoritos y extinciones).

El sesgo de conocimiento en Geología

Además, tenemos un sesgo de conocimiento en función de los datos de los que disponemos y sus márgenes de error.

Muchas de las rocas más antiguas del planeta han sido destruidas (recicladas) en lo que conocemos como ciclo de Wilson. Por lo tanto, hay un mayor volumen de roca que se conserva de épocas recientes, de manera que somos capaces de identificar muchos (pero muchos) más procesos y fenómenos cuanto más nos acercamos al presente. De la última parte de la evolución del planeta incluso tenemos las formas relictas (heredadas, que se formaron en épocas pasadas) de fenómenos que ya no existen y que nos ayudan también a caracterizar el pasado. Por ejemplo, los circos glaciares de Gredos y de todo el Sistema Central: ya no existen los glaciares que los originaron, pero sí sus huellas.

Laguna glaciar de El Duque, en Solana de Ávila, Ávila. Imagen de Gabriel Castilla.
Laguna glaciar de El Duque, en Solana de Ávila, Ávila. Imagen de Gabriel Castilla.

Y no menos importante: los métodos de datación absoluta de los que disponemos (los que nos dan edades numéricas) tienen en general mayor precisión cuanto más nos acercamos al presente, de forma que:

  • Dataciones de hace más de 3000 millones de años pueden tener márgenes de error de más/menos 200 millones de años.
  • Y dataciones de hace 3000 años pueden tener márgenes de error de más/menos 250 años.

Desafortunadamente, a día de hoy no es posible modelizar en laboratorio cómo afecta el parámetro tiempo a los distintos procesos y materiales geológicos. Y por eso no tenemos más remedio que «imaginarnos» el tiempo, que como has visto es un parámetro escurridizo.


Próximamente: Cómo entender la tabla del tiempo geológico

Profundiza en Actualismo: el método científico que alumbró la geología moderna

Prácticas y herramientas para entender el tiempo geológico

Abecevidas | Mary Arizona «Zonia» Baber

Participamos con este retrato alfabético en la iniciativa de escritura creativa del mes de febrero 2021 de Café Hypatia: Herederas de Hypatia. #PVherederas #11F #Polivulgadoras

Ayudó a la creación del Indiana Dunes National Park.

Buscó mejorar la enseñanza, revisando los libros de texto y actualizando frases y conceptos anticuados.

Cofundó la Sociedad Geográfica de Chicago en 1898.

Defendió la necesidad del trabajo de campo y de laboratorio, motivando el conocimiento a través de la experiencia y no de la memoria.

Laboratorio de Geografía de Zonia Baber.
Imagen de su artículo: Geography, publicado en ‘The Course of Study’ (1901).Vol. 1, No. 8, pp. 704-706. Universidad de Chicago

Estudió geología en Universidad de Chicago, en la primera clase que permitió a estudiantes mujeres.

Fue miembro de la Sociedad de Mujeres Geógrafas desde 1927.

Garantizó la representación de las mujeres de Puerto Rico en el sufragio en ese territorio.

Zonia Baber (izq.), como representante de las mujeres de Puerto Rico, con Burnita Shelton Matthews (drcha.), secretaria de Investigaciones Jurídicas del Partido Nacional de la Mujer. Dialogan sobre la redacción del proyecto de ley del sufragio de las mujeres de Puerto Rico en el Congreso de EE.UU.
Imagen: Biblioteca del Congreso de los EE.UU.

Holística era su visión de la educación, las ramas del conocimiento las entendía como interdependientes y así debían de enseñarse (artículo).

Inventó y patentó un escritorio adaptado al estudio de la geografía y la geología.

Escritorio patentado por Zonia Baber en 1896.
Imagen: Google Patents.

Juntó en el escritorio un recipiente para arcilla, un pozo de agua y una bandeja para arena, que servían al alumnado para crear sus propios paisajes en miniatura.

Una de las clases de Zonia Baber donde empleaba los pupitres que ella misma diseñó.
Imagen de su artículo: Geography, publicado en ‘The Course of Study’ (1901).Vol. 1, No. 5, pp. 409-412. Universidad de Chicago.

Las excursiones de campo le parecían una herramienta indispensable para un mayor rendimiento intelectual de sus estudiantes (artículo).

Mujer aceptada, junto con Like Florence Bascom, en la lista de American Men of Science.

Nació en el condado de Clark County (Illinois).

Obtuvo su título de maestra en geografía en 1885, y su licenciatura en ciencias en 1904.

Zonia Baber recolectando fósiles en Mazon Creek (Illinois), como parte de una clase de geología en 1895. Imagen: Archivo fotográfico de la Universidad de Chicago.

Profesora de geología y geografía en la Universidad de Chicago.

Zonia Baber junto al resto de profesores de la Facultad de Geología, Geografía y Paleontología de la Universidad de Chicago en el curso 1912-1913.
Imagen: Archivo fotográfico de la Universidad de Chicago.

Quiso hacer de la geografía un medio para conexión y comprensión entre culturas y no de dominación, como se percibía en la época colonial en la que vivió.

Recibió la Medalla de Oro de la Sociedad Geográfica de Chicago a su trayectoria, en el 50 aniversario de su fundación.

Sufragista activa, luchó por los derechos de las mujeres y de las minorías.

Tuvo que mudarse con su tío para estudiar secundaria, ya que en su condado las mujeres no podían estudiar.

Una de las integrantes del comité panamericano de la Liga Internacional de Mujeres por la Paz y la Libertad.

Viajó por América, Asia, Europa y Oriente Medio, y elaboró un mapa con los Monumentos a la Paz que visitó.

Mapa realizado por Zonia Baber con los Monumentos a la Paz que visitó. Imagen: Archivos de la universidad privada de Pensilvania Swarthmore College.

Washington fue la sede del 4º Congreso Internacional organizado por la Women International League for Peace & Freedom (WILPF), al que asistió.

De izquierda a derecha: Ida Perry Johnson, Zonia Baber y Mabel Powers en 1924 en el 4º Congreso Internacional de la Liga Internacional de Mujeres por la Paz y la Libertad (WILPF). Imagen: Archivos de la universidad privada de Pensilvania Swarthmore College.

Yacen sus cenizas, junto con las de su hermana Helen Scoville Baber, en el cementerio de Evergreen (Lansing, Michigan), municipio donde vivieron juntas sus últimos años.

Tumba de las cenizas de Zonia, y las de su hermana Helen, en el cementerio histórico de Evergreen (Lansing, Michigan). Imagen: fotografía cedida por la Asociación sin ánimo de lucro «The Friends of Lansing´s Historic Cementeries @LansingCementeries«.

Zonia contribuyó a entender la geología y la geografía como lo hacemos hoy en día.

En resumen

Abecevidas | Mary Anning

Participamos con este retrato alfabético en la iniciativa de escritura creativa del mes de mayo 2020 de Café Hypatia #PVgeología #Polivulgadores

Acantilados exploraba cada día.

Blue Lias se llamaba la formación geológica donde trabajaba.

Formación Blue Lias en Lyme Regis, Dorset, Reino Unido. Imagen de Michael MaggsCC BY-SA 2.5.

Calizas y pizarras las rocas que pisaba.

Diseccionaba peces y sepias para aprender anatomía.

Esqueletos de piedras lo que ver sabía.

Fósiles de ammonites, belemnites y demás criaturas marinas siempre en su cesta.

Geólogos y coleccionistas iban a visitarla.

Hija de Molly y Richard, ebanistas humildes.

Ictiosaurio, el reptil marino que le dio la fama.

Dibujo de un artículo de 1814 de Everard Home para la Royal Society mostrando el cráneo de un ictiosauro encontrado por los Anning. Everard Home (1756 – 1832) – Philosophical Transactions of the Royal Society 1814. Dominio público.

Jurásico, la edad de los materiales que estudiaba.

Lyme Regis, costa jurásica en Reino Unido. Imagen de Johnnie Shannon en Pixabay.

Kilómetros de costa lo que sumaba cada día a sus zapatos.

Ilustración de Mary Anning buscando fósiles, por Henry De la Beche. Dominio público.

Lyme Regis, la ciudad donde nació, vivió y murió.

Mujer pobre y sin estudios que fascinó a los científicos con sus descubrimientos.

No fue reconocida como se merecía.

Placa situada en el lugar donde Mary Anning nació: «MARY ANNING. 1799-1847. Hoy es el Museo de Lyme Regis. La casa fue su hogar y tienda de fósiles hasta 1826. Imagen de Gaius Cornelius. Dominio público.

Ocupación diaria la de buscar fósiles, hiciera el tiempo que hiciera.

Pionera de la paleontología moderna.

Quiso leer la historia en las rocas.

Resucitó los lechos marinos jurásicos.

Su perro Tray la acompañaba cada día.

Retrato de Mary Anning. Imagen: ‘Mr. Grey’ in Crispin Tickell’s book ‘Mary Anning of Lyme Regis’ (1996) – Two versions side by side, Sedgwick Museum. Dominio público.

Thomas Birch fue quien se fijó primero en sus hallazgos.

Utilizada por los científicos de la época.

Vendió hasta los muebles de su casa para poder sobrevivir.

William Buckland, geólogo de Oxford, acudía cada Navidad a buscar fósiles con ella.

William Buckland (1784-1856)

Xilografió la vida pasada de Lyme Regis.

Yace en una austera tumba, junto a su hermano.

Tumba de Mary y Joseph Anning en St Michael’s parish church, Lyme Regis, Inglaterra. Imagen: Ballista de la Wikipedia en inglés.

Zarandeó la ciencia y contribuyó a las bases de la teoría de la evolución.

En resumen

Abecevidas | Mary Anning

Actualismo: el método científico que alumbró la geología moderna

Autor – Gabriel Castilla

Uno de los grandes problemas a los que se enfrenta la ciencia es el llamado pensamiento mágico, es decir, el razonamiento erróneo que hunde sus raíces en la religiosidad dogmática y la superstición. Es difícil conseguir que un individuo cambie de opinión sobre un tema, especialmente cuando éste forma parte de su sistema de valores, y es por ello que pocas personas cambian de equipo de fútbol, pensamiento político o confesión religiosa a lo largo de la vida. Esto se debe a que de manera natural nuestro cerebro filtra la información que le llega, prestando atención solo a aquella parte que confirma sus creencias y opiniones.

Los psicólogos llaman a este autoengaño selectivo sesgo cognitivo de confirmación, que explica, entre otras muchas cosas, por qué somos fieles a la línea editorial de un periódico o preferimos las tertulias de una determinada cadena de televisión. Este es, en esencia, el mecanismo mental que lleva a algunas personas a defender contra toda evidencia científica sus opiniones, aunque éstas les lleven a creer que la Tierra es plana o que el origen de los seres humanos en el marco de la teoría de la evolución es una falacia.

El hecho de que la historia de la Tierra y el origen de la humanidad aparezca relatada en la Biblia supuso un gran obstáculo para el desarrollo de las ciencias naturales, pues durante siglos numerosos pensadores intentaron acomodar sus observaciones con las revelaciones divinas del libro del Génesis.

La superación del sesgo de confirmación en las ciencias naturales

El primer científico que concibió una metodología capaz de liberar la geología de este yugo especulativo fue el naturalista de origen escocés James Hutton, que en su libro Teoría de la Tierra (1788) asumió que no se debe recurrir o inventar ninguna causa desconocida, fantástica o extraordinaria si los procedimientos lógicos disponibles pueden ser suficientes para explicar un fenómeno natural. O dicho de otro modo: el estudio de la naturaleza se debe abordar partiendo únicamente de hechos demostrados y verificables, pues solo razonando así es posible encontrar soluciones a problemas que antes eran inabordables. Además de fiabilidad, este método le otorga a la ciencia geológica la capacidad de hacer predicciones, o sea, la posibilidad de entender el futuro partiendo del pasado.

Fue otro naturalista de origen escocés, Charles Lyell (Figura 1), quien supo ver en esta conexión temporal la semilla de una nueva forma de pensar, el actualismo. Ante los ojos de Lyell los relieves de la corteza terrestre son consecuencia de la acción de procesos análogos a los que observamos en la actualidad (ríos, glaciares, el viento, volcanes, terremotos, etc.), de ahí el término actualismo. Desarrolló esta idea en el libro Principios de Geología (1830-1833) y la condensó en una sola frase: La clave del pasado está en el presente; estableciendo así una conexión entre los cambios experimentados por la tierra a lo largo del tiempo.

Figura 1. Calotipo de Charles Lyell hacia 1843-47. Fuente: Colección del Metropolitan Museum of Art en Internet Archive. Imagen procesada por el autor a partir del archivo original.

La idea de evolución temporal de la corteza, entendida como sinónimo de cambio, influyó decisivamente en Charles Darwin, quien tomó la obra de Lyell como libro de cabecera durante el viaje alrededor del mundo a bordo del Beagle.

Pocos años después, en 1847, se presentó en España la primera traducción al castellano de mano del geólogo Joaquín Ezquerra del Bayo, quien fue capaz de destilar la esencia de una obra científica de 650 páginas en unas pocas frases:

Grande ha sido la revolución que Lyell ha hecho en esta ciencia, aun cuando tal vez no sea suya la primera idea (…); cuasi la totalidad de los fenómenos que se observan en la corteza de nuestro globo, tanto con respecto al trastorno de las rocas que la constituyen, como con respecto a los restos de seres organizados que en ellas hay encerrados, se explican muy bien por la marcha natural de las mismas causas que están obrando en la actualidad; lo mismo que pasa ahora ha estado pasando hace muchísimo tiempo. La Geología ha perdido todo lo que tenia de fabuloso y de inconcebible, adquiriendo una sencillez que, no por eso deja de ser más admirable y más sorprendente.

Por aquella misma época, hacia 1843, el pionero de la fotografía William Henry Fox Talbot registraba la primera imagen de una investigación geológica de campo. Bajo el título The Geologists (los geólogos) muestra a un hombre y una mujer analizando un afloramiento de roca caliza en Chudleigh (Devon, Reino Unido). Todo apunta a que los protagonistas son el investigador Henry De La Beche y la naturalista autodidacta Mary Anning, primera geóloga de la historia (Figura 2).

El actualismo metodológico y la geología

Hoy, casi 180 años después de que se tomara esta fotografía (el nombre técnico es calotipo), geólogos y geólogas de todo el mundo desarrollamos nuestro trabajo en el contexto del llamado actualismo metodológico, que podemos resumir así: las causas que actúan modelando el planeta en la actualidad ya actuaron en el pasado, e incluso los procesos catastróficos (impactos de asteroides, cambios climáticos globales, etc.) deben entenderse como sucesos normales ocurridos en el pasado, que pueden suceder en el presente y que con toda probabilidad sucederán también en el futuro.

Figura 2. The Geologists calotipo realizado por William Henry Fox Talbot en 1843. Fuente: National Media Museum / Science & Society Picture Library. Imagen procesada por el autor a partir del archivo original.

Pero tal y como planteamos al principio, uno de los problemas a los que se enfrenta la ciencia moderna es el pensamiento que niega la realidad de los hechos verificables; un desafío para la razón que solo puede ser contestado desde la divulgación y la alfabetización científica de la sociedad. Para hacerlo posible es necesario disponer de herramientas didácticas que faciliten la enseñanza y el aprendizaje de las ciencias a cualquier edad, pues la única forma de aprender a razonar por analogía es practicando. Y es en este sentido donde los pinares que cubren los campos de dunas de La Moraña abulense nos ofrecen un inesperado recurso didáctico: su resina.

La resina y el ámbar como recurso didáctico

Figura 3. Mosquito siendo atrapado por la resina de un pino en las inmediaciones de El Oso (Ávila), inicio del complejo proceso de ambarización. A la derecha vemos una muestra de ámbar que contiene un mosquito fosilizado en su interior. Fuente: Gabriel Castilla y Wikipedia.

Como podemos ver en la Figura 3, la resina líquida puede atrapar todo tipo de partículas en su interior, como es el caso de este mosquito, cuyo aspecto es similar al que podemos observar en el interior de una muestra de ámbar. El ámbar es precisamente resina procedente de coníferas que ha experimentado un lento proceso de endurecimiento y enterramiento hasta su transformación en un fósil hace millones de años.

El ámbar es un tesoro para la ciencia debido a la enorme cantidad de información que podemos encontrar en su interior, pero también porque el proceso de ambarización es químicamente muy complejo y requiere que la resina sobreviva al proceso de degradación al que naturalmente se ve sometido por efecto del calor, la humedad y la descomposición por parte de bacterias y hongos. Es por ello que el ámbar es un mineral escaso en todo el mundo y se reconoce su valor ornamental desde la Edad del Bronce (2500-1500 a.C.), cuando la demanda debió ser tan elevada que incluso se han detectado falsificaciones realizadas con resina de pino en ajuares funerarios.

¿Significa esto que los autores de la falsificación establecieron por analogía una relación entre la resina y el ámbar? Probablemente sí. ¿Implica esto que aquellas personas llegaron a intuir la noción de actualismo, entendida como relación entre el presente (resina) y el pasado (ámbar)? Difícil saberlo.

Ver cómo quedan atrapados los insectos en la resina y alcanzar a comprender cómo logra ésta transformarse en un mineral requiere entender y manejar nociones abstractas como mineralización, fosilización y tiempo geológico.

Para comprender el concepto de actualismo son necesarios ejemplos tan claros como el que acabamos de ver, pues nos permite visualizar un proceso natural complejo de forma intuitiva y sencilla. Un paseo por La Moraña puede ser una experiencia didáctica inesperada si caminamos despacio y escuchamos con atención las historias que nos susurran sus árboles.

Fuentes de consulta

#PaisajeSonoro | La Historia de la Tierra grabada en las rocas y los fósiles

De Isabel Hernández

Pulsa Play y activa el audio para escuchar este Paisaje sonoro. Si tienes problemas para escucharlo en tu móvil pulsa AQUÍ. 

Para no perder el sentido de la Historia, la Historia Natural

La Historia de la Tierra ha sido larga. Se remonta a mucho antes de que el ser humano apareciera en ella y está registrada en las rocas y los fósiles.

Al “tocar» la Historia, el ser humano se encontró con una barrera psicológica: pensar en un tiempo geológico de millones de años ha sido un salto reciente en el conocimiento humano, que muchos no han dado todavía.

En esta reflexión sonora sobre qué papel juegan la Geología y la Paleontología en el conocimiento de la Historia Natural, ponemos voz y música a las hermosas palabras de la paleontóloga Nieves López en “Geología y Paleontología para aficionados”.

Texto: Geología y Paleontología para aficionados, de Nieves López Martínez.

Música: Elegi (Svanesang, Den Store Hvite Stillhet, Despotiets Vessen).

Arreglos y voz: Isabel Hernández. Grabado en el estudio de Manu Míguez.

Fotografía: Gabriel Castilla.