Archivo de la etiqueta: Geolodía 23

GEOLODÍA 23. ¿Dónde están los sedimentos que no llegan al mar?

Colmatación de presas y erosión de deltas, la amenaza de un problema invisible

También tienes este artículo en formato audio. Escúchalo aquí:

Buscar lo diferente es observar; buscar lo común es comprender. Encontrar detalles diferentes es reunir datos, encontrar esencias comunes es crear conocimiento. 

El gozo intelectual. Jorge Wagensberg, 2007

¿Qué es un río?

Según la Real Academia Española, un río es una corriente de agua continua y más o menos caudalosa que va a desembocar en otra, en un lago o en el mar.

Si nos ceñimos a esta definición debemos asumir que la mayoría de nuestros ríos en realidad no lo son, pues el agua no discurre libremente y de forma continua por sus cauces. Esto es lo que afirman los datos recopilados por el proyecto AMBER (acrónimo en inglés de gestión adaptativa de barreras en ríos europeos).

El número de obstáculos censados en ríos españoles alcanza ya los 30.000, una cifra que según los expertos podría multiplicarse por seis cuando el conteo esté terminado. Sabiendo que nuestro país tiene unos 187.000 kilómetros de río, estaríamos hablando de algún tipo de barrera a cada kilómetro.

Así pues los ríos españoles avanzan hacia el mar, pero lo hacen a trompicones.

El río Arevalillo a su paso por Arévalo (Ávila). Como podemos ver el cauce está intervenido a cada pocos metros por diferentes infraestructuras. En primer término el molino de Valdeláguilas (también llamado de Valencia o Quemado), el Puente de los Barros y al fondo el Puente de Medina. Foto: Gabriel Castilla.
El río Arevalillo a su paso por Arévalo (Ávila). Como podemos ver, el cauce está intervenido a cada pocos metros por diferentes infraestructuras. En primer término el molino de Valdeláguilas (también llamado de Valencia o Quemado), el Puente de los Barros y al fondo el Puente de Medina. Foto: Gabriel Castilla.

¿Por qué tantos obstáculos?

España es el país de Europa con mayor número de presas cuya pared supera los 15 metros de altura. Y si bien estas obras son las que tienen un mayor impacto sobre el cauce y el territorio circundante de un río, la gran mayoría de las barreras son pequeñas obras ya en desuso: rampas, presas, azudes (donde a diferencia de las presas el agua rebosa por encima), pequeños puentes, molinos harineros o antiguas centrales hidroeléctricas que interrumpen la circulación natural del agua, de los sedimentos y de las especies que viven en el cauce y la rivera.

Las razones por las que se han construido este tipo de barreras son diversas. Las grandes presas, por ejemplo, cumplen varias funciones:

  1. Sirven como almacén de agua potable.
  2. Ayudan a controlar las crecidas de los ríos, evitando inundaciones en los valles y las llanuras.
  3. Permiten obtener energía hidroeléctrica.
Vista general del Molino de Valencia y la represa que afecta al río Arevalillo en Arévalo (Ávila). Imagen de Gabriel Castilla.
Vista general del Molino de Valencia. Tradicionalmente la fuerza del agua se ha usado para mover norias, molinos y turbinas. Para ello suele ser necesario represar el agua y hacerla caer por un canal estrecho que aumenta la presión, como cuando taponamos parcialmente la boca de un grifo o de una manguera con un dedo. Foto: Gabriel Castilla.

Una trampa para el sedimento

Como acabamos de ver, las presas que encontramos en los cauces tienen o tuvieron una utilidad, pero su ejecución y permanencia implican unas consecuencias que no siempre son evidentes.

Una presa es una barrera (normalmente) artificial que frena, impide o regula el paso de una corriente de agua.

Cuando un río se frena, pierde energía cinética bruscamente y con ello su capacidad de transportar sedimentos, tanto en el fondo de la corriente (los materiales más pesados, principalmente arena, grava y cantos) como en suspensión (fundamentalmente arena fina, arcilla y limo).

El resultado es una alteración de la pendiente longitudinal del cauce, lo que afecta a la dinámica geomorfológica del río hasta la desembocadura.

Una de las consecuencias del estancamiento del agua en un entorno rico en nutrientes es la eutrofización, como en este caso junto al Molino de Valencia. Al disponer de gran cantidad de alimento las algas crecen sin control, consumiendo el oxígeno del medio e impidiendo la entrada de radiación ultra violeta en el agua. El resultado es la muerte de organismos aerobios (peces, crustáceos, anfibios, etc.) por anoxia, un incremento de bacterias anaerobias y la concentración de gases nocivos (como óxidos de nitrógeno y metano). Foto: Gabriel Castilla.
Una de las consecuencias del estancamiento del agua en un entorno rico en nutrientes es la eutrofización, como en este caso junto al Molino de Valencia. Al disponer de gran cantidad de alimento, las algas crecen sin control, consumiendo el oxígeno del medio e impidiendo la entrada de radiación ultravioleta en el agua. El resultado es la muerte de organismos aerobios (peces, crustáceos, anfibios, etc.) por anoxia, un incremento de bacterias anaerobias y la concentración de gases nocivos (como óxidos de nitrógeno y metano). Foto: Gabriel Castilla.

Desde el punto de vista ecológico esta barrera supone una modificación del transporte de nutrientes y de la materia orgánica, afectando a la calidad del agua y favoreciendo la eutrofización.

Y desde un punto de vista geológico, la zona embalsada se transforma en una trampa que captura sedimento. Esto tiene dos consecuencias:

  1. La primera es que aguas arriba el cauce se hace más estrecho y la vegetación coloniza zonas que anteriormente estaban activas.
  2. Y la segunda es que el vaso de la presa poco a poco se va rellenando de sedimentos hasta que queda colmatado de barro en vez de agua.
La presa del molino hace de barrera para el sedimento, que queda atrapado aguas arriba. En consecuencia el cauce del río Arevalillo se estrecha y es ocupado por la vegetación. Foto: Gabriel Castilla.

La colmatación de presas es un problema poco conocido pero que tiene graves consecuencias en un país como España, que padece sequías recurrentes y es  vulnerable a la desertización.

Según los datos disponibles,  la tasa de aterramiento (acumulación de tierras, lodo o arena en el fondo de una depresión por acarreo natural o voluntario) en los embalses españoles ronda los 100 hm3 al año, lo que se traduce en que cada 50 años perdemos unos 5.000 hm3 de capacidad de almacenamiento de agua dulce. Esta cantidad equivale al consumo de agua potable de toda la población de nuestro país durante 3 años.

Mapa digital del terreno donde se aprecia como la presa del Molino de Valencia hace de barrera que modifica el cauce. Aguas arriba el relieve es menos acusado (color verde) porque está relleno de sedimentos, mientras que aguas abajo el río ha erosionado el cauce (color azul) precisamente por la falta de sedimentos. Autor: Javier Pérez Tarruella.
Mapa digital del terreno donde se aprecia como la presa del Molino de Valencia hace de barrera que modifica el cauce. Aguas arriba el relieve es menos acusado (color verde) porque está relleno de sedimentos, mientras que aguas abajo el río ha erosionado el cauce (color azul) precisamente por la falta de sedimentos. Autor: Javier Pérez Tarruella.

Las principales modificaciones que sufren los cauces situados aguas abajo de los embalses pueden ser tanto de incisión como de sedimentación. La erosión se produce porque la presa retiene la mayor parte del sedimento que circulaba por el río en condiciones naturales. El agua que la presa libera durante crecidas erosiona el lecho aguas abajo pero no aporta nuevos sedimentos, por lo que el balance sedimentario del río entra en una fase de desequilibrio.

¿Sabías que la cantidad de sedimento que queda atrapado en los embalses españoles cada 50 años equivale a unas 4 toneladas de arena y arcilla por cada español al año?

Rompiendo el equilibrio

La desembocadura es el lugar donde un río pierde de manera natural su capacidad de carga. Es aquí, normalmente ya cerca del mar, donde deposita tanto los sedimentos más finos como los nutrientes que ha transportado durante todo su viaje. Si la cantidad de sedimentos que llegan a la costa es alta y tanto las corrientes como el oleaje no los dispersan, entonces se forma un delta.

Los deltas se caracterizan por ser lugares húmedos muy ricos en nutrientes, lo que los convierte en “edenes de biodiversidad”. Además, históricamente han destacado por ser terrenos muy fértiles de gran interés agrícola. En el caso del delta del Nilo, probablemente el ejemplo mejor conocido, la evidencia arqueológica señala que se lleva explotando agrícolamente de forma ininterrumpida desde hace al menos 7.000 años.

El delta del Ebro antes (15 de enero, izquierda) y después (21 de enero, derecha) del paso de la Borrasca Gloria en el año 2020. El delta no desapareció pero durante unos días buena parte de su superficie quedó cubierta por una lámina de agua (color azul) como consecuencia de las fuertes lluvias y del oleaje. La borrasca causó importantes daños en una zona de gran valor ecológico, social y económico. La falta de aporte de sedimento hace que el delta sea una región especialmente vulnerable a las fuertes tormentas. Imagen: satélite SENTINEL HUB-01.
El delta del Ebro antes (15 de enero, izquierda) y después (21 de enero, derecha) del paso de la Borrasca Gloria en el año 2020. El delta no desapareció pero durante unos días buena parte de su superficie quedó cubierta por una lámina de agua (color azul) como consecuencia de las fuertes lluvias y del oleaje. La borrasca causó importantes daños en una zona de gran valor ecológico, social y económico. La falta de aporte de sedimento hace que el delta sea una región especialmente vulnerable a las fuertes tormentas. Imagen: satélite SENTINEL HUB-01.

En España el caso más emblemático es el delta del río Ebro, actualmente en retroceso y en grave riesgo de desaparecer.

El principal motivo es la falta de aporte de sedimentos, pues de los 20 millones de toneladas que alcanzaban la meta del curso fluvial antes de los pantanos de Mequinenza, Riba-roja d’Ebre y Flix han quedado reducidos a 90.000 toneladas. O dicho de otro modo: el 99% del sedimento fino que debería alimentar el delta queda atrapado en los vasos de las presas y en las modificaciones del cauce que éstas provocan.

Bibliografía

  • AMBER Consortium (2020). Atlas de la Barrera AMBER. Una base de datos paneuropea de barreras artificiales. Versión 1.0.
  • Cobo, R. (2008). Los sedimentos de los embalses españoles. Ingeniería del Agua, Vol. 15, No 4, pp. 231-241.
  • Elcacho, J. (2020). [Efectos de la borrasca Gloria] ¿Ha desaparecido por completo el delta del Ebro bajo las aguas? La Vanguardia, 22 de enero de 2020.
  • Europa Press Data. La situación del agua en España y en el mundo, en gráficos [Datos actualizados el 27 de julio de 2022]. Fuentes: INE y FAO.
  • Martínez Salvador, A. et al (2015). Estimación de aportes de sedimentos a embalses de pequeñas cuencas mediterráneas mediante GeoWEPP. Ensayo en la cuenca vertiente del río Mula al embalse de la Cierva (Cuenca del río Segura). Limnetica, 34 (1), pp. 41-56.
  • Miranda, D. (2022) Delta del Ebro, un edén de biodiversidad. National Geographic España.
  • Vericat. D. y Batalla, R.J. (2004). Efectos de las presas en la dinámica fluvial del curso bajo del río Ebro. Revista C & G, No 18 (1-2), pp. 37-50.

Este contenido forma parte del Geolodía 2023 de Ávila en Arévalo, Ávila (España).

GEOLODÍA 23. Los daños del terremoto de Lisboa en el interior de la península ibérica

Si lo prefieres, puedes escuchar este post aquí:


A pesar de que en el centro-oeste de la península (Ávila incluida) apenas hay terremotos que hayan generado daños -casi todos han sido de intensidades pequeñas-, sí hay un evento que provocó daños generalizados en gran parte del patrimonio histórico de muchos de nuestros municipios y ciudades.

Me refiero al terremoto de Lisboa de 1755, ese evento catastrófico que golpeó gran parte de la costa atlántica de la península y norte de África, causando daños muy importantes en Portugal y que provocó cerca de 100.000 víctimas mortales. Solo en España murieron más de 1200 personas por causas asociadas al tsunami causado por el terremoto .

El terremoto de Lisboa sucede en 1755 y aún no tenemos claro ni su origen -qué falla fue la que se disparó-, aunque sabemos que el epicentro se sitúa en el mar al suroeste del cabo de San Vicente, en Portugal. Ni tampoco su magnitud (probablemente en torno a 9, una de las mayores registradas en los últimos siglos).

Grabado de 1755 que muestra las ruinas de la ciudad en llamas y un maremoto arrollando los barcos del puerto tras el gran terremoto.
Grabado de 1755 que muestra las ruinas de la ciudad de Lisboa en llamas y un maremoto arrollando los barcos del puerto tras el gran terremoto. Autor desconocido. Dominio público. Obtenida de Wikipedia.

Pero sí conocemos la distribución de daños que generó en superficie. Esto es, su intensidad.

Si no conoces la diferencia entre magnitud e intensidad de un terremoto, aquí te lo explicamos: Magnitud e intensidad en los terremotos

En este mapa puedes ver la distribución de intensidades del terremoto de Lisboa, desde la máxima X hasta IV, que afectó a toda la península ibérica.

Salamanca, Segovia, Ávila, Madrid o Toledo quedan dentro de la zona de intensidad V, en la cual ya se producen ciertos daños. Aunque la incidencia en esta zona está muy lejos de la destrucción enorme provocada en Lisboa o en la costa atlántica de la península, por supuesto.

Mapa de distribución de intensidades, desde la máxima X hasta IV. Salamanca, Segovia, Ávila, Madrid o Toledo quedan dentro de la zona de intensidad V, en la cual ya se producen ciertos daños.
Mapa tomado de Silva y colaboradores (2023).

Grietas en los muros

Sin embargo, este fenómeno natural de proporciones enormes dejó un registro de daños muy característico en la zona central de la península ibérica.

Son visibles en iglesias, palacios, monasterios y murallas construidas con anterioridad a 1755 y muchas veces pasan desapercibidas: las grietas que en ocasiones tienen un calado importante que rompe la continuidad de muros. Muchas de ellas reparadas en su momento, como esta en la calle de Tentenecio, en Salamanca.

Grieta provocada por el terremoto de Lisboa en la calle Tentenecio, Salamanca.

Claves caídas

Otra de las huellas más comunes que podemos observar en el patrimonio es la caída de las claves en los arcos, muy visibles también en pórticos de palacios e iglesias como esta en la Iglesia de Santo Domingo de Silos en Arévalo.

La sacudida sísmica hace que todo el conjunto del edifico se mueva (A) y la clave hace su trabajo de fijación del arco bajando (C), de manera que cuando el terremoto cesa ésta queda atrapada en esa posición más baja de la que originalmente tenía. La cotidianidad de su vista hace que nos habituemos a la presencia de estos elementos y no nos fijemos en su existencia.

Esquema tipo de un arco (A) con la clave antes (B) y después (C) de un terremoto. Típicamente, la clave se mueve por gravedad y se queda encajada en una posición más baja que la original.
Esquema tipo de un arco (A) con la clave antes (B) y después (C) de un terremoto. Típicamente, la clave se mueve por gravedad y se queda encajada en una posición más baja que la original.

¿Qué es la Arqueosismología?

Estos daños en el patrimonio sirven también para estudiar las características del terremoto que las generó. En geología hay una disciplina que estudia la intensidad de los terremotos antiguos a partir de los daños en el patrimonio histórico y arqueológico.

Se denomina Arqueosismología y permite definir parámetros de estos fenómenos naturales que sucedieron hace siglos o milenios de forma muy precisa.

Como curiosidad, en España se han encontrado incluso evidencias de estructuras megalíticas afectadas por terremotos, con lo que podemos descifrar la actividad sísmica a pesar del tiempo transcurrido.

Este contenido forma parte del Geolodía 2023 de Ávila en Arévalo, Ávila (España).

Bibliografía

Pablo G. Silva, Javier Elez, Raúl Pérez-López, Jorge Luis Giner-Robles, Pedro V. Gómez-Diego, Elvira Roquero, Miguel Ángel Rodríguez-Pascua, Teresa Bardají, 2023. The AD 1755 Lisbon Earthquake-Tsunami: Seismic source modelling from the analysis of ESI-07 environmental data. Quaternary International, 651, 6-24, ISSN 1040-6182.