Archivo de la etiqueta: red de drenaje

La datación relativa en geología

Autoría: Pablo Melón y Ana Isabel Casado

En el laberinto de Villaflor estás en un sistema de drenaje donde el agua “corta” el sedimento como si fuera un cuchillo y se lo lleva, dejando ver cada capa. Ahora, están todas las capas pero… ¿habrá sido siempre así?

Presta atención a lo que ves para poder interpretar cómo se relacionan unas capas con otras y ordenar los componentes del laberinto de más antiguo a más moderno, utilizando la datación relativa.

Para entender lo que te rodea tienes que fijarte bien. ¿Hay cosas que se repiten? ¿Todo tiene el mismo color? Gráfico de Ana Isabel Casado.
Para entender lo que te rodea tienes que fijarte bien. ¿Hay cosas que se repiten? ¿Todo tiene el mismo color? Gráfico de Ana Isabel Casado.

La datación relativa es un método de datación empleado en geología en el que se ordenan los eventos de más antiguo a más moderno sin asignarles edades concretas. Estos son los principios en los que se basa:

Esta fue una de las paradas geológicas en la actividad Geolodía 22 en Villaflor, el domingo 8 de mayo de 2022.
Este es el juego que se propuso al público asistente a la actividad. En él debían colocar correctamente cada evento según el principio de datación relativa explicado en la parada geológica. ¡La mayoría tuvieron un 10!

Este contenido formó parte de la actividad Geolodía 2022 de Ávila.

La naturaleza fractal de las redes fluviales

El mundo está construido a partir de unas pocas piezas básicas que siguen reglas estrictas, aunque extrañas y nada familiares.

Las diez claves de la realidad. Frank Wilczek, 2022

¿Por qué hay ríos con forma de árbol?

Muchos ríos y torrentes se caracterizan por presentar un patrón geométrico dendrítico similar a las ramas de un árbol (dendron significa árbol en griego), donde el canal principal recuerda al tronco mientras que los afluentes se asemejan a las ramas superiores.  

A simple vista este patrón muestra un aspecto caótico, con ramificaciones extendiéndose en cualquier dirección. Sin embargo, bajo esta aparente aleatoriedad se esconden algunas reglas básicas de la Naturaleza, y para desentrañarlas es necesario enfocar el problema desde tres puntos de vista:

1. Geología

2. Geometría

3. Termodinámica

Figura 1. Nervadura de una hoja en descomposición, ramas de un árbol y red de afluentes de los ríos Duero y Ebro. Tres ejemplos de patrón dendrítico a diferentes escalas. Imágenes de Gabriel Castilla.

1. Cuando el azar se cruza con la Geología

Uno de los principales agentes modeladores de paisajes es el agua que, cuando se desplaza por la superficie terrestre como consecuencia de la lluvia o el deshielo, configura un patrón de drenaje impulsado por la fuerza de la gravedad.

Desde que se produce el impacto de las gotas de lluvia sobre el terreno hasta que se forman pequeños regueros y canales por la erosión, son muchas las variables que pueden entrar en juego, pues la erosión es un proceso que depende del azar a muchas escalas.

Figura 2. La lluvia no siempre erosiona homogéneamente una superficie sedimentaria, pues algunos cantos rodados, distribuidos al azar, pueden actuar como pequeños paraguas (izquierda) que condicionan el camino que inicialmente puede seguir la corriente. Poco a poco el agua escurre y va incidiendo en el terreno hasta que logra encauzarse en pequeñas canaladuras (centro) y regueros (derecha) que, como se puede apreciar en la imagen, ven alterada su distribución espacial por la presencia de obstáculos, en este caso raíces (derecha).
Figura 2. La lluvia no siempre erosiona homogéneamente una superficie sedimentaria, pues algunos cantos rodados, distribuidos al azar, pueden actuar como pequeños paraguas (izquierda) que condicionan el camino que inicialmente puede seguir la corriente. Poco a poco el agua escurre y va incidiendo en el terreno hasta que logra encauzarse en pequeñas canaladuras (centro) y regueros (derecha) que, como se puede apreciar en la imagen, ven alterada su distribución espacial por la presencia de obstáculos, en este caso raíces (derecha). Imágenes de Gabriel Castilla.

Pero más allá de la inicial concatenación de factores aleatorios (cantos, raíces, etc.), hay tres variables que condicionan la forma de una red de drenaje:

  1. El clima, que controla la cantidad e intensidad de la lluvia durante los episodios de tormenta, y por tanto la cantidad de agua que circula por la red.
  2. La litología, que condiciona la resistencia de las rocas y el sedimento a la erosión, pues los materiales blandos, permeables o poco consolidados permiten que el agua se abra paso con más facilidad.
  3. La tectónica, que determina desde las fracturas del terreno por donde se encauza el agua con más facilidad, hasta los cambios en el nivel de base (la desembocadura) hacia donde se desplaza el agua, normalmente depresiones del terreno o el nivel del mar. El descenso del nivel de base provoca un fenómeno conocido como erosión remontante (ver Figura 3), un proceso que favorece el crecimiento de la red de afluentes en la zona de cabecera.
Figura 3. El motor que impulsa el agua por una pendiente es la gravedad (izquierda). Un cambio en el nivel de base de un río o un torrente supone un aumento de la energía potencial del fluido. El agua salva esta diferencia con un aumento de la energía cinética (gana velocidad porque ha ganado altura). El resultado es un aumento de la erosión en sentido opuesto a la pendiente, o sea, remontando la corriente. Esto se traduce en una mayor incisión del agua, un lavado del sedimento que soporta las raíces de los árboles (centro) y el crecimiento de los canales en la zona de cabecera (derecha). Imágenes de Gabriel Castilla.

Como vemos, la configuración final de la red de drenaje parece ser un reflejo del sustrato geológico (litología y tectónica) junto con el  clima y el azar.

Los datos bibliográficos señalan que de las múltiples configuraciones posibles el patrón dendrítico es el más frecuente de todos, y éste suele desarrollarse sobre materiales que presentan una resistencia homogénea a la erosión.

Figura 4. Los tres patrones de drenaje más frecuentes: patrón angular (izquierda), que está condicionado por la existencia de un sistema de fracturas perpendiculares; patrón dendrítico (centro), que se desarrolla sobre terreno sedimentario blando y homogéneo o sobre batolitos; y patrón rectangular (derecha), muy frecuente en terrenos donde se intercalan capas duras y blandas.
Figura 4. Los tres patrones de drenaje más frecuentes: patrón angular (izquierda), que está condicionado por la existencia de un sistema de fracturas perpendiculares; patrón dendrítico (centro), que se desarrolla sobre terreno sedimentario blando y homogéneo o sobre batolitos; y patrón rectangular (derecha), muy frecuente en terrenos donde se intercalan capas duras y blandas.

2. Cuando el azar y la Geología se cruzan con la Geometría

En 1975 el matemático Benoît Mandelbrot acuñó el término fractal para referirse a aquellos patrones geométricos irregulares que se repiten a múltiples escalas. Desde este enfoque todas las redes fluviales dendríticas se consideran fractales, y por tanto se pueden expresar con lenguaje matemático.

Figura 5. Mapa que muestra la red de drenaje del torrente y las cárcavas de Villaflor (Ávila). El conjunto muestra un patrón dendrítico similar a diferentes escalas, desde los canales principales de mayor tamaño (en naranja y amarillo) hasta los afluentes más pequeños (azules y grises). Esta autosemejanza multiescalar es una característica propia de los fractales. Mapa elaborado por Javier Pérez Tarruella.
Figura 5. Mapa que muestra la red de drenaje del torrente y las cárcavas de Villaflor (Ávila). El conjunto muestra un patrón dendrítico similar a diferentes escalas, desde los canales principales de mayor tamaño (en naranja y amarillo) hasta los afluentes más pequeños (azules y grises). Esta autosemejanza multiescalar es una característica propia de los fractales. Mapa elaborado por Javier Pérez Tarruella.

Cualquier red de drenaje tiene una dimensión fractal (D), un valor numérico que se obtiene al relacionar las bifurcaciones (ramificaciones más o menos complejas) de la maraña de canales que lo forman respecto a su longitud total.

Según los datos bibliográficos, la mayoría de las redes dendríticas presentan dimensiones fractales comprendidas entre 1.6 y 1.8

¿Esto qué significa?

  • De forma intuitiva entendemos que las líneas abiertas y curvas que dibujamos sobre un papel tienen una sola dimensión y por tanto un valor D=1;
  • mientras que las formas cerradas que dibujamos en dos dimensiones (el área de un círculo o un cuadrado, por ejemplo) tienen un D=2;
  • y los cuerpos tridimensionales (con volumen) presentan un D=3.

Sin embargo, aunque existen objetos que pueden alojarse en espacios bidimensionales (2D) o tridimensionales (3D), su dimensión espacial no es necesariamente 2 o 3.

Figura 6. Representación de la dimensión fractal (D) para objetos de una, dos y tres dimensiones. Las nervaduras lineales de una hoja siguen un patrón dendrítico que tiende a rellenar una superficie, lo que le otorga una dimensión fractal comprendida entre 1 y 2.
Figura 6. Representación de la dimensión fractal (D) para objetos de una, dos y tres dimensiones. Las nervaduras lineales de una hoja siguen un patrón dendrítico que tiende a rellenar una superficie, lo que le otorga una dimensión fractal comprendida entre 1 y 2.

Las formas geométricas de gran complejidad adoptan valores fraccionarios de D (de ahí el término fractal, que literalmente significa roto o quebrado).

Una red fluvial similar a las nervaduras de una hoja muestra un patrón geométrico dendrítico que tiende a extenderse por el terreno hasta ocupar la mayor superficie posible.

¿Por qué?

3. Cuando el azar, la Geología y la Geometría se cruzan con la Termodinámica

Los ríos y torrentes que configuran la red de drenaje de una cuenca son sistemas termodinámicos, es decir, partes del Universo que podemos individualizar para estudiarlos desde el punto de vista de la energía, el calor y el movimiento.

En este contexto, y de forma muy simple, se podría decir que las redes de drenaje dendríticas se rigen por una única norma: la tendencia de todo sistema a alcanzar un equilibrio termodinámico, es decir, un estado de máxima entropía o desorden. Esta norma es el Segundo Principio de la Termodinámica y rige el destino de cualquier sistema cerrado y en equilibrio térmico del Universo.

Sin embargo, los ríos no pueden alcanzar este equilibrio porque son sistemas abiertos que intercambian materia y energía con su alrededor: entra agua (materia) periódicamente por tormentas, deshielo o escorrentía subterránea;  y disipan mucha energía en forma de calor debido a la fricción del agua con la superficie del terreno.

Puesto que el sistema río no puede alcanzar el equilibrio termodinámico, se conforma con la segunda mejor opción posible: lograr un equilibrio dinámico de flujo en el que se pierda la menor cantidad de energía posible. Desde este punto de vista, la forma fractal de una red de drenaje es el reflejo de este equilibrio o balance entre los factores que hacen que el sistema “pierda” energía y los que permiten “ahorrar” energía.

Figura 7. La energía disipada por la fricción del agua sobre el sedimento aumenta con la distancia recorrida y con la superficie de rozamiento; pero disminuye con el volumen de agua que transporta. Es por ello que cuando varias corrientes menores se funden en otra de mayor tamaño, la energía disipada del sistema disminuye, y esto la hace termodinámicamente más estable. Este es el origen de la jerarquización de una res de drenaje, desde pequeñas cárcavas (izquierda), pasando por la unión de varios canales (centro) y el desarrollo de canales de mayor tamaño y profundidad (derecha). Imágenes de Gabriel Castilla.
Figura 7. La energía disipada por la fricción del agua sobre el sedimento aumenta con la distancia recorrida y con la superficie de rozamiento; pero disminuye con el volumen de agua que transporta. Es por ello que cuando varias corrientes menores se funden en otra de mayor tamaño, la energía disipada del sistema disminuye, y esto la hace termodinámicamente más estable. Este es el origen de la jerarquización de una red de drenaje, desde pequeñas cárcavas (izquierda), pasando por la unión de varios canales (centro) y el desarrollo de canales de mayor tamaño y profundidad (derecha). Imágenes de Gabriel Castilla.

Ahora ya conocemos los tres factores que subyacen bajo el aparente caos de las redes de drenaje dendríticas: Geología, Geometría y Termodinámica; y por tanto estamos en condiciones de retomar la pregunta de partida pero con una pregunta más certera:

¿Cómo llega un río o un torrente a desarrollar un patrón dendrítico fractal?

El sistema de drenaje parte de una configuración inicial condicionada por el azar sobre un determinado sustrato geológico y poco a poco va probando las diferentes posibilidades energéticas.

Las posibilidades que resultan más favorables al ahorro de energía “sobreviven” durante más tiempo, mientras que las más alejadas del equilibrio tienden a desaparecer.

Con el paso del tiempo se establece un sistema complejo de naturaleza fractal que fluctúa (equilibrio dinámico) en torno a un estado ideal de mínima pérdida (disipación) de energía.

4º Si no hay factores geológicos (tectónicos, litológicos) que condicionen fuertemente el desarrollo de la red de drenaje, la forma arborescente tiende a ser la más estable termodinámicamente.

Este es uno de los contenidos del Geolodía 2022 de Ávila. ¡No te lo pierdas en directo el domingo 8 de mayo 2022 en Villaflor!

Bibliografía

  • García, M. y Fairén, V. (1980). Estructuras disipativas. Algunas nociones básicas /1. El Basilisco, Nº 10, mayo-octubre, pp. 8-13
  • Gutiérrez Elorza, M. (2008). Geomorfología. Pearson Educación, Madrid.
  • Mandelbrot, B. (1997). La geometría fractal de la naturaleza. Tusquets, Barcelona.
  • Martínez, F.; Ojeda, J. A. y Manríquez, H. (2020). Morfometría y Fractalidad en Redes de Drenaje de Cuencas Chilenas. Conferencia del XXIV Congreso Chileno de Ingeniería Hidráulica.
  • Ramírez-Hernández, R.; Rodríguez-Infante, A. y Ordaz-Hernández, A. (2017). Dimensión fractal de redes de drenaje controladas estructuralmente en cuencas hidrográficas de Pinar del Río, Cuba. Minería y Geología, Vol. 33 (2), pp.163-176.
  • Schlichting, H. J. (2015). La geometría de las redes fluviales. Investigación y Ciencia Nº 463 (abril), pp. 84-86.
  • Strahler, A. N. y Strahler, A. H. (1994). Geografía Física. Ediciones Omega, Barcelona.
  • Zucarelli, G. V. y Tabernig, D. (2009). Análisis Fractal de la Red de Drenaje del Arroyo Feliciano (Entre Ríos, Argentina). Cuadernos del CURIHAM, Vol. 15, pp. 31-42.

El paisaje de La Moraña. La geología invisible

Autor – Javier Elez

El paisaje de gran parte de la comarca de La Moraña se caracteriza por un relieve bastante plano del que sobresalen de tanto en tanto algunos cerros de dimensiones muy modestas, con pendientes suaves y un conjunto atravesado por los valles de los ríos Zapardiel, Arevalillo y Adaja. Domina en toda la comarca el cultivo del cereal y destacan en el horizonte los pinares autóctonos.

A pesar de la monotonía aparente de la llanura, desde el punto de vista geológico se sobreimponen en esta comarca una serie de procesos geológicos relevantes que le confieren su forma y características actuales. Estos procesos, la geología de los últimos millones de años, son identificables para el ojo experto. Pero si no lo eres, quizá necesites una pequeña guía para empezar a leer la geología aparentemente invisible de La Moraña. ¡Aquí va!

La formación del paisaje

La forma plana general de toda la comarca responde a un fenómeno de gran alcance geográfico relacionado con lo que los geólogos denominamos cuenca sedimentaria neógena del Duero.

¿SABÍAS QUE…? El período Neógeno comprende desde hace unos 23 millones de años hasta el comienzo del período Cuaternario hace 2,6 millones de años. Si quieres saber más sobre el tiempo geológico, consulta la tabla cronoestratigráfica internacional..

Pulsa sobre la imagen para ver la tabla cronoestratigráfica completa.

Una cuenca geológica o sedimentaria es una depresión en la corteza terrestre que tiene un origen tectónico y en la que se acumulan sedimentos. No confundir con cuenca hidrográfica. La cuenca sedimentaria del Duero tiene unos límites diferentes a la cuenca hidrográfica actual del río y un significado geológico distinto.

Para saber más, consulta: Qué es una cuenca hidrográfica

El desarrollo general y las causas de la formación de la cuenca sedimentaria del Duero son muy similares a las que explicamos en otro artículo sobre la cuenca sedimentaria de Amblés, pero en este caso los límites de la del Duero son: al sur, el Sistema Central; al este, la Cordillera Ibérica; al norte, la Cordillera Cantábrica. Mira este mapa para verlo más claro:

Figura 1. En naranja se marca el área ocupada por la cuenca geológica o sedimentaria neógena del Duero. Esta es una depresión de origen tectónico que está rellena por sedimentos del periodo Neógeno.
En rojo aparecen marcados los límites de la cuenca hidrográfica actual del río Duero.

Para saber más sobre la formación y características de la cuenca sedimentaria de Amblés, mira el artículo: Geomorfología del Valle de Amblés.

Al igual que la cuenca sedimentaria de Amblés, la del Duero se rellenó hasta arriba de sedimentos con capas prácticamente horizontales y paralelas que van marcando el paso del tiempo, con las más recientes arriba.

  1. Los sistemas montañosos circundantes aportaron sedimentos hasta que ya no cabían más. La cuenca se colmató (rellenó), dejando arriba una superficie horizontal muy extensa.
  2. Sobre esa superficie de colmatación se fue desarrollando después el resto de procesos geológicos que la modifican ligeramente, pero que han sido incapaces de borrar completamente su impronta.

A este proceso de colmatación de la cuenca sedimentaria del Duero debemos fundamentalmente el aspecto llano de la meseta castellano-leonesa.

¿SABÍAS QUE…? Los datos de subsuelo indican que amplios sectores del centro y norte de la cuenca sedimentaria del Duero tienen espesores de entre 1,5 y 2 km de sedimentos neógenos.

Sedimentación, erosión y cerros testigos

La cuenca sedimentaria del Duero era de tipo endorreico: no drenaba hacia el Atlántico y el agua y los sedimentos que entraban en la cuenca se quedaban allí. El relleno de la cuenca sedimentaria del Duero es un proceso muy largo que ocupa una parte importante del período Neógeno.

Sin embargo, desde hace unos 2,5 millones de años se rompe esta dinámica y se empiezan a desarrollar los ríos que conocemos en la actualidad. Es en este momento, a lo largo del período Cuaternario, cuando finalmente el río Duero termina conectando las cabeceras de montaña con el océano Atlántico, haciendo de cinta transportadora de agua y sedimentos y erosionando la antigua cuenca sedimentaria del Duero.

El desarrollo inicial de esta red de drenaje fluvial, precursora de la actual del río Duero, excava ligeramente la superficie de colmatación, erosiona las capas más fáciles y deja las más difíciles de erosionar prácticamente intactas, elaborando un paisaje dominantemente plano.

Esta erosión incipiente deja esparcidos pequeños cerros de suaves laderas y cimas planas que son los únicos testigos que quedan de unos sedimentos que han sido erosionados. A estas formas se las denomina cerros testigos en geología. La parte más alta de estos cerros está ocupada por capas sedimentarias más resistentes a la erosión y los protegen de ser completamente desmantelados.

Figura 2.
Formación de cerros testigos.
1) Esquema general de la disposición del relieve montañoso del Sistema Central y la cuenca geológica del Duero.
2) Modelo de desarrollo de un cerro testigo.
Figura 3. Dos imágenes en las que se pueden observar en distintos planos el relieve dominantemente llano, la superficie de colmatación, los cerros testigos y al fondo el Sistema Central. Imágenes tomadas en las cercanías de El Oso y Hernansancho, en la provincia de Ávila (España). Fotos de Gabriel Castilla.

La Geología como ciencia histórica

Sobre este relieve antiguo (paleo-relieve) de La Moraña, los cambios en el clima relacionados con el episodio climático conocido como Younger Dryas, hace unos 12.800 años, proporcionan las condiciones adecuadas para que se instalen espectaculares cinturones de dunas eólicas . Al final de este período frío, hace unos 11.700 años, el ascenso de las temperaturas deja las circunstancias ideales para que comience la «revolución neolítica» y el tránsito hacia sociedades sedentarias agrícolas. Pero esa es otra historia.

Los procesos descritos en este artículo hablan de la historia geológica de esta parte del mundo que es la comarca de La Moraña. Por esto decimos que la Geología es una ciencia histórica, porque nos cuenta cómo ha evolucionado el planeta y los procesos que le dan forma a lo largo de su propia historia, que es muy larga: unos 4.550 millones de años.

Para saber más sobre el período climático Younger Dryas: Younger Dryas: cambios climáticos que condicionaron el paisaje abulense y la vida humana.

Conoce más sobre las dunas de La Moraña y cómo y cuándo se formaron en: Un mar de dunas en La Moraña.

Fuentes de consulta

Humedales en tierras de labor

Texto y gráficos – Fina Muñoz

Imágenes – Gabriel Castilla

El paisaje que puede verse al dar un paseo por los alrededores de El Oso, en Ávila, es un relieve bastante llano con una red de drenaje apenas marcada por las curvas de nivel del terreno.

El agua de lluvia se acumula en pequeñas lagunas sin salida a ningún cauce o lago y se va desecando por infiltración lenta junto a ciclos diurnos de evaporación. En períodos de estiaje, el embalsamiento deja zonas encharcadas con agua que se va enriqueciendo en sales. Estas sales proceden de la propia lluvia y del lavado de los materiales de alrededor que arrastra sales disueltas.

Lagunas endorreicas de La Moraña

A este tipo de humedal lo denominamos habitualmente como lagunas endorreicas (fig. 1). Es decir, son cuencas continentales donde la superficie del terreno corta al nivel freático y el aporte de agua se debe a la escorrentía superficial cuando llueve.

Figura 1: Modelo conceptual de la laguna endorreica de El Ejido, en el término municipal de Riocabado.

¿SABÍAS QUE…? La geografía española del interior de la península está salpicada por este tipo de lagunas. Algunas de las más conocidas: Villafáfila (Zamora), Gallocanta (Aragón), Pétrola (Albacete) o del Hito (Cuenca).

En el caso de la Moraña, la interacción con las aguas subterráneas es mínima o nula. La tendencia natural de estas lagunas es a la colmatación con los sedimentos (Martín et al., 2010), que acabarán rellenando la cuenca.

La laguna del Ejido, en Riocabado

La etimología latina del nombre de la laguna del Ejido (exitus: salida) se relaciona con un terreno colectivo, indiviso, sin posibilidad de venderse o heredarse situado en las afueras de un pueblo. En las sucesivas series cartográficas de la Dirección General del Instituto Geográfico y Catastral de los años 1941, 1989 y 2015 se pueden ver ligeros cambios de los límites (Fig. 2) de la laguna del Ejido.

Fig. 2. Cartografía de la laguna del Ejido en los años señalados. (Fuente: CNIG)

Sin embargo, en las diferentes ortoimágenes del Instituto Geográfico Nacional de los años 1956, 2000 y 2015 (Fig. 3) se aprecia cómo los terrenos de la laguna siempre se han mantenido sin arar y el perímetro apenas si ha variado.

Fig. 3. Ortoimagen de la laguna del El Ejido en los años señalados. (Fuente: CNIG)

Desecación por drenaje

Al igual que en otras zonas húmedas de España, los humedales de La Moraña han sufrido una modificación a cargo de manos humanas. Un claro ejemplo son los canales excavados por debajo de la superficie freática para drenar los terrenos encharcados y ganar terrenos agrícolas. De la misma manera, en los bordes de los caminos que sirven de vías de acceso se drenan los campos alrededor de la laguna del Ejido (figura 4). Los canales con trazados rectilíneos como el Arroyo de los Collados o el Reguero de San Juan aprovechan líneas de máxima pendiente hacia los puntos más deprimidos de la topografía para facilitar así la evacuación del agua.

Figura 4. Canal de drenaje y aguas encharcadas al borde del camino cerca de la laguna del Ejido, en Riocabado.

Cómo se mantiene el agua en un sustrato arenoso

En este humedal el régimen natural de inundación depende tanto de las condiciones climáticas como de la relación entre las rocas que hay en profundidad. Como si fuera el fondo impermeable de una piscina que retiene el agua, el sustrato arenoso dunar empapado sobre el que se asientan las lagunas está contenido en un vaso de rocas de baja permeabilidad: las areniscas arcillosas del Mioceno. Esta capa situada por debajo de las arenas dunares frena el drenaje rápido de las aguas estancadas en la superficie (ver fig. 1).

Las arenas dunares conforman el acuífero de Los Arenales que se sitúa entre el sur del Duero y el Sistema Central con casi una extensión de 7600 km2 (IGME, 1999) y un espesor no superior a los 20 m (Navarro et al, 1993). Tienen mayor porosidad y son más permeables que las areniscas arcillosas del Mioceno que no transmiten el agua con facilidad.

Para saber más sobre el mar de dunas de La Moraña.

Qué pasa cuando se desecan las lagunas

Al desaparecer el humedal, las plantas que aparecen en algunos sectores son halófilas (Martín et al, 2010), es decir, tienen afinidad por un sustrato salino, depositado por el agua que ha sido evaporada. Tras largos períodos sin lluvia, estos suelos arcillosos quedan cuarteados con grietas de retracción y un tapizado vegetal ya deshidratado (fig. 5 y 6). Entre la población local, estas zonas son denominadas saladares o salobrales.

Figura 5. Grietas de desecación en suelo areno-arcilloso.
Figura 6. Tapiz de algas secas en el saladar, cerca de El Oso (Ávila).

En el Geolodía 2019 veremos, además del funcionamiento de las lagunas endorreicas, cómo en la zona se abastecen de agua potable sin que ello afecte al hábitat natural de las aves en la laguna de El Oso. ¡No te lo pierdas!

Recursos docentes relacionados

RECURSO DIDÁCTICO. Temas y prácticas de hidrogeología e hidrología superficial

RECURSO DIDÁCTICO. Serie documental que repasa cuestiones fundamentales del agua subterránea

Referencias

Arroyos de montaña

Autores – Davinia Díez-Canseco y Jaime Cuevas

Un par de publicaciones atrás hablábamos de las cuencas hidrográficas y las redes de drenaje.

Vamos a profundizar con esta pequeña aproximación a los arroyos de montaña y su papel en la configuración del paisaje.

img_1721
Bolos arrastrados por el río

Los canales de una misma red de drenaje cumplen distintas funciones según su posición en la red:

  • Así, los ríos de gran caudal que vertebran la cuenca hidrográfica (en nuestro caso el río Alberche) se encargan principalmente del transporte de agua y sedimentos hasta la zona de salida de la cuenca.
  • Mientras que los pequeños canales o arroyos que se encuentran en las puntas finales de la ramificación hacen el duro trabajo de desmantelar el sustrato rocoso, o dicho de otra manera, tienen un importante papel en la construcción del paisaje.

Jerarquía de los canales de la red

strahler
Representación gráfica del orden de Horton-Strahler o escala jerárquica de canales.

Estas diferencias en la función y el trabajo que desempeñan cada uno de los canales de una red de drenaje se pueden organizar en una escala jerárquica conocida como “orden de Horton-Strahler”.

  • Los canales de orden mayor se encuentran en el eje central de la cuenca y se encargan de desaguar todo el sistema de la red de drenaje.
  • Los canales de orden menor se sitúan hacia los bordes de la cuenca (suelen ser arroyos y torrentes) y se encargan principalmente de la erosión y desmantelamiento del terreno.
  • Los grados más bajos de la jerarquía se asignan a los pequeños arroyos y canales más lejanos, que son los responsables de “esculpir el terreno”.
gredos
En la esta imagen de la vertiente norte de la Sierra de Gredos, en Ávila, se aprecian los canales y torrentes de orden jerárquico menor, los auténticos responsables de este espectacular paisaje.

Diferencias entre ríos y arroyos

La diferencia entre los ríos y los arroyos es que mientras los ríos mantienen un caudal relativamente estable a lo largo de todo el año, lo arroyos reducen significativamente su caudal en verano hasta incluso desaparecer.

El Arroyo Garganta de los Aquilones del Puerto, que veremos en la ruta del #Geolodía17 en Burgohondo, encaja en la tipología de “arroyo” con un orden bajo de jerarquía en la ramificación de la red.

Si comparamos este canal (punto 1 de la figura) con los que se observan en Puente Arco en Burgohondo (punto 2) o en las proximidades de Navaluenga (punto 3 ), donde el Alberche ya ha recibido aportes importantes de los afluentes de jerarquía menor, vemos diferencias, no sólo en su caudal, sino también en el tipo de depósito que encontramos en sus cauces.

jerarquia-fluvial

1. Garganta de los Aquilones

Canal de orden jerárquico bajo, con caudal moderado muy inestable que puede desarrollar con frecuencia episodios de riada. El depósito de sedimento es muy desordenado y de gran tamaño, con algunos bloques de más de 1 metro de diámetro.

rio-1
Arroyo Garganta de los Aquilones

2. Río Alberche desde Puente Arco, Burgohondo

En este punto el río Alberche tiene un orden jerárquico intermedio con un caudal relativamente estable, aunque en momentos de alta energía puede llegar a desbordarse. Como depósito de sedimento empieza a ser abundante la arena, aunque aún pueden observarse bloques y bolos.

rio-2
Vista del Alberche desde Puente Arco en Burgohondo

3. Río Alberche a su paso cerca de Navaluenga

Canal con alto orden jerárquico que es capaz de mantener un caudal estable a lo largo de todo el año. A esta altura el río es capaz de desarrollar extensas terrazas fluviales de arena y arcilla mientras que los bolos son cada vez más escasos y pequeños.

rio-3
Río Alberche cerca de Navaluenga

Para saber más sobre el papel de los arroyos de montaña en la configuración del paisaje: El abanico aluvial de Candeleda, la huella de una montaña vaciada.

Recursos docentes relacionados

HERRAMIENTARECURSO DIDÁCTICO. Interactive water cycle diagram for kids (inglés)

RECURSO DIDÁCTICO. Temas y prácticas de hidrogeología e hidrología superficial

RECURSO DIDÁCTICO. Serie documental que repasa cuestiones fundamentales del agua subterránea

Qué es una cuenca hidrográfica

Autores – Davinia Díez-Canseco y Jaime Cuevas

La cuenca hidrográfica del Alberche

Una cuenca hidrográfica es un área del terreno cuyo relieve está controlado por una única red de drenaje. Estas redes son sistemas cerrados de canales que pueden enmarcarse en sistemas mayores. De esta forma, la cuenca hidrográfica del río Alberche pertenece al conjunto de sistemas fluviales que alimentan la cuenca del Tajo.

cuenca-hidrografica
Cuenca hidrográfica del río Alberche. Gráfico de Javier Elez.

Dentro de una misma cuenca hidrográfica los canales fluviales no se comportan de la misma manera. Así, el tipo de sustrato va a condicionar el comportamiento de los canales fluviales.

  • El sustrato aluvial se suele encontrar en el sector final de las cuencas y está formado por rocas sedimentarias de tamaño fino (areniscas y arcilla) y en esta zona los ríos desarrollan canales relativamente estables, de gran caudal y anchura y con desarrollo de extensas terrazas fluviales.
  • El sustrato rocoso, por el contrario, se localiza en la zona inicial o zona de cabecera de la cuenca, donde los canales son de menor caudal pero tienen mayor energía, siendo frecuente en la zona de cabecera los episodios de riadas. En este contexto los canales discurren directamente sobre la roca, dando lugar a formas fluviales erosivas como las marmitas de gigante  y frecuentes depósitos de bolos y bloques.

Algunas imágenes de la cuenca de captación del río Alberche.

Para saber más sobre redes de drenaje, cuencas de captación y sedimentos: El abanico aluvial de Candeleda, la huella de una montaña vaciada.

Recursos docentes relacionados

RECURSO DIDÁCTICO. Temas y prácticas de hidrogeología e hidrología superficial

RECURSO DIDÁCTICO. Serie documental que repasa cuestiones fundamentales del agua subterránea

HERRAMIENTARECURSO DIDÁCTICO. Interactive water cycle diagram for kids (inglés)