Archivo de la etiqueta: sedimentos

Los otros “relojes de arena”. Método de datación por OSL

Texto y gráficos – Ana Isabel Casado Gómez

Los clásicos relojes de arena cronometran el tiempo en función de lo que tarda en pasar la arena que contienen por su estrecha cintura. Pero existe otro tipo de “relojes en la arena” que nos permiten contar el tiempo gracias a su estructura cristalina y a la luz, proporcionándonos un práctico método de datación: la Luminiscencia Ópticamente Estimulada u OSL.

El método de datación por OSL, por su acrónimo en inglés (Optically Stimulated Luminescence), se emplea principalmente en materiales sedimentarios detríticos (como la arena y los limos de las dunas de La Moraña).

Este método tiene un rango de aplicación de entre 6 y 800.000 años, aunque no para de optimizarse y se han llegado a datar sedimentos de 1,5 Ma (Bartz et al., 2019).

Esta técnica se desarrolló ante la necesidad de datar de manera directa los sedimentos, sin utilizar materia orgánica a la que aplicarle la datación por Carbono-14, ya que no siempre se encuentran restos biológicos en los sedimentos. Además, el límite de datación del Carbono-14 es menor (60.000 años) y es a veces insuficiente.

Cómo funciona

Para la datación por OSL se utiliza el cuarzo. Esto supone una gran ventaja frente a otras técnicas ya que el cuarzo es uno de los minerales más duros, resistentes y abundantes de la superficie terrestre.

Con el método de luminiscencia ópticamente estimulada se data el último momento en que un material de origen sedimentario estuvo expuesto a la luz solar, el momento de su sedimentación y enterramiento.

¿Qué le sucede al cuarzo cuando recibe luz solar? ¿Y cuando se entierra y deja de recibir esa luz?

Cuando los sedimentos se encuentran en la superficie, la radiación solar visible “limpia” el cuarzo eliminando cualquier electrón que pudiera encontrarse atrapado en su estructura, esto se conoce como blanqueamiento. (Figs. 1.A).

Al enterrarse el sedimento y dejar de estar radiado por el Sol, el cuarzo comienza a recibir un débil flujo de partículas radiactivas (alfa α, beta β y gamma γ) provenientes de elementos radiactivos que forman parte de otros minerales del propio sedimento (como el torio, el uranio y el potasio-40 de la biotita, la circonita, el apatito o el esfeno, o el potasio-40 de los feldespatos blancos y rosas).

La consecuencia de esta radiación natural propia del sedimento es la acumulación progresiva de electrones en trampas dentro de la estructura cristalina de los cuarzos: cuanto más tiempo permanezcan los cuarzos enterrados y protegidos de la luz, más electrones acumularán en su estructura (Figs. 1.B).

Fig. 1. Esquema de los procesos radiactivos que tienen lugar en los sedimentos, tanto a macroescala como a microescala. A) Cuando el cuarzo es radiado por la luz solar y su estructura está libre de electrones. B) Cuando el cuarzo queda enterrado y afectado por otras radiaciones que no son la solar, acumulando electrones en su estructura cristalina.

¿Cómo se recogen las muestras en el campo?

Para poder emplear este método con éxito, es necesaria una recogida muy meticulosa de las muestras en el campo. Para ello:

  1. Se introduce un tubo metálico dentro del sedimento (Fig. 2A) para proteger la muestra de la luz, y evitar así la pérdida de los electrones acumulados en los cuarzos. El tubo se coloca perpendicular a la superficie del afloramiento y se introduce en el sedimento. Se extrae un testigo dejando un agujero cilíndrico en el sedimento.
  2. Posteriormente, con un taladro de corona circular (Fig. 2B), se extrae el sedimento que hay alrededor de la muestra para hacer medidas sobre este sedimento en el laboratorio.
  3. Por último, se introduce un dosímetro en el agujero y se toman medidas de radiación gamma (γ) in situ (Fig. 2C).
Fig. 2. Fotografías del proceso de recogida de muestras para datación por OSL. A) Detalle de la extracción de la muestra. Una persona sujeta el tubo metálico mientras que otra lo golpea con una maza hasta conseguir introducirlo en el sedimento y extraer la muestra protegida de la luz. B) Recogida del sedimento colindante a la muestra para medir la humedad, los elementos radiactivos y la radiación beta (β) del sedimento. C) Dosímetro midiendo la radiación gamma (γ) en el interior del sedimento. Fotografías: AI Casado.

¿Y qué hacemos con las muestras en el laboratorio?

Una vez en el laboratorio, los granos de cuarzo se separan del resto de minerales. Esto se hace en un cuarto oscuro (como los de revelado de fotografías en papel) empleando una tenue luz roja cuya radiación no interfiere con los electrones atrapados en la estructura del cuarzo (Figs. 3A).

Separados los cuarzos, se exponen a una radiación visible controlada semejante a la radiación visible solar. Al iluminar los cuarzos, los electrones que habían quedado atrapados en su estructura durante su enterramiento emiten una señal luminiscente que permite contabilizar cuántos electrones se han acumulado (esta cantidad de electrones se conoce como paleodosis) (Figs. 3B).

Fig. 3. Esquema de los procesos radiactivos que tienen lugar en los sedimentos, tanto a macro como a microescala, en el laboratorio. A) Cuando el cuarzo es radiado por una tenue luz roja. B) Cuando se radia con una luz similar a la solar, permitiendo contabilizar los electrones atrapados en su estructura cristalina.

La datación

¿Y cómo sabemos cuántos años suponen los electrones contabilizados?

Como cada sedimento es diferente, hay que evaluar en el laboratorio cuál es la dosis de radiación natural del sedimento tomado alrededor de la muestra (Fig. 2B) conociendo la radiación gamma (γ) y midiendo la humedad, los elementos radiactivos y las partículas beta (β).

Con todos estos datos, se puede evaluar cuántos electrones puede generar cada muestra en un año (dosis anual).

Al dividir la dosis acumulada en la muestra de manera natural, la paleodosis, (que se ha obtenido contabilizando los electrones atrapados en el cuarzo en el paso anterior) entre la dosis anual obtenida experimentalmente, se puede conocer cuántos años hace que se produjo la sedimentación de la muestra.

  • De esta forma, si los cuarzos han recibido poca dosis cada año (dosis anual) y han acumulado muchos electrones (paleodosis), la edad es alta.
  • Si la dosis anual que recibían los cuarzos era muy grande, aunque haya acumulados muchos electrones tendrán una edad baja.

Por eso es necesario medir la dosis anual de cada muestra.

Resumiendo…

La datación por OSL o datación por Luminiscencia Ópticamente Estimulada se emplea para conocer la edad del momento de sedimentación de un depósito que contenga granos de cuarzo (Fig. 4).

La radiación solar mantiene los cuarzos superficiales “limpios” de cualquier otra radiación que pudieran acumular durante la erosión y el transporte.

Cuando se produce la sedimentación, los cristales de cuarzo enterrados que ya no reciben radiación solar comienzan a recibir una radiación débil procedente de elementos radiactivos de los minerales que los rodean, y acumulan electrones en su estructura.

Los cristales de cuarzo se “llenan” de electrones de manera gradual, a un ritmo constante en el tiempo (dosis anual).

Y es el contaje de esos electrones lo que determina la paleodosis, con lo que se puede calcular cuánto tiempo ha pasado desde que quedaron enterrados y dejaron de recibir luz solar.

Cuando se iluminan de nuevo esos cuarzos con una radiación visible similar a la solar, los electrones atrapados en el cuarzo se liberan emitiendo una señal luminiscente.

Midiendo esos electrones y la dosis anual del sedimento, se puede saber cuántos electrones estaban atrapados en el cuarzo y calcular la edad en que se produjo la sedimentación.

Fig. 4. Gráfica resumen de la acumulación de radiación beta (β) en el cuarzo en función del tiempo y de las condiciones de exposición a la luz (modificado de Aitken, 1998)

¿Sabías que… el feldespato también tiene la capacidad de albergar electrones en trampas de su estructura cristalina, por el mismo proceso que el cuarzo? Para la datación con feldespatos el procedimiento es similar al OSL, pero se emplea radiación infrarroja para estimular la luminiscencia. En ese caso, se denomina IRSL o Luminiscencia estimulada por infrarrojos.

Referencias

El paisaje de La Moraña. La geología invisible

Autor – Javier Elez

El paisaje de gran parte de la comarca de La Moraña se caracteriza por un relieve bastante plano del que sobresalen de tanto en tanto algunos cerros de dimensiones muy modestas, con pendientes suaves y un conjunto atravesado por los valles de los ríos Zapardiel, Arevalillo y Adaja. Domina en toda la comarca el cultivo del cereal y destacan en el horizonte los pinares autóctonos.

A pesar de la monotonía aparente de la llanura, desde el punto de vista geológico se sobreimponen en esta comarca una serie de procesos geológicos relevantes que le confieren su forma y características actuales. Estos procesos, la geología de los últimos millones de años, son identificables para el ojo experto. Pero si no lo eres, quizá necesites una pequeña guía para empezar a leer la geología aparentemente invisible de La Moraña. ¡Aquí va!

La formación del paisaje

La forma plana general de toda la comarca responde a un fenómeno de gran alcance geográfico relacionado con lo que los geólogos denominamos cuenca sedimentaria neógena del Duero.

¿SABÍAS QUE…? El período Neógeno comprende desde hace unos 23 millones de años hasta el comienzo del período Cuaternario hace 2,6 millones de años. Si quieres saber más sobre el tiempo geológico, consulta la tabla cronoestratigráfica internacional..

Pulsa sobre la imagen para ver la tabla cronoestratigráfica completa.

Una cuenca geológica o sedimentaria es una depresión en la corteza terrestre que tiene un origen tectónico y en la que se acumulan sedimentos. No confundir con cuenca hidrográfica. La cuenca sedimentaria del Duero tiene unos límites diferentes a la cuenca hidrográfica actual del río y un significado geológico distinto.

Para saber más, consulta: Qué es una cuenca hidrográfica

El desarrollo general y las causas de la formación de la cuenca sedimentaria del Duero son muy similares a las que explicamos en otro artículo sobre la cuenca sedimentaria de Amblés, pero en este caso los límites de la del Duero son: al sur, el Sistema Central; al este, la Cordillera Ibérica; al norte, la Cordillera Cantábrica. Mira este mapa para verlo más claro:

Figura 1. En naranja se marca el área ocupada por la cuenca geológica o sedimentaria neógena del Duero. Esta es una depresión de origen tectónico que está rellena por sedimentos del periodo Neógeno.
En rojo aparecen marcados los límites de la cuenca hidrográfica actual del río Duero.

Para saber más sobre la formación y características de la cuenca sedimentaria de Amblés, mira el artículo: Geomorfología del Valle de Amblés.

Al igual que la cuenca sedimentaria de Amblés, la del Duero se rellenó hasta arriba de sedimentos con capas prácticamente horizontales y paralelas que van marcando el paso del tiempo, con las más recientes arriba.

  1. Los sistemas montañosos circundantes aportaron sedimentos hasta que ya no cabían más. La cuenca se colmató (rellenó), dejando arriba una superficie horizontal muy extensa.
  2. Sobre esa superficie de colmatación se fue desarrollando después el resto de procesos geológicos que la modifican ligeramente, pero que han sido incapaces de borrar completamente su impronta.

A este proceso de colmatación de la cuenca sedimentaria del Duero debemos fundamentalmente el aspecto llano de la meseta castellano-leonesa.

¿SABÍAS QUE…? Los datos de subsuelo indican que amplios sectores del centro y norte de la cuenca sedimentaria del Duero tienen espesores de entre 1,5 y 2 km de sedimentos neógenos.

Sedimentación, erosión y cerros testigos

La cuenca sedimentaria del Duero era de tipo endorreico: no drenaba hacia el Atlántico y el agua y los sedimentos que entraban en la cuenca se quedaban allí. El relleno de la cuenca sedimentaria del Duero es un proceso muy largo que ocupa una parte importante del período Neógeno.

Sin embargo, desde hace unos 2,5 millones de años se rompe esta dinámica y se empiezan a desarrollar los ríos que conocemos en la actualidad. Es en este momento, a lo largo del período Cuaternario, cuando finalmente el río Duero termina conectando las cabeceras de montaña con el océano Atlántico, haciendo de cinta transportadora de agua y sedimentos y erosionando la antigua cuenca sedimentaria del Duero.

El desarrollo inicial de esta red de drenaje fluvial, precursora de la actual del río Duero, excava ligeramente la superficie de colmatación, erosiona las capas más fáciles y deja las más difíciles de erosionar prácticamente intactas, elaborando un paisaje dominantemente plano.

Esta erosión incipiente deja esparcidos pequeños cerros de suaves laderas y cimas planas que son los únicos testigos que quedan de unos sedimentos que han sido erosionados. A estas formas se las denomina cerros testigos en geología. La parte más alta de estos cerros está ocupada por capas sedimentarias más resistentes a la erosión y los protegen de ser completamente desmantelados.

Figura 2.
Formación de cerros testigos.
1) Esquema general de la disposición del relieve montañoso del Sistema Central y la cuenca geológica del Duero.
2) Modelo de desarrollo de un cerro testigo.
Figura 3. Dos imágenes en las que se pueden observar en distintos planos el relieve dominantemente llano, la superficie de colmatación, los cerros testigos y al fondo el Sistema Central. Imágenes tomadas en las cercanías de El Oso y Hernansancho, en la provincia de Ávila (España). Fotos de Gabriel Castilla.

La Geología como ciencia histórica

Sobre este relieve antiguo (paleo-relieve) de La Moraña, los cambios en el clima relacionados con el episodio climático conocido como Younger Dryas, hace unos 12.800 años, proporcionan las condiciones adecuadas para que se instalen espectaculares cinturones de dunas eólicas . Al final de este período frío, hace unos 11.700 años, el ascenso de las temperaturas deja las circunstancias ideales para que comience la “revolución neolítica” y el tránsito hacia sociedades sedentarias agrícolas. Pero esa es otra historia.

Los procesos descritos en este artículo hablan de la historia geológica de esta parte del mundo que es la comarca de La Moraña. Por esto decimos que la Geología es una ciencia histórica, porque nos cuenta cómo ha evolucionado el planeta y los procesos que le dan forma a lo largo de su propia historia, que es muy larga: unos 4.550 millones de años.

Para saber más sobre el período climático Younger Dryas: Younger Dryas: cambios climáticos que condicionaron el paisaje abulense y la vida humana.

Conoce más sobre las dunas de La Moraña y cómo y cuándo se formaron en: Un mar de dunas en La Moraña.

Fuentes de consulta