Archivo de la etiqueta: cárcavas

La naturaleza fractal de las redes fluviales

El mundo está construido a partir de unas pocas piezas básicas que siguen reglas estrictas, aunque extrañas y nada familiares.

Las diez claves de la realidad. Frank Wilczek, 2022

¿Por qué hay ríos con forma de árbol?

Muchos ríos y torrentes se caracterizan por presentar un patrón geométrico dendrítico similar a las ramas de un árbol (dendron significa árbol en griego), donde el canal principal recuerda al tronco mientras que los afluentes se asemejan a las ramas superiores.  

A simple vista este patrón muestra un aspecto caótico, con ramificaciones extendiéndose en cualquier dirección. Sin embargo, bajo esta aparente aleatoriedad se esconden algunas reglas básicas de la Naturaleza, y para desentrañarlas es necesario enfocar el problema desde tres puntos de vista:

1. Geología

2. Geometría

3. Termodinámica

Figura 1. Nervadura de una hoja en descomposición, ramas de un árbol y red de afluentes de los ríos Duero y Ebro. Tres ejemplos de patrón dendrítico a diferentes escalas. Imágenes de Gabriel Castilla.

1. Cuando el azar se cruza con la Geología

Uno de los principales agentes modeladores de paisajes es el agua que, cuando se desplaza por la superficie terrestre como consecuencia de la lluvia o el deshielo, configura un patrón de drenaje impulsado por la fuerza de la gravedad.

Desde que se produce el impacto de las gotas de lluvia sobre el terreno hasta que se forman pequeños regueros y canales por la erosión, son muchas las variables que pueden entrar en juego, pues la erosión es un proceso que depende del azar a muchas escalas.

Figura 2. La lluvia no siempre erosiona homogéneamente una superficie sedimentaria, pues algunos cantos rodados, distribuidos al azar, pueden actuar como pequeños paraguas (izquierda) que condicionan el camino que inicialmente puede seguir la corriente. Poco a poco el agua escurre y va incidiendo en el terreno hasta que logra encauzarse en pequeñas canaladuras (centro) y regueros (derecha) que, como se puede apreciar en la imagen, ven alterada su distribución espacial por la presencia de obstáculos, en este caso raíces (derecha).
Figura 2. La lluvia no siempre erosiona homogéneamente una superficie sedimentaria, pues algunos cantos rodados, distribuidos al azar, pueden actuar como pequeños paraguas (izquierda) que condicionan el camino que inicialmente puede seguir la corriente. Poco a poco el agua escurre y va incidiendo en el terreno hasta que logra encauzarse en pequeñas canaladuras (centro) y regueros (derecha) que, como se puede apreciar en la imagen, ven alterada su distribución espacial por la presencia de obstáculos, en este caso raíces (derecha). Imágenes de Gabriel Castilla.

Pero más allá de la inicial concatenación de factores aleatorios (cantos, raíces, etc.), hay tres variables que condicionan la forma de una red de drenaje:

  1. El clima, que controla la cantidad e intensidad de la lluvia durante los episodios de tormenta, y por tanto la cantidad de agua que circula por la red.
  2. La litología, que condiciona la resistencia de las rocas y el sedimento a la erosión, pues los materiales blandos, permeables o poco consolidados permiten que el agua se abra paso con más facilidad.
  3. La tectónica, que determina desde las fracturas del terreno por donde se encauza el agua con más facilidad, hasta los cambios en el nivel de base (la desembocadura) hacia donde se desplaza el agua, normalmente depresiones del terreno o el nivel del mar. El descenso del nivel de base provoca un fenómeno conocido como erosión remontante (ver Figura 3), un proceso que favorece el crecimiento de la red de afluentes en la zona de cabecera.
Figura 3. El motor que impulsa el agua por una pendiente es la gravedad (izquierda). Un cambio en el nivel de base de un río o un torrente supone un aumento de la energía potencial del fluido. El agua salva esta diferencia con un aumento de la energía cinética (gana velocidad porque ha ganado altura). El resultado es un aumento de la erosión en sentido opuesto a la pendiente, o sea, remontando la corriente. Esto se traduce en una mayor incisión del agua, un lavado del sedimento que soporta las raíces de los árboles (centro) y el crecimiento de los canales en la zona de cabecera (derecha). Imágenes de Gabriel Castilla.

Como vemos, la configuración final de la red de drenaje parece ser un reflejo del sustrato geológico (litología y tectónica) junto con el  clima y el azar.

Los datos bibliográficos señalan que de las múltiples configuraciones posibles el patrón dendrítico es el más frecuente de todos, y éste suele desarrollarse sobre materiales que presentan una resistencia homogénea a la erosión.

Figura 4. Los tres patrones de drenaje más frecuentes: patrón angular (izquierda), que está condicionado por la existencia de un sistema de fracturas perpendiculares; patrón dendrítico (centro), que se desarrolla sobre terreno sedimentario blando y homogéneo o sobre batolitos; y patrón rectangular (derecha), muy frecuente en terrenos donde se intercalan capas duras y blandas.
Figura 4. Los tres patrones de drenaje más frecuentes: patrón angular (izquierda), que está condicionado por la existencia de un sistema de fracturas perpendiculares; patrón dendrítico (centro), que se desarrolla sobre terreno sedimentario blando y homogéneo o sobre batolitos; y patrón rectangular (derecha), muy frecuente en terrenos donde se intercalan capas duras y blandas.

2. Cuando el azar y la Geología se cruzan con la Geometría

En 1975 el matemático Benoît Mandelbrot acuñó el término fractal para referirse a aquellos patrones geométricos irregulares que se repiten a múltiples escalas. Desde este enfoque todas las redes fluviales dendríticas se consideran fractales, y por tanto se pueden expresar con lenguaje matemático.

Figura 5. Mapa que muestra la red de drenaje del torrente y las cárcavas de Villaflor (Ávila). El conjunto muestra un patrón dendrítico similar a diferentes escalas, desde los canales principales de mayor tamaño (en naranja y amarillo) hasta los afluentes más pequeños (azules y grises). Esta autosemejanza multiescalar es una característica propia de los fractales. Mapa elaborado por Javier Pérez Tarruella.
Figura 5. Mapa que muestra la red de drenaje del torrente y las cárcavas de Villaflor (Ávila). El conjunto muestra un patrón dendrítico similar a diferentes escalas, desde los canales principales de mayor tamaño (en naranja y amarillo) hasta los afluentes más pequeños (azules y grises). Esta autosemejanza multiescalar es una característica propia de los fractales. Mapa elaborado por Javier Pérez Tarruella.

Cualquier red de drenaje tiene una dimensión fractal (D), un valor numérico que se obtiene al relacionar las bifurcaciones (ramificaciones más o menos complejas) de la maraña de canales que lo forman respecto a su longitud total.

Según los datos bibliográficos, la mayoría de las redes dendríticas presentan dimensiones fractales comprendidas entre 1.6 y 1.8

¿Esto qué significa?

  • De forma intuitiva entendemos que las líneas abiertas y curvas que dibujamos sobre un papel tienen una sola dimensión y por tanto un valor D=1;
  • mientras que las formas cerradas que dibujamos en dos dimensiones (el área de un círculo o un cuadrado, por ejemplo) tienen un D=2;
  • y los cuerpos tridimensionales (con volumen) presentan un D=3.

Sin embargo, aunque existen objetos que pueden alojarse en espacios bidimensionales (2D) o tridimensionales (3D), su dimensión espacial no es necesariamente 2 o 3.

Figura 6. Representación de la dimensión fractal (D) para objetos de una, dos y tres dimensiones. Las nervaduras lineales de una hoja siguen un patrón dendrítico que tiende a rellenar una superficie, lo que le otorga una dimensión fractal comprendida entre 1 y 2.
Figura 6. Representación de la dimensión fractal (D) para objetos de una, dos y tres dimensiones. Las nervaduras lineales de una hoja siguen un patrón dendrítico que tiende a rellenar una superficie, lo que le otorga una dimensión fractal comprendida entre 1 y 2.

Las formas geométricas de gran complejidad adoptan valores fraccionarios de D (de ahí el término fractal, que literalmente significa roto o quebrado).

Una red fluvial similar a las nervaduras de una hoja muestra un patrón geométrico dendrítico que tiende a extenderse por el terreno hasta ocupar la mayor superficie posible.

¿Por qué?

3. Cuando el azar, la Geología y la Geometría se cruzan con la Termodinámica

Los ríos y torrentes que configuran la red de drenaje de una cuenca son sistemas termodinámicos, es decir, partes del Universo que podemos individualizar para estudiarlos desde el punto de vista de la energía, el calor y el movimiento.

En este contexto, y de forma muy simple, se podría decir que las redes de drenaje dendríticas se rigen por una única norma: la tendencia de todo sistema a alcanzar un equilibrio termodinámico, es decir, un estado de máxima entropía o desorden. Esta norma es el Segundo Principio de la Termodinámica y rige el destino de cualquier sistema cerrado y en equilibrio térmico del Universo.

Sin embargo, los ríos no pueden alcanzar este equilibrio porque son sistemas abiertos que intercambian materia y energía con su alrededor: entra agua (materia) periódicamente por tormentas, deshielo o escorrentía subterránea;  y disipan mucha energía en forma de calor debido a la fricción del agua con la superficie del terreno.

Puesto que el sistema río no puede alcanzar el equilibrio termodinámico, se conforma con la segunda mejor opción posible: lograr un equilibrio dinámico de flujo en el que se pierda la menor cantidad de energía posible. Desde este punto de vista, la forma fractal de una red de drenaje es el reflejo de este equilibrio o balance entre los factores que hacen que el sistema “pierda” energía y los que permiten “ahorrar” energía.

Figura 7. La energía disipada por la fricción del agua sobre el sedimento aumenta con la distancia recorrida y con la superficie de rozamiento; pero disminuye con el volumen de agua que transporta. Es por ello que cuando varias corrientes menores se funden en otra de mayor tamaño, la energía disipada del sistema disminuye, y esto la hace termodinámicamente más estable. Este es el origen de la jerarquización de una res de drenaje, desde pequeñas cárcavas (izquierda), pasando por la unión de varios canales (centro) y el desarrollo de canales de mayor tamaño y profundidad (derecha). Imágenes de Gabriel Castilla.
Figura 7. La energía disipada por la fricción del agua sobre el sedimento aumenta con la distancia recorrida y con la superficie de rozamiento; pero disminuye con el volumen de agua que transporta. Es por ello que cuando varias corrientes menores se funden en otra de mayor tamaño, la energía disipada del sistema disminuye, y esto la hace termodinámicamente más estable. Este es el origen de la jerarquización de una red de drenaje, desde pequeñas cárcavas (izquierda), pasando por la unión de varios canales (centro) y el desarrollo de canales de mayor tamaño y profundidad (derecha). Imágenes de Gabriel Castilla.

Ahora ya conocemos los tres factores que subyacen bajo el aparente caos de las redes de drenaje dendríticas: Geología, Geometría y Termodinámica; y por tanto estamos en condiciones de retomar la pregunta de partida pero con una pregunta más certera:

¿Cómo llega un río o un torrente a desarrollar un patrón dendrítico fractal?

El sistema de drenaje parte de una configuración inicial condicionada por el azar sobre un determinado sustrato geológico y poco a poco va probando las diferentes posibilidades energéticas.

Las posibilidades que resultan más favorables al ahorro de energía “sobreviven” durante más tiempo, mientras que las más alejadas del equilibrio tienden a desaparecer.

Con el paso del tiempo se establece un sistema complejo de naturaleza fractal que fluctúa (equilibrio dinámico) en torno a un estado ideal de mínima pérdida (disipación) de energía.

4º Si no hay factores geológicos (tectónicos, litológicos) que condicionen fuertemente el desarrollo de la red de drenaje, la forma arborescente tiende a ser la más estable termodinámicamente.

Este es uno de los contenidos del Geolodía 2022 de Ávila. ¡No te lo pierdas en directo el domingo 8 de mayo 2022 en Villaflor!

Bibliografía

  • García, M. y Fairén, V. (1980). Estructuras disipativas. Algunas nociones básicas /1. El Basilisco, Nº 10, mayo-octubre, pp. 8-13
  • Gutiérrez Elorza, M. (2008). Geomorfología. Pearson Educación, Madrid.
  • Mandelbrot, B. (1997). La geometría fractal de la naturaleza. Tusquets, Barcelona.
  • Martínez, F.; Ojeda, J. A. y Manríquez, H. (2020). Morfometría y Fractalidad en Redes de Drenaje de Cuencas Chilenas. Conferencia del XXIV Congreso Chileno de Ingeniería Hidráulica.
  • Ramírez-Hernández, R.; Rodríguez-Infante, A. y Ordaz-Hernández, A. (2017). Dimensión fractal de redes de drenaje controladas estructuralmente en cuencas hidrográficas de Pinar del Río, Cuba. Minería y Geología, Vol. 33 (2), pp.163-176.
  • Schlichting, H. J. (2015). La geometría de las redes fluviales. Investigación y Ciencia Nº 463 (abril), pp. 84-86.
  • Strahler, A. N. y Strahler, A. H. (1994). Geografía Física. Ediciones Omega, Barcelona.
  • Zucarelli, G. V. y Tabernig, D. (2009). Análisis Fractal de la Red de Drenaje del Arroyo Feliciano (Entre Ríos, Argentina). Cuadernos del CURIHAM, Vol. 15, pp. 31-42.

#Geopostales | Chimeneas de hadas o hoodoos, Grand Staircase-Escalante (Utah, USA)

Chimeneas de hadas o hoodoos en el Bryce Canyon National Park, Utah, Estados Unidos. © Iván Pérez López (iplfoto.com)
Chimeneas de hadas o hoodoos en el Grand Staircase-Escalante National Monument, Utah, Estados Unidos. © Iván Pérez López (iplfoto.com)

¡Hola, amantes de la geología! 

Continúo viajando por las badlands del estado de Utah, en Estados Unidos.

En una de las pistas me he topado con estos tres sugerentes hoodoos, que es como llaman por aquí a las chimeneas de hadas.

Se trata de pináculos de roca blanda que están coronados por roca más dura, lo que provoca una erosión diferencial en la vertical. Así, mientras que el cuerpo es atacado por el agua y el viento de forma eficaz, la parte superior, por ser más dura, resiste mejor los envites de la erosión.

El resultado son estas formas caprichosas que en ocasiones recuerdan a desgastadas esculturas de alguna antigua civilización. En algunas partes del mundo incluso se las llega a venerar, pues hay quien asegura apreciar en ellas rasgos humanos debido a un curioso fenómeno psicológico conocido como pareidolia.

Iván Pérez López es fotógrafo y viajero y actualmente se encuentra embarcado en un viaje alrededor del mundo en furgoneta. Síguele la pista en: iplfoto.comInstagram y Facebook.

#Geopostales | Badlands y cárcavas en el Bryce Canyon National Park (Utah, USA)

Detalle de las cárcavas en el paisaje kárstico del Bryce Canyon National Park, Utah, Estados Unidos. © Iván Pérez López (iplfoto.com)
Detalle de las cárcavas en el paisaje kárstico del Bryce Canyon National Park, Utah, Estados Unidos. © Iván Pérez López (iplfoto.com)

¡Hola, amantes de la geología! 

Hoy quiero mostraros un detalle del interior del Bryce Canyon National Park de Utah (Estados Unidos).

Hace 65 millones de años, durante el Cretácico, buena parte de Norteamérica estuvo cubierta por un mar poco profundo. En él se formaron calizas y se depositaron materiales como arena, limo y arcilla.

La disolución de la caliza blanda deja al descubierto estos otros materiales, que son erosionados intensamente. El resultado son estas cárcavas, es decir, profundos surcos y socavones del terreno.

Este tipo de terrenos áridos arcillosos, que presentan poca vegetación y elevada pendiente, reciben el nombre de badlands, algo así como tierras baldías.

Una de las formas más características son las llamadas chimeneas de hadas, o sea, las columnas y pilares que coronan las crestas de las cárcavas y que por aquí se las conoce con el curioso nombre de hoodoos.

Iván Pérez López es fotógrafo y viajero y actualmente se encuentra embarcado en un viaje alrededor del mundo en furgoneta. Síguele la pista en: iplfoto.comInstagram y Facebook.