Archivo de la categoría: Geología de Ávila

En estos contenidos sobre geología para todos los públicos ponemos especial atención en los elementos geológicos que caracterizan a la provincia de Ávila, España. Aunque nuestra vocación divulgadora es Universal.

Los elementos del paisaje en Villaflor

Autoría: Davinia Díez Canseco y Jaime Cuevas

En esta panorámica general podemos ver tres elementos del paisaje que narran las historias que han ocurrido en este lugar a lo largo del tiempo geológico.

Desde esta panorámica vemos 3 elementos del paisaje que narran las historias que han ocurrido aquí a lo largo del tiempo geológico. Imagen de Gabriel Castilla.
Desde esta panorámica vemos 3 elementos del paisaje que narran las historias que han ocurrido aquí a lo largo del tiempo geológico. Imagen de Gabriel Castilla.
  1. El primer elemento son los arroyos, torrentes y procesos de erosión que modelan rápidamente el paisaje y que hacen preguntarnos si un romano vería el mismo entorno que vemos ahora.
  2. El segundo elemento es el relieve cercano formado por materiales geológicos del periodo Mioceno (14 millones de años), cuando esta zona fue habitada por antiguos vertebrados que dejaron sus restos en yacimientos paleontológicos como el que acabáis de ver. Estos fósiles, junto con las calcretas, permiten dibujar un entorno de clima y paisaje muy distinto al actual. ¿Qué tipo de paisaje vieron estos antiguos mamíferos?
  3. El tercer elemento son las montañas que hay al fondo, que permiten descifrar otras historias que emergen desde lo más profundo del tiempo. De allí son las rocas que en otro tiempo fueron sedimentos de océanos, se enterraron bajo cordilleras para luego volver a la superficie, incluso algunas que antes fueron magmas en el interior de la corteza.
Esta fue la última parada del Geolodía 22 de Ávila en Villaflor.

El desafío final

Además de sintetizar todos los elementos del paisaje que el público asistente había recorrido, aquí debían resolver el ‘desafío final’, acertar la frase oculta siguiendo las pistas recogidas durante su exploración del laberinto.

Las pistas recogidas en cada parada geológica
La frase oculta

Mapa central de la guía de campo. En él se indican el área de juego y la posición aproximada de las paradas geológicas. Además, se facilita un espacio para pegar cada una de las pistas recogidas durante la exploración del laberinto y el acertijo final que el público asistente tendrá que adivinar basándose en las pistas.
Mapa central de la guía de campo. En él se indican el área de juego y la posición aproximada de las paradas geológicas. Además, se facilita un espacio para pegar cada una de las pistas recogidas durante la exploración del laberinto y el acertijo final que el público asistente tendrá que adivinar basándose en las pistas.
La solución
Solución al desafío final del Geolodía 22 de Ávila en Villaflor.
Solución al desafío final del Geolodía 22 de Ávila en Villaflor.

Este contenido formó parte del Geolodía 2022 de Ávila.

Raíces de carbonato. Calcretas y clima

En algunas paredes del laberinto de Villaflor podemos observar un patrón de líneas blancas. Son en realidad láminas de carbonato cálcico que han sido cortadas por la incisión de la red de drenaje.

Estas láminas se formaron gracias a la actividad de raíces de plantas en simbiosis con microorganismos y hongos, y es lo que conocemos como calcretas.

En un clima semiárido los nutrientes y el agua son bienes muy preciados y los vegetales desarrollaron estas estructuras para ayudar a retenerlos cerca de sus raíces.

Así, la presencia de estas láminas nos habla de unas condiciones climáticas concretas, de aridez y temperaturas suaves o cálidas hace millones de años.

Calcretas laminares en la pared de un canal del laberinto. En realidad son láminas de carbonato cálcico expuestas al ser cortadas por el “cuchillo” de la red de drenaje. Imagen de Javier Pérez Tarruella.
Calcretas laminares en la pared de un canal del laberinto. En realidad son láminas de carbonato cálcico expuestas al ser cortadas por el “cuchillo” de la red de drenaje. Imagen de Javier Pérez Tarruella.

Cuando las calcretas se presentan en forma de láminas entrecruzadas y no como grandes capas, nos indican que la sedimentación era puntual y esporádica: en determinados eventos de tormenta se producía sedimentación, que provocaba la muerte de la lámina activa y la formación de nuevas láminas, que cortan a las anteriores.

Carbono para arriba, Carbono para abajo

Las rocas en las que están desarrolladas las calcretas de Villaflor no contienen carbonato, el carbonato era aportado en parte por el polvo en suspensión (como el de las invasiones de polvo del Sáhara que sufrimos actualmente).

Las calcretas fijan carbono en la corteza terrestre, así que tienen su papel en el ciclo del CO2 .

Las plantas absorben CO2 para convertirlo en hojas, madera y raíces, pero al morir la planta, estos elementos se oxidan y el carbono vuelve a la atmósfera. Sin embargo, el carbono fijado en la calcreta no se oxida, se fija y pasa a formar parte de la litosfera, hasta que la meteorización lo disuelva y vuelva a formar parte de la atmósfera.

Este es uno de los contenidos del Geolodía 22 de Ávila en Villaflor.

La prueba del ácido

Cuando echamos ácido clorhídrico en la calcreta para comprobar su contenido en carbonato cálcico, estos compuestos reaccionan y forman agua, CO2 que escapa formando burbujas y cloruro de calcio, que se disuelve en el agua.

Así, en este gesto devolvemos a la atmósfera Carbono que había sido retenido en la corteza terrestre durante millones de años.

Este es uno de los contenidos del Geolodía 2022 de Ávila.

Aprende más sobre las calcretas laminares de La Moraña

La datación relativa en geología

Autoría: Pablo Melón y Ana Isabel Casado

En el laberinto de Villaflor estás en un sistema de drenaje donde el agua “corta” el sedimento como si fuera un cuchillo y se lo lleva, dejando ver cada capa. Ahora, están todas las capas pero… ¿habrá sido siempre así?

Presta atención a lo que ves para poder interpretar cómo se relacionan unas capas con otras y ordenar los componentes del laberinto de más antiguo a más moderno, utilizando la datación relativa.

Para entender lo que te rodea tienes que fijarte bien. ¿Hay cosas que se repiten? ¿Todo tiene el mismo color? Gráfico de Ana Isabel Casado.
Para entender lo que te rodea tienes que fijarte bien. ¿Hay cosas que se repiten? ¿Todo tiene el mismo color? Gráfico de Ana Isabel Casado.

La datación relativa es un método de datación empleado en geología en el que se ordenan los eventos de más antiguo a más moderno sin asignarles edades concretas. Estos son los principios en los que se basa:

Esta fue una de las paradas geológicas en la actividad Geolodía 22 en Villaflor, el domingo 8 de mayo de 2022.
Este es el juego que se propuso al público asistente a la actividad. En él debían colocar correctamente cada evento según el principio de datación relativa explicado en la parada geológica. ¡La mayoría tuvieron un 10!

Este contenido formó parte de la actividad Geolodía 2022 de Ávila.

El proceso de fosilización

Los fósiles son los restos de seres vivos del pasado que quedan preservados en el tiempo transformados en roca.

La sustitución mineral átomo a átomo es lenta y permite conservar la estructura de los restos originales. Los detalles en los fósiles facilitan el estudio de una especie concreta, pero también del conjunto de especies que vivían en un tiempo determinado, lo que nos acerca al concepto de ecosistema del pasado. También a conocer la evolución de las especies a lo largo del tiempo.

Capa donde encontramos fósiles de pequeños vertebrados del Mioceno (hace unos 14 millones de años). Imagen de Gabriel Castilla.
Capa donde encontramos fósiles de pequeños vertebrados del Mioceno (hace unos 14 millones de años). Imagen de Gabriel Castilla.

¿Cuáles son las condiciones que han de darse para que un resto de vertebrado se conserve? En esta parada encontrarás y tocarás fósiles de vertebrados continentales del Mioceno que hablan de la vida en el pasado geológico de Ávila.

En esta parada geológica del Geolodía 22 de Ávila explicamos cómo se forma un fósil y qué información aportan los fósiles.

Este fue uno de los contenidos del Geolodía 2022 de Ávila, que tuvo lugar el domingo 8 de mayo de 2022 en Villaflor, Ávila, España.

La naturaleza fractal de las redes fluviales

El mundo está construido a partir de unas pocas piezas básicas que siguen reglas estrictas, aunque extrañas y nada familiares.

Las diez claves de la realidad. Frank Wilczek, 2022

¿Por qué hay ríos con forma de árbol?

Muchos ríos y torrentes se caracterizan por presentar un patrón geométrico dendrítico similar a las ramas de un árbol (dendron significa árbol en griego), donde el canal principal recuerda al tronco mientras que los afluentes se asemejan a las ramas superiores.  

A simple vista este patrón muestra un aspecto caótico, con ramificaciones extendiéndose en cualquier dirección. Sin embargo, bajo esta aparente aleatoriedad se esconden algunas reglas básicas de la Naturaleza, y para desentrañarlas es necesario enfocar el problema desde tres puntos de vista:

1. Geología

2. Geometría

3. Termodinámica

Figura 1. Nervadura de una hoja en descomposición, ramas de un árbol y red de afluentes de los ríos Duero y Ebro. Tres ejemplos de patrón dendrítico a diferentes escalas. Imágenes de Gabriel Castilla.

1. Cuando el azar se cruza con la Geología

Uno de los principales agentes modeladores de paisajes es el agua que, cuando se desplaza por la superficie terrestre como consecuencia de la lluvia o el deshielo, configura un patrón de drenaje impulsado por la fuerza de la gravedad.

Desde que se produce el impacto de las gotas de lluvia sobre el terreno hasta que se forman pequeños regueros y canales por la erosión, son muchas las variables que pueden entrar en juego, pues la erosión es un proceso que depende del azar a muchas escalas.

Figura 2. La lluvia no siempre erosiona homogéneamente una superficie sedimentaria, pues algunos cantos rodados, distribuidos al azar, pueden actuar como pequeños paraguas (izquierda) que condicionan el camino que inicialmente puede seguir la corriente. Poco a poco el agua escurre y va incidiendo en el terreno hasta que logra encauzarse en pequeñas canaladuras (centro) y regueros (derecha) que, como se puede apreciar en la imagen, ven alterada su distribución espacial por la presencia de obstáculos, en este caso raíces (derecha).
Figura 2. La lluvia no siempre erosiona homogéneamente una superficie sedimentaria, pues algunos cantos rodados, distribuidos al azar, pueden actuar como pequeños paraguas (izquierda) que condicionan el camino que inicialmente puede seguir la corriente. Poco a poco el agua escurre y va incidiendo en el terreno hasta que logra encauzarse en pequeñas canaladuras (centro) y regueros (derecha) que, como se puede apreciar en la imagen, ven alterada su distribución espacial por la presencia de obstáculos, en este caso raíces (derecha). Imágenes de Gabriel Castilla.

Pero más allá de la inicial concatenación de factores aleatorios (cantos, raíces, etc.), hay tres variables que condicionan la forma de una red de drenaje:

  1. El clima, que controla la cantidad e intensidad de la lluvia durante los episodios de tormenta, y por tanto la cantidad de agua que circula por la red.
  2. La litología, que condiciona la resistencia de las rocas y el sedimento a la erosión, pues los materiales blandos, permeables o poco consolidados permiten que el agua se abra paso con más facilidad.
  3. La tectónica, que determina desde las fracturas del terreno por donde se encauza el agua con más facilidad, hasta los cambios en el nivel de base (la desembocadura) hacia donde se desplaza el agua, normalmente depresiones del terreno o el nivel del mar. El descenso del nivel de base provoca un fenómeno conocido como erosión remontante (ver Figura 3), un proceso que favorece el crecimiento de la red de afluentes en la zona de cabecera.
Figura 3. El motor que impulsa el agua por una pendiente es la gravedad (izquierda). Un cambio en el nivel de base de un río o un torrente supone un aumento de la energía potencial del fluido. El agua salva esta diferencia con un aumento de la energía cinética (gana velocidad porque ha ganado altura). El resultado es un aumento de la erosión en sentido opuesto a la pendiente, o sea, remontando la corriente. Esto se traduce en una mayor incisión del agua, un lavado del sedimento que soporta las raíces de los árboles (centro) y el crecimiento de los canales en la zona de cabecera (derecha). Imágenes de Gabriel Castilla.

Como vemos, la configuración final de la red de drenaje parece ser un reflejo del sustrato geológico (litología y tectónica) junto con el  clima y el azar.

Los datos bibliográficos señalan que de las múltiples configuraciones posibles el patrón dendrítico es el más frecuente de todos, y éste suele desarrollarse sobre materiales que presentan una resistencia homogénea a la erosión.

Figura 4. Los tres patrones de drenaje más frecuentes: patrón angular (izquierda), que está condicionado por la existencia de un sistema de fracturas perpendiculares; patrón dendrítico (centro), que se desarrolla sobre terreno sedimentario blando y homogéneo o sobre batolitos; y patrón rectangular (derecha), muy frecuente en terrenos donde se intercalan capas duras y blandas.
Figura 4. Los tres patrones de drenaje más frecuentes: patrón angular (izquierda), que está condicionado por la existencia de un sistema de fracturas perpendiculares; patrón dendrítico (centro), que se desarrolla sobre terreno sedimentario blando y homogéneo o sobre batolitos; y patrón rectangular (derecha), muy frecuente en terrenos donde se intercalan capas duras y blandas.

2. Cuando el azar y la Geología se cruzan con la Geometría

En 1975 el matemático Benoît Mandelbrot acuñó el término fractal para referirse a aquellos patrones geométricos irregulares que se repiten a múltiples escalas. Desde este enfoque todas las redes fluviales dendríticas se consideran fractales, y por tanto se pueden expresar con lenguaje matemático.

Figura 5. Mapa que muestra la red de drenaje del torrente y las cárcavas de Villaflor (Ávila). El conjunto muestra un patrón dendrítico similar a diferentes escalas, desde los canales principales de mayor tamaño (en naranja y amarillo) hasta los afluentes más pequeños (azules y grises). Esta autosemejanza multiescalar es una característica propia de los fractales. Mapa elaborado por Javier Pérez Tarruella.
Figura 5. Mapa que muestra la red de drenaje del torrente y las cárcavas de Villaflor (Ávila). El conjunto muestra un patrón dendrítico similar a diferentes escalas, desde los canales principales de mayor tamaño (en naranja y amarillo) hasta los afluentes más pequeños (azules y grises). Esta autosemejanza multiescalar es una característica propia de los fractales. Mapa elaborado por Javier Pérez Tarruella.

Cualquier red de drenaje tiene una dimensión fractal (D), un valor numérico que se obtiene al relacionar las bifurcaciones (ramificaciones más o menos complejas) de la maraña de canales que lo forman respecto a su longitud total.

Según los datos bibliográficos, la mayoría de las redes dendríticas presentan dimensiones fractales comprendidas entre 1.6 y 1.8

¿Esto qué significa?

  • De forma intuitiva entendemos que las líneas abiertas y curvas que dibujamos sobre un papel tienen una sola dimensión y por tanto un valor D=1;
  • mientras que las formas cerradas que dibujamos en dos dimensiones (el área de un círculo o un cuadrado, por ejemplo) tienen un D=2;
  • y los cuerpos tridimensionales (con volumen) presentan un D=3.

Sin embargo, aunque existen objetos que pueden alojarse en espacios bidimensionales (2D) o tridimensionales (3D), su dimensión espacial no es necesariamente 2 o 3.

Figura 6. Representación de la dimensión fractal (D) para objetos de una, dos y tres dimensiones. Las nervaduras lineales de una hoja siguen un patrón dendrítico que tiende a rellenar una superficie, lo que le otorga una dimensión fractal comprendida entre 1 y 2.
Figura 6. Representación de la dimensión fractal (D) para objetos de una, dos y tres dimensiones. Las nervaduras lineales de una hoja siguen un patrón dendrítico que tiende a rellenar una superficie, lo que le otorga una dimensión fractal comprendida entre 1 y 2.

Las formas geométricas de gran complejidad adoptan valores fraccionarios de D (de ahí el término fractal, que literalmente significa roto o quebrado).

Una red fluvial similar a las nervaduras de una hoja muestra un patrón geométrico dendrítico que tiende a extenderse por el terreno hasta ocupar la mayor superficie posible.

¿Por qué?

3. Cuando el azar, la Geología y la Geometría se cruzan con la Termodinámica

Los ríos y torrentes que configuran la red de drenaje de una cuenca son sistemas termodinámicos, es decir, partes del Universo que podemos individualizar para estudiarlos desde el punto de vista de la energía, el calor y el movimiento.

En este contexto, y de forma muy simple, se podría decir que las redes de drenaje dendríticas se rigen por una única norma: la tendencia de todo sistema a alcanzar un equilibrio termodinámico, es decir, un estado de máxima entropía o desorden. Esta norma es el Segundo Principio de la Termodinámica y rige el destino de cualquier sistema cerrado y en equilibrio térmico del Universo.

Sin embargo, los ríos no pueden alcanzar este equilibrio porque son sistemas abiertos que intercambian materia y energía con su alrededor: entra agua (materia) periódicamente por tormentas, deshielo o escorrentía subterránea;  y disipan mucha energía en forma de calor debido a la fricción del agua con la superficie del terreno.

Puesto que el sistema río no puede alcanzar el equilibrio termodinámico, se conforma con la segunda mejor opción posible: lograr un equilibrio dinámico de flujo en el que se pierda la menor cantidad de energía posible. Desde este punto de vista, la forma fractal de una red de drenaje es el reflejo de este equilibrio o balance entre los factores que hacen que el sistema “pierda” energía y los que permiten “ahorrar” energía.

Figura 7. La energía disipada por la fricción del agua sobre el sedimento aumenta con la distancia recorrida y con la superficie de rozamiento; pero disminuye con el volumen de agua que transporta. Es por ello que cuando varias corrientes menores se funden en otra de mayor tamaño, la energía disipada del sistema disminuye, y esto la hace termodinámicamente más estable. Este es el origen de la jerarquización de una res de drenaje, desde pequeñas cárcavas (izquierda), pasando por la unión de varios canales (centro) y el desarrollo de canales de mayor tamaño y profundidad (derecha). Imágenes de Gabriel Castilla.
Figura 7. La energía disipada por la fricción del agua sobre el sedimento aumenta con la distancia recorrida y con la superficie de rozamiento; pero disminuye con el volumen de agua que transporta. Es por ello que cuando varias corrientes menores se funden en otra de mayor tamaño, la energía disipada del sistema disminuye, y esto la hace termodinámicamente más estable. Este es el origen de la jerarquización de una red de drenaje, desde pequeñas cárcavas (izquierda), pasando por la unión de varios canales (centro) y el desarrollo de canales de mayor tamaño y profundidad (derecha). Imágenes de Gabriel Castilla.

Ahora ya conocemos los tres factores que subyacen bajo el aparente caos de las redes de drenaje dendríticas: Geología, Geometría y Termodinámica; y por tanto estamos en condiciones de retomar la pregunta de partida pero con una pregunta más certera:

¿Cómo llega un río o un torrente a desarrollar un patrón dendrítico fractal?

El sistema de drenaje parte de una configuración inicial condicionada por el azar sobre un determinado sustrato geológico y poco a poco va probando las diferentes posibilidades energéticas.

Las posibilidades que resultan más favorables al ahorro de energía “sobreviven” durante más tiempo, mientras que las más alejadas del equilibrio tienden a desaparecer.

Con el paso del tiempo se establece un sistema complejo de naturaleza fractal que fluctúa (equilibrio dinámico) en torno a un estado ideal de mínima pérdida (disipación) de energía.

4º Si no hay factores geológicos (tectónicos, litológicos) que condicionen fuertemente el desarrollo de la red de drenaje, la forma arborescente tiende a ser la más estable termodinámicamente.

Este es uno de los contenidos del Geolodía 2022 de Ávila. ¡No te lo pierdas en directo el domingo 8 de mayo 2022 en Villaflor!

Bibliografía

  • García, M. y Fairén, V. (1980). Estructuras disipativas. Algunas nociones básicas /1. El Basilisco, Nº 10, mayo-octubre, pp. 8-13
  • Gutiérrez Elorza, M. (2008). Geomorfología. Pearson Educación, Madrid.
  • Mandelbrot, B. (1997). La geometría fractal de la naturaleza. Tusquets, Barcelona.
  • Martínez, F.; Ojeda, J. A. y Manríquez, H. (2020). Morfometría y Fractalidad en Redes de Drenaje de Cuencas Chilenas. Conferencia del XXIV Congreso Chileno de Ingeniería Hidráulica.
  • Ramírez-Hernández, R.; Rodríguez-Infante, A. y Ordaz-Hernández, A. (2017). Dimensión fractal de redes de drenaje controladas estructuralmente en cuencas hidrográficas de Pinar del Río, Cuba. Minería y Geología, Vol. 33 (2), pp.163-176.
  • Schlichting, H. J. (2015). La geometría de las redes fluviales. Investigación y Ciencia Nº 463 (abril), pp. 84-86.
  • Strahler, A. N. y Strahler, A. H. (1994). Geografía Física. Ediciones Omega, Barcelona.
  • Zucarelli, G. V. y Tabernig, D. (2009). Análisis Fractal de la Red de Drenaje del Arroyo Feliciano (Entre Ríos, Argentina). Cuadernos del CURIHAM, Vol. 15, pp. 31-42.

Paleocanales y paleogeografía. “Y sin embargo se mueve”

Texto, gráficos y fotografías – Ana Isabel Casado
Fotografías y modelo 3D- Javier Elez

Cuando miramos el paisaje que nos rodea, tenemos delante de nuestros ojos una postal del viaje que estamos haciendo, la instantánea de «cómo son las cosas» en este momento.

Pero observando un poco más, podemos hacernos preguntas y pensar de qué manera se ha llegado a formar este paisaje, como sucede en el abanico aluvial de la Garganta de Santa María, en Candeleda, Ávila (fig. 1).

Vista de la Garganta de Santa María, en Candeleda, Ávila, en un momento con poca corriente de agua. Fotografía de Javier Élez.
Fig.1: El río Garganta de Santa María a su paso por el puente de la Barranca (Candeleda, Ávila). En el momento de la fotografía, el río no lleva una gran fuerza, al contrario que cuando recibe aportes extra de agua (por ejemplo con el deshielo en las montañas de Gredos). Aún así, vemos grandes bloques de granito que han sido transportados por el agua hasta el lugar en el que se encuentran ahora. Por ello, podemos deducir que el agua transportó esos grandes bloques en momentos de mayor energía, formando el abanico aluvial de Candeleda.  Fotografía de Javier Élez.

No nos cuesta imaginar que esa corriente de agua, que se oye como un susurro, aumentará su caudal en momentos de avenidas torrenciales (por tormenta o tras el deshielo) teniendo la fuerza necesaria para mover grandes bloques de piedra desde las montañas.

Así bajaba el río el 07/03/2013, tras unos días de intensa lluvia junto con el deshielo de la nieve acumulada en las cumbres de Gredos. Vídeo de Luis Blázquez.

Estos bloques de piedra se irán fragmentando y redondeado al chocar unos con otros según se desplazan aguas abajo (fig. 2).

Fig. 2: Bolos redondeados aguas abajo del río Garganta de Santa María, en Candeleda, Ávila. Imagen de Ana Isabel Casado.

El agua erosiona, transporta y sedimenta

El agua es una trabajadora incansable. A veces con menos fuerza y otras con más. Manteniendo en suspensión arcillas (partículas tres veces más pequeñas que el diámetro de un pelo humano) o empujando grandes bloques. O mejor dicho, todo al mismo tiempo.

A grandes rasgos, se pueden diferenciar cuatro formas de transporte del sedimento en el curso fluvial en función de su tamaño, su forma y la energía del agua (fig. 3):

  1. Las partículas más pequeñas (habitualmente con formas laminares), las que estudiamos mejor con ayuda de los microscopios, son capaces de viajar en el agua en suspensión.
  2. Las de tamaño intermedio, las que vemos a simple vista y nos caben en la palma de la mano, pueden moverse por saltación gracias a pequeños choques con el fondo o con otros clastos (rocas o fragmentos de roca). Esto les permite continuar su movimiento hacia delante cuando aparentemente se iban a depositar.
  3. Con este mismo tamaño, o incluso algo más grandes, hay piedras que pueden rodar por el lecho del río gracias a que se van desgastando y van tomando formas cada vez más esféricas.
  4. Las rocas más grandes, por lo general también las más angulosas, se mueven por arrastre pegadas al fondo del río.
Representación esquemática de las formas de transporte de sedimento por corrientes fluviales. Figura de Ana Isabel Casado.
Fig. 3: Representación esquemática de las formas de transporte de sedimento por corrientes fluviales. Existe una relación directa entre el tamaño del material que se transporta y la energía del agua del río. No es necesaria demasiada energía para mover sedimentos de pequeño tamaño como las arcillas ya que se encontrarán en suspensión en el agua. Partículas algo mayores se mueven por saltación, siendo necesaria más energía para que esto se produzca. Si la energía aumenta, también se pueden mover bloques mayores que, dependiendo también de su forma, pueden moverse por rodadura si son más redondeados (como si fuera un balón) o por arrastre pegados al fondo cuando tienen una forma más aerodinámica (cantos planos rodados). Figura de Ana Isabel Casado.

Cuando el río baja cargado de agua, se lleva consigo todo aquello que es capaz de mover, tanto lo grande como lo pequeño, no hace distinción. Es lo que se conoce como sedimento no seleccionado.

Según va perdiendo energía va dejando a su paso las rocas más pesadas, con las que ya no puede cargar. Por eso, cuanto más aguas arriba, más grandes son las piedras. Y es aquí donde se generan las zonas diferenciadas del abanico.

Y es que no hay que olvidar que:

  • El río erosiona arrancando el material a la montaña.
  • El río transporta moviendo el sedimento con la energía del agua.
  • El río también sedimenta, soltando la carga que lleva en su viaje cuando ya no tiene fuerza para transportarla más.

Paleocanales, los canales antiguos

Cuando el río se encauza, tiene un espacio que va desde el lecho hasta la superficie del agua que se conoce como espacio de acomodación (fig. 4) y que no es otra cosa que el hueco del que dispone para fluir.

Este espacio puede disminuir o rellenarse de sedimento y no dejar hueco para el agua, que debe buscar zonas más bajas por las que discurrir.

El espacio de acomodación es el "hueco" que existe desde el lecho hasta la superficie del agua. Este espacio puede disminuir porque el caudal de agua sea menor y se puede ir rellenando progresivamente hasta desaparecer. En ese momento el agua buscará nuevos caminos por los que le resulte más fácil circular (generalmente con topografías más bajas), cambiando su curso. Figura de Ana Isabel Casado.
Fig. 4: El espacio de acomodación es el «hueco» que existe desde el lecho hasta la superficie del agua. Este espacio puede disminuir porque el caudal de agua sea menor y se puede ir rellenando progresivamente hasta desaparecer. En ese momento el agua buscará nuevos caminos por los que le resulte más fácil circular (generalmente con topografías más bajas), cambiando su curso. Figura de Ana Isabel Casado.

Estos procesos de relleno de canales fluviales y búsqueda de nuevos canales laterales, que en Candeleda suceden desde el Pleistoceno (2,5 millones de años), hacen que se sucedan lóbulos de sedimento de manera radial desde el ápice, como ya vimos en la entrada sobre qué es un abanico aluvial.

El abanico aluvial de Candeleda, la huella de una montaña vaciada.

En Candeleda se pueden reconocer al menos 7 canales anteriores al canal actual, numerados desde el más antiguo (canal 0) al más moderno (canal 6).

En la fig. 5 se muestran estos canales coloreados en escalas de verdes en el modelo 3D del abanico aluvial de Candeleda.

Sobre el mapa geomorfológico del abanico, se ha representado la paleogeografía de los distintos depósitos que han existido en el pasado y que aún podemos reconocer.

Vemos que el canal principal migró de Este a Oeste (canales 0, 1 y 2) y posteriormente de Oeste a Este (canales 3, 4, 5 y 6) hasta ubicarse donde se encuentra activo actualmente.

Modelo 3D del abanico de Candeleda con la posición de sus paleocanales (canales antiguos) numerados del 0 al 6 y el canal actualmente activo en color verde más claro. En la leyenda se pueden ver sus edades tentativas y sus relaciones temporales, ordenador del más antiguo (abajo) al más moderno (arriba) como indica la flecha rosa.  Modelo 3D de Javier Élez.
Fig. 5: Modelo 3D del abanico de Candeleda con la posición de sus paleocanales (canales antiguos) numerados del 0 al 6 y el canal actualmente activo en color verde más claro. En la leyenda se pueden ver sus edades tentativas y sus relaciones temporales, ordenados del más antiguo (abajo) al más moderno (arriba) como indica la flecha rosa.  Modelo 3D de Javier Élez.

Sabiendo cuál es la dinámica de este tipo de sistemas, podemos deducir que el abanico se ha formado por la sucesiva acumulación de bolos cuando el canal principal del río ha ido cambiando de posición.

Lo que vemos en el paisaje son los sedimentos de los paleocanales, los antiguos canales del río Garganta de Santa María, que el río fue abandonando hasta llegar al canal que vemos ahora activo (fig. 6).

Fig. 6: Paleocanal que aún conserva su morfología de canal a pesar de estar colonizado por plantas. Fotografía: Ana Isabel Casado.

Así que no debemos olvidar que, en los sistemas de abanicos aluviales, los lóbulos y sus canales cambian mucho de posición.

En la postal que vemos en este momento el canal del río parece estático pero, como hipotéticamente diría Galileo, «y sin embargo se mueve«.

¿Sabías que…

El prefijo Paleo- proviene de la palabra griega palaios (παλαιο) y significa «antiguo» o «muy viejo»? Es un prefijo que se utiliza muchísimo en Geología. Por ejemplo, en Paleontología, que etimológicamente significa «estudio de lo antiguo». Así que cuando leemos una palabra con el prefijo paleo- ya sabemos que nos define algo propio de tiempos pretéritos, no actual. En esta entrada se han explicado qué son los paleocanales (canales antiguos, que no funcionan actualmente como canales) y paleorrelieves (la forma que tenía la superficie del terreno en la antiguedad propia del sistema sedimentario que estaba funcionando en ese momento). Otros ejemplos de palabras con el mismo prefijo son: paleolago, paleoantropología, paleosistema, paleolítico, paleobotánica…

Bibliografía

Los otros «relojes de arena». Método de datación por OSL

Texto y gráficos – Ana Isabel Casado Gómez

Los clásicos relojes de arena cronometran el tiempo en función de lo que tarda en pasar la arena que contienen por su estrecha cintura. Pero existe otro tipo de «relojes en la arena» que nos permiten contar el tiempo gracias a su estructura cristalina y a la luz, proporcionándonos un práctico método de datación: la Luminiscencia Ópticamente Estimulada u OSL.

El método de datación por OSL, por su acrónimo en inglés (Optically Stimulated Luminescence), se emplea principalmente en materiales sedimentarios detríticos (como la arena y los limos de las dunas de La Moraña).

Este método tiene un rango de aplicación de entre 6 y 800.000 años, aunque no para de optimizarse y se han llegado a datar sedimentos de 1,5 Ma (Bartz et al., 2019).

Esta técnica se desarrolló ante la necesidad de datar de manera directa los sedimentos, sin utilizar materia orgánica a la que aplicarle la datación por Carbono-14, ya que no siempre se encuentran restos biológicos en los sedimentos. Además, el límite de datación del Carbono-14 es menor (60.000 años) y es a veces insuficiente.

Cómo funciona

Para la datación por OSL se utiliza el cuarzo. Esto supone una gran ventaja frente a otras técnicas ya que el cuarzo es uno de los minerales más duros, resistentes y abundantes de la superficie terrestre.

Con el método de luminiscencia ópticamente estimulada se data el último momento en que un material de origen sedimentario estuvo expuesto a la luz solar, el momento de su sedimentación y enterramiento.

¿Qué le sucede al cuarzo cuando recibe luz solar? ¿Y cuando se entierra y deja de recibir esa luz?

Cuando los sedimentos se encuentran en la superficie, la radiación solar visible «limpia» el cuarzo eliminando cualquier electrón que pudiera encontrarse atrapado en su estructura, esto se conoce como blanqueamiento. (Figs. 1.A).

Al enterrarse el sedimento y dejar de estar radiado por el Sol, el cuarzo comienza a recibir un débil flujo de partículas radiactivas (alfa α, beta β y gamma γ) provenientes de elementos radiactivos que forman parte de otros minerales del propio sedimento (como el torio, el uranio y el potasio-40 de la biotita, la circonita, el apatito o el esfeno, o el potasio-40 de los feldespatos blancos y rosas).

La consecuencia de esta radiación natural propia del sedimento es la acumulación progresiva de electrones en trampas dentro de la estructura cristalina de los cuarzos: cuanto más tiempo permanezcan los cuarzos enterrados y protegidos de la luz, más electrones acumularán en su estructura (Figs. 1.B).

Fig. 1. Esquema de los procesos radiactivos que tienen lugar en los sedimentos, tanto a macroescala como a microescala. A) Cuando el cuarzo es radiado por la luz solar y su estructura está libre de electrones. B) Cuando el cuarzo queda enterrado y afectado por otras radiaciones que no son la solar, acumulando electrones en su estructura cristalina.

¿Cómo se recogen las muestras en el campo?

Para poder emplear este método con éxito, es necesaria una recogida muy meticulosa de las muestras en el campo. Para ello:

  1. Se introduce un tubo metálico dentro del sedimento (Fig. 2A) para proteger la muestra de la luz, y evitar así la pérdida de los electrones acumulados en los cuarzos. El tubo se coloca perpendicular a la superficie del afloramiento y se introduce en el sedimento. Se extrae un testigo dejando un agujero cilíndrico en el sedimento.
  2. Posteriormente, con un taladro de corona circular (Fig. 2B), se extrae el sedimento que hay alrededor de la muestra para hacer medidas sobre este sedimento en el laboratorio.
  3. Por último, se introduce un dosímetro en el agujero y se toman medidas de radiación gamma (γ) in situ (Fig. 2C).
Fig. 2. Fotografías del proceso de recogida de muestras para datación por OSL. A) Detalle de la extracción de la muestra. Una persona sujeta el tubo metálico mientras que otra lo golpea con una maza hasta conseguir introducirlo en el sedimento y extraer la muestra protegida de la luz. B) Recogida del sedimento colindante a la muestra para medir la humedad, los elementos radiactivos y la radiación beta (β) del sedimento. C) Dosímetro midiendo la radiación gamma (γ) en el interior del sedimento. Fotografías: AI Casado.

¿Y qué hacemos con las muestras en el laboratorio?

Una vez en el laboratorio, los granos de cuarzo se separan del resto de minerales. Esto se hace en un cuarto oscuro (como los de revelado de fotografías en papel) empleando una tenue luz roja cuya radiación no interfiere con los electrones atrapados en la estructura del cuarzo (Figs. 3A).

Separados los cuarzos, se exponen a una radiación visible controlada semejante a la radiación visible solar. Al iluminar los cuarzos, los electrones que habían quedado atrapados en su estructura durante su enterramiento emiten una señal luminiscente que permite contabilizar cuántos electrones se han acumulado (esta cantidad de electrones se conoce como paleodosis) (Figs. 3B).

Fig. 3. Esquema de los procesos radiactivos que tienen lugar en los sedimentos, tanto a macro como a microescala, en el laboratorio. A) Cuando el cuarzo es radiado por una tenue luz roja. B) Cuando se radia con una luz similar a la solar, permitiendo contabilizar los electrones atrapados en su estructura cristalina.

La datación

¿Y cómo sabemos cuántos años suponen los electrones contabilizados?

Como cada sedimento es diferente, hay que evaluar en el laboratorio cuál es la dosis de radiación natural del sedimento tomado alrededor de la muestra (Fig. 2B) conociendo la radiación gamma (γ) y midiendo la humedad, los elementos radiactivos y las partículas beta (β).

Con todos estos datos, se puede evaluar cuántos electrones puede generar cada muestra en un año (dosis anual).

Al dividir la dosis acumulada en la muestra de manera natural, la paleodosis, (que se ha obtenido contabilizando los electrones atrapados en el cuarzo en el paso anterior) entre la dosis anual obtenida experimentalmente, se puede conocer cuántos años hace que se produjo la sedimentación de la muestra.

  • De esta forma, si los cuarzos han recibido poca dosis cada año (dosis anual) y han acumulado muchos electrones (paleodosis), la edad es alta.
  • Si la dosis anual que recibían los cuarzos era muy grande, aunque haya acumulados muchos electrones tendrán una edad baja.

Por eso es necesario medir la dosis anual de cada muestra.

Resumiendo…

La datación por OSL o datación por Luminiscencia Ópticamente Estimulada se emplea para conocer la edad del momento de sedimentación de un depósito que contenga granos de cuarzo (Fig. 4).

La radiación solar mantiene los cuarzos superficiales «limpios» de cualquier otra radiación que pudieran acumular durante la erosión y el transporte.

Cuando se produce la sedimentación, los cristales de cuarzo enterrados que ya no reciben radiación solar comienzan a recibir una radiación débil procedente de elementos radiactivos de los minerales que los rodean, y acumulan electrones en su estructura.

Los cristales de cuarzo se «llenan» de electrones de manera gradual, a un ritmo constante en el tiempo (dosis anual).

Y es el contaje de esos electrones lo que determina la paleodosis, con lo que se puede calcular cuánto tiempo ha pasado desde que quedaron enterrados y dejaron de recibir luz solar.

Cuando se iluminan de nuevo esos cuarzos con una radiación visible similar a la solar, los electrones atrapados en el cuarzo se liberan emitiendo una señal luminiscente.

Midiendo esos electrones y la dosis anual del sedimento, se puede saber cuántos electrones estaban atrapados en el cuarzo y calcular la edad en que se produjo la sedimentación.

Fig. 4. Gráfica resumen de la acumulación de radiación beta (β) en el cuarzo en función del tiempo y de las condiciones de exposición a la luz (modificado de Aitken, 1998)

¿Sabías que… el feldespato también tiene la capacidad de albergar electrones en trampas de su estructura cristalina, por el mismo proceso que el cuarzo? Para la datación con feldespatos el procedimiento es similar al OSL, pero se emplea radiación infrarroja para estimular la luminiscencia. En ese caso, se denomina IRSL o Luminiscencia estimulada por infrarrojos.

Referencias

Ostrácodos, los señores del agua

Texto e imágenes: Blanca Martínez

Los lectores habituales de este blog ya conocéis algunas de las herramientas o proxys más utilizadas para poder reconstruir los climas del pasado, como los isótopos de oxígeno, los foraminíferos o el polen. Pues aquí os voy a presentar una nueva, los ostrácodos.

RECUERDA QUE. Un dato «proxy» es un dato indirecto. Como no es posible medir directamente la temperatura o la precipitación del pasado, se utilizan registros de otras variables a partir de las cuales se pueden deducir las primeras. La interpretación de estos datos «proxy» está basada siempre en principios físicos, químicos o biológicos.

Qué son los ostrácodos

Los ostrácodos son un grupo de microcrustáceos, primo-hermanos de los cangrejos, con un tamaño generalmente inferior a 1 mm, que viven en cualquier ambiente acuático.

Balsa construida en Bardenas Reales de Navarra para recoger el agua de lluvia para su aprovechamiento en el regadío y como abrevadero. Entre la fauna acuática que la ha convertido en su hogar se encuentran los ostrácodos.

Aunque cuando ves su aspecto no te acuerdas precisamente de los cangrejos, ya que tienen dos valvas carbonatadas que recubren el cuerpo blando y que son las que quedan preservadas en el sedimento.

Pequeño vídeo de lupa binocular de varios ejemplares de una misma especie presentes en una muestra de agua de una balsa de Bardenas Reales de Navarra. Fijaos lo activos que son, no paran de moverse. Vídeo: Blanca Martínez.

Como el resto de los crustáceos, los ostrácodos crecen por mudas. Segregan valvas cada vez más grandes para adecuarse al crecimiento de su cuerpo, desprendiéndose de las valvas previas más pequeñas. Y aunque tienen un ciclo de vida corto, ya que generalmente viven sólo un año, de media sufren hasta 8 mudas.

Parecen unos animalitos muy simplones, pero si prestamos atención a su biología, nos damos cuenta de que son apasionantes.

¿SABÍAS QUE…? La mayoría tienen un único ojo con forma de prisma rectangular situado en la parte superior frontal del caparazón. Algunas especies marinas son bioluminscentes; otras resisten vivas el paso por el tracto digestivo de los peces; y otras, incluso, son capaces de atacar en manada a organismos más grandes.

Fotografías de lupa binocular de tres especies de ostrácodos vivos presentes en una balsa construida en Bardenas Reales de Navarra. Si os fijáis con detalle en la parte superior derecha de los dos últimos ejemplares, veréis una manchita negra brillante. Eso es el ojo. Y para que os hagáis una idea del tamaño de estos ostrácodos, el rectángulo negro representa una escala gráfica de 0,1 mm.

Curiosidades de su ciclo reproductivo

Pero las curiosidades más llamativas las encontramos en su ciclo reproductivo:

  • Algunos ostrácodos tienen el tamaño del pene vez y media el tamaño de su cuerpo.
  • Otros producen espermatozoides con una longitud hasta ocho veces el tamaño de su cuerpo.
  • Y el primer macho de la historia del registro fósil es un ostrácodo de hace más de 400 millones de años.
  • Aunque también tienen una parte más «feminista», ya que hay especies que tienen una reproducción asexual en la que las hembras ponen huevos de los que nacen nuevas hembras fértiles, sin necesidad de machos.

Indicadores paleoambientales

Aunque mejor dejo de hablar de las intimidades de los ostrácodos y vuelvo al tema que nos ocupa, su utilidad como herramientas paleoambientales.

Detalle de un muestreo en rocas del Mioceno de Bardenas Reales de Navarra. Una vez en el laboratorio, hay que lavar y tamizar ese material para separar el tamaño de grano que nos interesa (más de 0,125 mm) y armarse de paciencia frente a una lupa binocular, con la que separamos y clasificamos las valvas de los ostrácodos una a una.

Y es que ya he comentado que viven en cualquier ambiente acuático, desde un charco de lluvia en la alta montaña hasta los fondos oceánicos más profundos. Pero cada especie únicamente soporta unos rangos muy concretos de ciertos parámetros ecológicos, como son la temperatura, salinidad o energía del agua, el tipo de sedimento o la cantidad de vegetación acuática. De tal manera que la más mínima variación en esos parámetros ecológicos provoca cambios en la asociación de especies de ostrácodos presente en el medio acuático.

Vamos, que sólo hay dos posibilidades de respuesta para nuestros amigos ante los más pequeños cambios ambientales: o se mueren, o se van a otra parte, dejando vía libre para nuevas especies mejor adaptadas a esas nuevas condiciones ecológicas.

Así que, estudiando cómo han cambiado las asociaciones de especies de ostrácodos a lo largo del registro geológico, podemos hacer reconstrucciones paleoambientales de antiguos medios acuáticos. De esta manera, podemos identificar diversos ciclos climáticos “árido-húmedo” consecutivos durante el Mioceno en toda la Península Ibérica, con avances y retrocesos de extensos lagos poco profundos.

Fotografía de Microscopio Electrónico de Barrido de tres especies de ostrácodos continentales del Mioceno presentes en las rocas de Bardenas Reales de Navarra. Su presencia nos indica que hace más de 15 millones de años había ríos que desembocaban en lagos poco profundos pero muy extensos en lo que hoy es una zona semidesértica. El rectángulo blanco representa una escala de 0,1 mm.

O la llegada al Mar Cantábrico de masas de agua procedentes del norte de Escandinavia durante los momentos más fríos de la última glaciación, que se retiraron de nuevo a latitudes altas con la llegada del clima actual más cálido.

Fotografía de Microscopio Electrónico de Barrido de tres especies de ostrácodos recientes encontrados en el sedimento del fondo del Mar Cantábrico. Las especies marinas pueden tener valvas muy ornamentadas, como los ejemplares fotografiados. Así pueden defenderse de sus depredadores y soportar la energía de las corrientes marinas. El rectángulo blanco equivale a 0,1 mm.

Incluso, nos permiten detectar cualquier influencia humana en épocas históricas en estos ambientes acuáticos, ya sea contaminación, desecación o construcción de barreras que alteraron el ciclo natural de los mismos. Vamos, que los ostrácodos son unos chivatos medioambientales excelentes.

Detalle de la marisma vegetada del estuario de Oriñón, en Cantabria. Los ostrácodos permiten detectar rápidamente cualquier influencia del ser humano en estos ambientes tan sensibles.

Por eso son uno de los grupos faunísticos más empleados no sólo para hacer reconstrucciones paleoambientales, sino también para monitorizar y regenerar humedales degradados o para determinar el límite del dominio marítimo-terrestre en zonas litorales.

Panorámica del estuario de Oyambre, en Cantabria. Para que cualquier construcción pueda cumplir con la Ley de Costas, es básico delimitar correctamente la zona de influencia marina. Y para eso también sirven los ostrácodos.

Sobre todo, son de lo más útiles en medios en los que otros grupos no pueden sobrevivir, pero en los que los ostrácodos campan a sus anchas, como las aguas estancadas de las cuevas o los medios con una elevada salinidad. Los ostrácodos son unos auténticos supervivientes, mejores que Bear Grylls.

Creo que con esto ya conocéis un poquito mejor a estos animalitos, aunque no os lo he contado todo. Seguro que la próxima vez que os crucéis con una charca cubierta de vegetación no la veréis de la misma manera, porque os la imaginaréis plagada de ostrácodos. Y tendréis razón 😉

Para saber más

¿SABÍAS QUE…? Los humedales de La Moraña, como la laguna de El Oso, son medios ideales para la proliferación de ostrácodos. Y estos sirven de alimento a otras especies, como el famoso «fósil viviente» triops cancriformis. Aunque lo más curioso es que los ostrácodos pueden «pegarse» a las patas y las plumas de las aves y las utilizan como vehículo para conquistar otros cuerpos de agua.

Laguna de El Oso, Ávila.

VÍDEO | La montaña vaciada. El abanico aluvial de candeleda (ávila)

El microclima del Valle del Tiétar

Por qué llueve tanto en Candeleda

El municipio de Candeleda y la comarca del Valle del Tiétar en general tienen un clima muy diferente al del norte de la provincia de Ávila. Tanto es así que se suele hablar de «la Andalucía de Ávila» o del «microclima del Valle del Tiétar», caracterizado por inviernos suaves y muy húmedos, veranos calurosos y secos y también por precipitaciones puntuales intensas que provocan importantes avenidas torrenciales.

Tanta es la diferencia a uno y otro lado de la Sierra de Gredos que en Candeleda llueve un 250% más que en la capital, a pesar de que Ávila está situada a mayor altura y más al norte.

Mapa de precipitaciones anuales en la península Ibérica. El sur de la provincia de Ávila es mucho más húmedo que el norte. (Fuente AEMET)

El efecto Coriolis

Gran parte de la culpa de esta diferencia en las precipitaciones la tiene la rotación de la Tierra, que provoca el efecto Coriolis: como la Tierra gira alrededor del eje norte-sur, los puntos más cercanos al ecuador se mueven muy rápido (a unos 1600 km/h) mientras en los polos el movimiento es nulo. Por ello el aire que se desplaza hacia el ecuador se ve arrastrado por la rotación de la tierra, y el que se desplaza hacia los polos se adelanta a la rotación.

Para saber más sobre el efecto Coriolis: ¿Por qué el aire gira alrededor del centro de un huracán? – El Efecto Coriolis (vídeo en inglés con subtítulos).

Así, todo lo que se mueve en el hemisferio norte se desvía hacia la derecha, mientras que en el hemisferio sur lo hace hacia la izquierda.

El aire en nuestro planeta se desplaza para equilibrar las diferencias de presión, desde las zonas de altas presiones (anticiclones) a las zonas de bajas presiones (borrascas):

  • El aire que se mueve hacia el centro de las borrascas se desvía a la derecha, provocando que las borrascas giren en sentido contrario a las agujas del reloj.
  • Mientras, el aire escapa de los anticiclones y provoca que giren en el sentido de las agujas del reloj.

Abundantes precipitaciones

Este giro antihorario hace que los frentes de precipitación que acompañan a las borrascas desde el Atlántico impacten contra el Sistema Central, obligándoles a ascender por el desnivel de la cara sur de Gredos.

El aire se va a enfriar rápidamente al ascender por la ladera, se condensa y genera precipitaciones copiosas y a veces muy intensas en el Valle del Tiétar como sucedió en diciembre de 2019 con la borrasca Elsa.

Cuando estos frentes llegan a la ciudad de Ávila ya han descargado mucha humedad en la cara sur, dejando pocas lluvias en la capital y en la meseta en general.

Mapa de previsión meteorológica para el día 21 de marzo de 2020, con una situación típica de una borrasca entrando desde el Atlántico, provocando precipitaciones abundantes en la cara sur de Gredos. (Fuente: modelo ECMWF).
Mapa de precipitaciones asociadas a la borrasca Elsa el 19 de diciembre de 2019, en las zonas de color rojo oscuro se superaron los 200 mm en un día. (Fuente: RTVE).

Episodios de lluvias intensas

El efecto Coriolis en combinación con el fuerte desnivel en la cuenca de drenaje propician importantes avenidas de carácter torrencial en la Garganta de Santa María. Las precipitaciones intensas asociadas a frentes atlánticos, que además suelen provocar deshielos en invierno y primavera, son las que dan vida al abanico aluvial de Candeleda.

Para saber qué es un abanico aluvial: El abanico aluvial de Candeleda, la huella de una montaña vaciada

Este abanico apenas sufre cambios graduales durante la temporada normal y se activa fundamentalmente durante estos eventos de alta energía, en los que el caudal se multiplica, se transporta mucho sedimento (con clastos de hasta varias toneladas), se erosiona y se producen cambios en el canal principal.

Imagen comparativa del antes (arriba) y después (abajo) de la borrasca Elsa. Este evento en diciembre de 2019 cambió completamente el canal principal de la Garganta de Santa María, transportando todo tipo de sedimentos, incluyendo clastos de granito de varias toneladas (y algún electrodoméstico de gran tamaño). Imágenes: Javier Pérez Tarruella.

Veranos cálidos y secos

En verano las altas temperaturas y la ausencia de precipitaciones en la zona se deben a que domina el «anticiclón de las Azores» situado en el Atlántico.

Al contrario que las borrascas, el anticiclón gira en el sentido de las agujas del reloj, enviando aire desde el Norte. Este aire pierde la poca humedad que conserva al ascender la cara norte de Gredos y al bajar al Valle del Tiétar se calienta en proporción al enorme desnivel de la cara sur.

¿SABÍAS QUÉ?… En Nueva York llueve tanto en verano como en invierno, ya que allí el anticiclón de las Azores envía aire muy húmedo desde el trópico. Debido al efecto Coriolis, los huracanes que se forman en zonas tropicales desvían su trayectoria hacia la derecha (hacia el Norte) afectando al Caribe y llegando a la mitad este de Estados Unidos.

Bibliografía