Archivo de la etiqueta: Younger Dryas

LAS CAUSAS DE LAS GLACIACIONES

AUTORES-  Gabriel Castilla Cañamero y Javier Pérez Tarruella

No discerní ningún color en las montañas, tan solo manchas apagadas negras y grises. No había vegetación ni vida, solo rocas, nieve y hielo. Al contemplar todo ese escarpado territorio virgen, no tuve más remedio que reírme de la arrogancia de cualquiera al que se le hubiera ocurrido que los seres humanos habían conquistado la Tierra.

Nando Parrado. Milagro en los Andes, 2006.

La última subdivisión de la escala de tiempo geológico es el Periodo Cuaternario y abarca los últimos 2.580.000 años de la historia de la Tierra. Este intervalo de tiempo es especial porque señala la aparición del género Homo en África y el comienzo de la glaciación en la que aún estamos inmersos. Así pues, el hilo conductor de la evolución humana son los 52 cambios ambientales cíclicos que han tenido lugar en el marco de esta glaciación (Figura 1), durante la cual se han venido alternando periodos de tiempo intensamente frío en los que las masas de hielo glaciar crecen, con periodos cálidos interglaciares en los que las masas de hielo retroceden o desaparecen de los continentes, tal y como está sucediendo en la actualidad.

Figura 1. Los estadios isotópicos marinos del Cuaternario, conocidos en la jerga científica como MIS (siglas de Marine Isotopes Stages), son periodos cíclicos de clima frío y cálido que han sido establecidos mediante relaciones isotópicas de oxígeno medidas en los caparazones de microorganismos (foraminíferos) marinos. Empiezan a numerarse (1 rojo) desde el comienzo del actual periodo cálido Holoceno (H), y es por ello que todos los números rojos son impares y representan episodios interglaciares, mientras que todos los números azules son pares y representan episodios glaciares. Para no saturar la figura solo se han señalado los 23 primeros y los dos últimos. Basado en Silva et al. (2017).

Vivimos en las postrimerías de un periodo interglaciar que comenzó hace 11.700 años y al que hemos bautizado con el término griego Holoceno (literalmente todo lo reciente). El Holoceno señala el tiempo que ha durado la ventana ambiental de temperaturas relativamente suaves (aún con algunos episodios notablemente fríos, como la Pequeña Edad del Hielo) que nos ha permitido pasar de un mundo de cazadores-recolectores nómadas a crear ciudades, imperios, innovaciones culturales y avances tecnológicos que han desembocado en el mundo tecno-científico globalizado en el que habitamos los seres humanos del siglo XXI.

Parece mucho tiempo porque han pasado muchas cosas importantes, pero en realidad el Holoceno representa menos del 4 % de nuestra historia como especie. Para entenderlo mejor fijémonos en un detalle: la H de Holoceno de la Figura 1 queda justo en el borde porque su representación en la escala gráfico-temporal del Cuaternario  (20 cm en la imagen original) ocupa apenas 1 milímetro dado que el 99% de nuestro tiempo en la Tierra ha transcurrido en la prehistoria.

La búsqueda de sentido

Una aclaración contra la creencia popular: llamamos glaciación al intervalo de tiempo de la historia terrestre en la que se forman masas de hielo permanentes en los polos, aunque las masas de hielo continental puedan retroceder hasta desaparecer, o bien todo lo contrario: avanzar y extenderse tal y como sucedió hace entre 30.000 y 20.000 años, durante el Último Máximo Glacial (Figura 2).

Figura 2. Proyección equiárea que permite ver la distribución de las masas de hielo durante el Último Máximo Glacial (MIS 2) en los dos hemisferios.  En este tiempo las masas de hielo marino (amarillo) y de hielo terrestre (rojo) avanzaron en ambos hemisferios, lo que supuso un descenso del nivel del mar de hasta 130 metros. Adaptado de Broecker y Denton (1990).

Pudiera parecer que la presencia de masas de hielo permanentes en las regiones polares es un hecho común, pero el registro geológico nos dice que no es así, pues solo ha habido glaciaciones durante el 10% de la historia de la Tierra (Figura 3).

Figura 3. La mayoría de las glaciaciones han tenido lugar en los últimos 900 millones de años, y solo en unas pocas ocasiones el hielo alcanzó la región ecuatorial. Estos episodios extremos se conocen como Tierra Blanca del Período Criogénico (o episodios Snowball Earth). Las glaciaciones más antiguas son las peor conocidas debido al menor registro geológico (vivimos en un planeta que tiende a borrar su historia). La actual glaciación Cuaternaria comenzó a gestarse hace unos 30 millones de años, por eso en la gráfica aparece como Neógena. Actualmente nos encontramos en una de las épocas más frías de los últimos 300 millones de años. Modificado de Anguita (2006).

Un satélite que mida la temperatura de la Tierra desde el espacio registrará una temperatura de -18 ºC en la parte alta de la atmósfera, aunque la temperatura media real de la superficie es de 15 ºC. ¿A qué responde esta diferencia? Llamamos balance radiativo a la relación entre la energía de onda corta procedente del Sol y la radiación de onda larga que sale del sistema climático terrestre. Como podemos ver en la Figura 4, la temperatura en la superficie terrestre depende en esencia del balance que se establece entre los mecanismos que tienden a enfriar el planeta (entre los que destaca el efecto albedo) y los que tienden a calentarlo (principalmente el efecto invernadero).

Figura 4. De toda la radiación de alta energía procedente del Sol (onda corta en color amarillo) que incide en la parte superior de la atmósfera, un 70% es absorbida por la superficie terrestre y por las nubes, pero el otro 30% es reflejada al espacio por el efecto albedo que ejercen las nubes altas, el polvo atmosférico y los materiales de superficie terrestre. La energía absorbida (onda larga en color rojo) se reemite en forma de calor. Una parte importante de este calor es atrapado por el vapor de agua de las nubes, el metano de origen bacteriano y el dióxido de carbono de los volcanes. Estos gases de efecto invernadero devuelven parte de la radiación a la superficie terrestre calentándola hasta alcanzar los 15 º C de media. Adaptado de Schneider (1989).

Conforme el estudio de la física atmosférica fue avanzando durante el pasado siglo XX, se fueron descubriendo relaciones causa-efecto entre los diversos factores reguladores del clima. La interacción entre ellos hace que el clima terrestre tienda a un equilibrio dinámico, o sea, que cambia según lo hacen las variables que lo controlan. Veamos los dos casos más significativos.

Un bucle para enfriar el planeta…

El principal motor que modula el clima de la Tierra es la radiación que nos llega procedente del Sol, y si por alguna razón disminuye, la consecuencia más probable será una disminución de la temperatura. Un enfriamiento del planeta suele conllevar la formación de nieve y hielo, lo que provoca un mayor albedo de la radiación hacia el espacio. Como podemos ver la Figura 5, el resultado será un bucle de retroalimentación positiva, es decir, una tendencia al enfriamiento.

Figura 5. Relaciones causales (causa-efecto) y el bucle de retroalimentación que tiende a enfriar el planeta. La radiación incidente puede disminuir tanto por cambios en la órbita terrestre como por variaciones en la actividad solar o la presencia de gran cantidad de polvo en la atmósfera (debido a erupciones volcánicas, impactos de asteroides o un aumento de la desertización). La consecuencia es una disminución de la temperatura que favorece la acumulación de hielo y un aumento del albedo, o sea, una disminución aún mayor de la radiación incidente y por tanto un mayor enfriamiento del planeta. Modificado de Calvo, Molina y Salvachúa (2009).

¿Qué procesos enfrían el planeta por cambios en la insolación? Básicamente tres:

1.- Las grandes erupciones volcánicas.

En este caso son las cenizas y los aerosoles de azufre inyectados en las capas altas de la atmósfera los responsables de aumentar el albedo. Se estima que la erupción del monte Tambora (Indonesia) en 1815, enfrió la Tierra entre 0.5 y 0.7ºC durante 3 años. 

2.- La disminución de la energía emitida por el Sol.

El ejemplo más reciente es el llamado Mínimo de Maunder, período comprendido entre 1645 y 1715 durante el cual las manchas solares desaparecieron. Este hecho coincide con uno de los episodios más fríos de la Pequeña Edad del Hielo,durante el cual la temperatura media del hemisferio Norte disminuyó hasta en 1 ºC.

3.- Los ciclos astronómicos de entre 23.000 y 100.000 años de duración.

Conocidos como Ciclos de Milankovitch, influyen en la excentricidad de la órbita terrestre, así como en la orientación e inclinación del eje de rotación. Estas perturbaciones apenas cambian la energía solar media anual que llega a la Tierra, pero alteran la distribución geográfica y estacional de la energía solar incidente hasta en un 20%, lo que afecta a la formación y fusión de las capas de hielo, y con ello al albedo.

…Y otro bucle para calentarlo

A largo plazo las erupciones volcánicas tienden a calentar el planeta debido a las emisiones de dióxido de carbono (CO2), el gas responsable del efecto invernadero que más tiempo permanece en la atmósfera. El aumento de la temperatura provoca un incremento de la evaporación, es decir, la formación de nubes de vapor de agua que también retienen el calor por el mismo motivo.

Figura 6. Los bucles de retroalimentación vinculados con el efecto invernadero, tanto por el aumento de la nubosidad (H2O vapor) como por los cambios asociados a la actividad volcánica (CO2) y la actividad biológica, principalmente metano (CH4) y óxidos de nitrógeno (N2O). El aumento de la temperatura provoca más evaporación y nubosidad, y por consiguiente un mayor efecto invernadero. Si bien la nubosidad tiende a calentar rápidamente la superficie terrestre, procesos como la lluvia tienden a retirar el vapor de agua y el CO2 de la atmósfera, estabilizando así el efecto invernadero a corto plazo. Modificado de Calvo, Molina y Salvachúa (2009).

La principal razón por la que la temperatura no se dispara con el efecto invernadero que ejercen las nubes es porque apenas permanecen unos días en la atmósfera. A escalas de tiempo superiores a los 500.000 años el principal modulador del efecto invernadero es el llamado ciclo geológico del carbonato-silicato (Figura 7).

Figura 7. El ciclo geoquímico del carbonato-silicato comienza cuando el COpresente en la atmósfera, por acción volcánica o de los seres vivos, se disuelve en el agua de lluvia y reacciona químicamente con rocas que contienen silicatos (como el granito, por ejemplo). Estas reacciones liberan iones de calcio y bicarbonato que los ríos transportan hasta el océano, donde serán usados por los organismos para construir caparazones de carbonato cálcico y la formación de calizas en aguas poco profundas. Los caparazones de muchos organismos pasan a formar parte del sedimento del fondo marino, donde se irán depositando. En el contexto de la tectónica de placas, estos sedimentos terminarán en márgenes continentales donde el vulcanismo asociado a la subducción volverá a liberar el CO2 a la atmósfera.

¿Qué procesos enfrían el planeta por disminución del efecto invernadero?

Básicamente dos:

1.-  Por efecto del calentamiento climático. Se da la paradoja de que a largo plazo el aumento de la temperatura media produce también un aumento de la temperatura de los océanos y con ello de la evaporación y de la formación de nubes y las consecuentes precipitaciones. Esto provoca un aumento de la erosión de rocas silíceas y por tanto la eliminación de CO2 dela atmósfera, disminuyendo así el efecto invernadero. En este sentido la erosión de la meseta del Tíbet, cuyos ríos aportan el 25% de los sedimentos que cada año llegan a los océanos, puede haber contribuido notablemente al enfriamiento de la Tierra durante los últimos 20 millones de años.

2. La precipitación de grandes cantidades de carbonato cálcico (CaCO3) inducido biológicamente en las plataformas marinas someras (formando arrecifes coralinos y caparazones), retira una gran cantidad de CO2 de la atmósfera, que se incorpora a la corteza terrestre en forma de roca caliza.

La redistribución del calor

Buena parte del calor que retiene la atmósfera por el efecto invernadero es redistribuido por las corrientes marinas superficiales por todo el planeta. Hace 55 millones de años, durante el Eoceno, la distribución de las masas continentales era muy diferente de la actual (Figura 8). África y el subcontinente indio aún no se habían unido a Eurasia, Norteamérica era un continente independiente y Sudamérica se encontraba más cerca de la Antártida. Esta configuración permitía que las corrientes oceánicas circunvalaran el planeta cerca del ecuador, redistribuyendo el calor de forma tan eficaz que la Antártida estaba poblada por bosques templados.

Figura 8. Disposición de los continentes hace unos 55 millones de años. Las flechas rojas señalan la dirección y sentido de las principales corrientes que redistribuían el calor por todo el planeta, suavizando notablemente las temperaturas. Este período de temperaturas cálidas se conoce como Óptimo Eoceno. Adaptado de Blakey (2020) y Anguita (2005).

El proceso de enfriamiento global que llega hasta la actualidad pudo comenzar hace 55 millones de años, cuando el desplazamiento de África hacia el norte cerró el paso de la corriente ecuatorial. Unos 25 millones de años después la Antártida se separó de Sudamérica y Australia, quedando aislada y rodeada de corrientes que la enfriaron hasta cubrirla de hielo (Figura 9). El proceso de reconfiguración de las corrientes culminó hace casi 3 millones de años, cuando el cierre del istmo de Panamá interrumpió definitivamente la circulación oceánica ecuatorial entre los océanos Atlántico y Pacífico, impidiendo así una redistribución eficaz del calor entre las principales masas de agua del planeta, lo que desencadenó el enfriamiento climático global que caracteriza al actual Periodo Cuaternario.

Figura 9. La Antártida no siempre ha sido el continente blanco que conocemos hoy. Hace 25 millones de años estaba poblada por bosques, pero hace 15 millones de años quedó cubierto por un casquete glaciar permanente parecido al actual. ¿Qué sucedió? Todo parece indicar que un lento pero inexorable deterioro climático avanzó conforme la deriva continental modificaba el patrón de corrientes oceánicas y con ello la redistribución del calor en el planeta. Este proceso culminó hace 3 millones de años con la formación de masas de hielo permanentes también en el hemisferio Norte. Fotografía cedida por Iván Pérez López.

Los cambios abruptos

Una pregunta inquietante: ¿podría sobrevenir un periodo frío como resultado de un aumento de la temperatura media del planeta? Este es el argumento de la película de ciencia ficción neocatastrofista The Day After Tomorrow (El día de mañana, en España), dirigida por Roland Emmerich en 2004. La respuesta es….  (¡Atención, spoiler!)… sí. El argumento científico que se esgrime es que un parón en la circulación oceánica profunda puede desencadenar un reajuste climático que enfríe notablemente el hemisferio norte. ¿Tiene sentido?

Esta hipótesis fue inicialmente planteada por los geólogos Wallace Smith Broecker y George H. Denton, quienes desarrollaron en los años 80 del pasado siglo el modelo de circulación oceánica profunda que transporta agua y energía a través de las cuencas oceánicas del planeta (Figura 10).

Figura 10. La circulación oceánica profunda (flecha blanca) se produce por las variaciones en la densidad del agua y la acción de la gravedad terrestre. Las aguas más frías y densas del Océano Ártico tienden a hundirse y desplazarse bajo las más cálidas y menos densas. La densidad del agua está condicionada por su temperatura  (termo-) y por su salinidad (-halina). Es por ello que el conjunto de las corrientes que tienen lugar en la profundidad de los océanos se conoce como Circulación Termohalina. El calor que este proceso cede a la atmósfera afecta tanto al sistema de corrientes cálidas (en rojo) como frías (en azul). Fuente: Instituto de Tecnologías Educativas.

El motor que mantiene la Circulación Termohalina en movimiento se encuentra en el Atlántico Norte, donde cada año las aguas salinas se enfrían bruscamente y se hunden hasta el fondo oceánico. Este proceso implica un caudal de 5 millones de metros cúbicos por segundo (casi 400 veces más que la mayor de las cataratas) desplazándose a 1,4 metros por segundo hasta una profundidad abisal de 3.500 metros. Semejante movimiento libera entre 500 y 700 millones de megawatios, lo que traducido en calentamiento atmosférico de Europa noroccidental equivale a entre 5 y 10 ºC más que si esta corriente no existiera.

Si por algún motivo esta corriente se parara, en pocos años las temperaturas medias para buena parte de Europa caerían en picado hasta vernos inmersos en una nueva Edad del Hielo. Y lo sabemos porque ya ha sucedido.

En 1989  Broecker y Denton propusieron que este fue el proceso que desencadenó el Younger Dryas, un intenso y rápido episodio de enfriamiento climático que tuvo lugar hace 12.800 años y que retrasó en más de 1.000 años la llegada del Holoceno, o sea, el periodo cálido que ha permitido nuestro desarrollo cultural y tecnológico. Pero, ¿cómo sucedió? El aumento de la temperatura del planeta tras la glaciación produjo un calentamiento de los océanos y la fusión de las masas de hielo, que aportaron una gran cantidad de agua dulce al Atlántico Norte. El resultado fue una disminución considerable de la salinidad y, con ello, de la densidad. Esto produjo un parón de las corrientes profundas y el consiguiente desequilibrio en la trasferencia de calor a la atmósfera, desencadenando así un enfriamiento brusco del Hemisferio Norte. Según los autores, este proceso, lejos de ser un episodio puntual, podría haber tenido un papel relevante en los 54 cambios climáticos acontecidos durante el Cuaternario (tal y como vimos en la Figura 1).

Conclusión provisional

Para indagar en los procesos naturales que enfrían la Tierra, además del balance radiativo, el albedo y el efecto invernadero, el ciclo del carbonato-silicato, la deriva continental, la distribución de las corrientes oceánicas superficiales, la corriente termohalina, la dinámica solar, los grandes eventos volcánicos y los Ciclos de Milankovitch; debemos tener en cuenta el papel de otras variables que apenas hemos mencionado, como el papel de la Biosfera y de los impactos de asteroides, por poner dos ejemplos.

Si algo podemos concluir es esto: el sistema climático terrestre es tan complejo, y son tantas las variables involucradas, que resulta imposible tratar de reducir a una única causa el origen de un proceso tan complejo como es una glaciación.

Bibliografía

  • Alley, R.B. (2005). Cambio climático brusco. Investigación y Ciencia nº 340 (enero).
  • Anguita, F. (2006).Las causas de las glaciaciones. Enseñanza de las Ciencias de la Tierra, Vol. 13, nº. 3. Pp. 235-241.
  • Broecker, W.S: y Denton, G.H. (1990). ¿Qué mecanismo gobierna los ciclos glaciares? Investigación y Ciencia nº 162.
  • Broecker, W.S: y Denton, G.H. (1989). The role of ocean-atmosphere reorganizations in glacial cycles. Geochimica et Cosmochimica Acta, Vol. 53, pp. 2465-2501.
  • Calvo, D.; Molina, M.T. y Salvachúa, J. (2009). Ciencias de la Tierra y Medioambientales. McGraw-Hill, Madrid.
  • Chivelet, J. (1999). Cambios climáticos. Una aproximación al Sistema Tierra. Ed. Libertarias-Prodhufi. Madrid.
  • Fawcett, P.J. y Boslough, M. BE. (2002). Climatic effects of an impact-induced equatorial debris ring. Journal of Geophysical Research, Vol. 107, nº D15, pp. ACL2-1-ACL2-18.
  • Kasting, J.F.; Toon, O.B. y Pollack, J.B. (1988). Evolución del clima en los planetas terrestres. Investigación y Ciencia nº 139 (abril).
  • National Geographic (2021). Volcán Tambora: así fue la explosión volcánica más violenta de la historia en 1815. National Geographic, 27 Diciembre, 2021.
  • Rousseau, D-D.; Bagniewski, W. y Ghil, M. (2022). Abrupt climate changes and the astronomical theory: are they related? Climate of the Past, 18, pp. 249-271.
  • Schneider, S.H. (1989). Un clima cambiante. Investigación y Ciencia nº 158 (noviembre).
  • Silva, P.G.; Bardají, T.; Roquero, E.; Baena-Preysler, J.; Cearreta, A.; Rodríguez-Pascua, M.A.; Rosas, A.; Cari Zazo; Goy, J.L. (2017). El Periodo Cuaternario: La Historia Geológica de la Prehistoria. Cuaternario y Geomorfología, nº 31 (3-4), pp. 113-154.
  • Tomkins, A.G.; Martin, E.L. y Cawood, P.A. (2024). Evidence suggesting that Earth had a ring in the Ordovician. Earth and Planetary Science Letters, Vol. 646, 15 Nov. 2024, 118991.
  • Westerhold, T. et al. (2020). An astronomically dated record of Earth´s climate and its predictability over the last 66 million years. Science, Vol. 369, nº 6509, pp.1383-1387.

Younger Dryas: cambios climáticos que condicionaron el paisaje abulense y la vida humana

Autor (texto y gráficos) – Javier Pérez Tarruella

Hace 18.000 años nuestro planeta se encontraba inmerso en el último máximo glacial. La nieve caída sobre los continentes no llegaba a fundirse en verano, formándose grandes acumulaciones de hielo. Y como el agua de precipitación no retornaba al océano el nivel del mar descendió hasta 125 metros por debajo del actual.

18.000 años es un parpadeo en términos geológicos. Y es que el periodo en el que le ha tocado vivir a nuestra especie (el Cuaternario) se caracteriza por un clima que cambia rápidamente (fig. 1).

Figura 1. Variación climática en los últimos 500.000 años. A grandes rasgos se diferencian 5 glaciaciones y 5 periodos interglaciales, en el último de los cuales nos encontramos ahora. En este artículo nos centraremos en la transición de la última glaciación al presente Interglacial (la ¨Última Terminación»). Datos de Lisiecki & Raymo (2005).

Estos cambios climáticos, que a grandes rasgos dan lugar a una glaciación y un periodo interglacial cada 100.000 años aproximadamente, son debidos a:

Estos factores astronómicos siempre han existido, pero el hecho de que hayamos llegado a tener casquetes de hielo en ambos polos (algo rarísimo en la Historia de la Tierra) ha hecho mucho más vulnerable y cambiante al sistema climático.

El enfriamiento súbito del Younger Dryas

Estos cambios no siempre son graduales. Si estudiamos en detalle la última glaciación vemos que hay decenas de cambios bruscos en las temperaturas. Cuando parecía que la glaciación se retiraba definitivamente en el hemisferio Norte, dio un último coletazo hace unos 12.800 años con el llamado Younger Dryas (también conocido como Dryas Reciente o Joven Dryas).

Este enfriamiento súbito fue el responsable del último periodo de actividad del mar de dunas de La Moraña, y es que la precipitación en Ávila disminuyó. Al reducirse la evaporación del Atlántico Norte por las bajas temperaturas, la disponibilidad de humedad hacia la penísula Ibérica también se redujo. Seguramente este sistema dunar estuvo también activo en varios momentos de la última glaciación, coincidiendo con los eventos Heinrich (hace 16.000, 24.000, 30.000, 39.000, 48.000 y 62.000 años aproximadamente).

Para saber más sobre el mar de dunas de La Moraña.

La hipótesis más aceptada durante mucho tiempo sobre el origen de este cambio climático fue la del vaciado del Lago Agassiz. Este lago se formó por el deshielo del casquete glaciar de Norteamérica, en la región de los Grandes Lagos, alcanzando un tamaño similar al de la Península Ibérica (figura 2). En determinado momento este lago habría vertido sus aguas al Atlántico, deteniendo las corrientes oceánicas y enfriando especialmente el Atlántico Norte. Aunque ya no se asocie el Younger Dryas al lago Agassiz, sí se ha confirmado la relación del conocido como evento 8.2 ka (hace 8200 años) con el último vaciado de este lago (You et al., 2023).

Figura 2. El Lago Agassiz y las posibles vías de vertido de sus aguas al océano.

¿Sabías que…? La película Ice Age 2 está basada en la hipótesis del Lago Agassiz. Los protagonistas viven junto a una presa de hielo que retiene el agua del deshielo acumulada en el Lago Agassiz y deben escapar antes de que se rompa y el lago se vacíe de golpe, es decir: ¡antes de que comience el Younger Dryas!

El final del Younger Dryas y el inicio de la agricultura

Como se observa en la figura 3, a pesar de que los factores astronómicos aumentaban la insolación de verano sobre el hemisferio norte, la temperatura disminuyó, y con ella la precipitación.

Sin embargo, más destacable que el enfriamiento del Younger Dyas fue su final. Y es que ese calentamiento y deshielo que se habían visto frustrados remontaron rápidamente, con una subida del nivel del mar de más de 40 mm/año durante unos siglos y un calentamiento de más de 7ºC en Groenlandia para ese periodo.

Figura 3. Gráfica que muestra 5.000 años de evolución climática, incluyendo el Younger Dryas. La temperatura y la precipitación en el Atlántico Norte disminuyeron en este periodo, a pesar del aumento de la insolación de verano en el hemisferio Norte. El enfriamiento finalizó de golpe, provocando la fusión masiva de glaciares y un aumento brusco del nivel del mar.

Los registros arqueológicos muestran que el inicio de la agricultura y las civilizaciones complejas (el Neolítico) coincide con el final del Younger Dryas, el calentamiento que dio paso al presente Interglacial. Ahora, gracias a unos sondeos en el Mar Muerto, en el entorno de Mesopotamia o “Cuna de la Civilización” sabemos que esta coincidencia es exacta. La incipiente actividad agrícola y el pastoreo habrían provocado un aumento de la erosión y por tanto el incremento de la sedimentación observado en la zona.

Por una parte, parece que un cambio ambiental tan brusco obligó a modificar el modo en que obteníamos el alimento; y por otra parte, la relativa estabilidad climática del presente periodo Interglacial (Holoceno) nos permitió perfeccionar la técnica hasta llegar a los tractores que hoy aran La Moraña.

Quizá sin el Younger Dryas no habría surgido este nuevo paradigma de vida de nuestra especie, o quizá hubiese aparecido 2.000 años antes. En cualquier caso, fue un evento que nos invita a preguntarnos cuánto han condicionado los cambios climáticos la historia de la Humanidad.

¿Sabías que…? Otra de las hipótesis utilizadas para explicar el cambio climático del Younger Dryas es el impacto de un meteorito en Groenlandia. Esta hipótesis se lanzó en 2007 y en 2018 se descubrió bajo el casquete glaciar de Groenlandia un enorme cráter de impacto de 30 km de diámetro. Los cálculos sugieren que un meteorito de 1 km impactó contra la Tierra hace entre 10.000 y 2 millones de años, de momento es el único sospechoso que tenemos como culpable cósmico del Younger Dryas. Además, se han encontrado evidencias de impacto en más de 60 yacimientos de todo el planeta. Sin embargo, estos cambios tan abruptos son habituales en el transcurso de los periodos glaciales, y en su mayoría son explicados por la propia dinámica del sistema climático sometido a la vulnerabilidad de los glaciares y del hielo de la banquisa.

Referencias

Un mar de dunas en La Moraña

Autor (texto, gráficos e imágenes) – Gabriel Castilla Cañamero

En aquellas regiones del planeta donde el ambiente es tan seco que la vegetación apenas puede subsistir, los suelos quedan desprotegidos y expuestos a la acción del viento. El viento actúa arrancando del suelo materiales sueltos, principalmente arena y limo, que pueden viajar largas distancias. Cuando el viento se frena, bien porque disminuye su intensidad o bien porque se topa con un obstáculo, entonces se forma una duna. Una duna es, en definitiva, un montículo de arena que es transportado por el viento.

Figura 1. Esquema de una duna.

Aunque solemos asociar las dunas con lugares cálidos como el desierto del Sahara, lo cierto es que también son frecuentes, aunque menos conocidas, las dunas en desiertos fríos como el Gobi o la Antártida. De hecho las dunas son tan frecuentes en ambientes fríos que se han identificado hasta en las llanuras heladas de Marte y Plutón.

Tipos de dunas

El tamaño y la forma de una duna dependen de la dirección y velocidad del viento, la disponibilidad de arena y la cantidad de vegetación presente. En base a estos factores podemos clasificar las dunas en cuatro tipos:

  1. Las de tipo barján tienen forma de media luna y sus cuernos apuntan en dirección al viento.
  2. Las de tipo seif presentan crestas rectas que se disponen longitudinalmente siguiendo la dirección del viento dominante.
  3. Las de tipo transversal son montículos alargados con crestas onduladas perpendiculares a la dirección del viento.
  4. Y por último las de tipo parabólico, que tienen forma de U con sus brazos apuntando en sentido opuesto al viento.
Figura 2. Principales tipos de dunas.

Dunas parabólicas de La Moraña

Las dunas parabólicas son frecuentes allí donde el terreno está parcialmente cubierto por vegetación que fija la arena de los brazos dejando que la parte central avance, siendo propias de zonas áridas frías en las que existe una cubierta vegetal. Este tipo de dunas son las que encontramos bajo los pinares de La Moraña abulense.

Como el viento es un fluido (similar a un río pero de aire) selecciona las partículas que puede mover según su tamaño y peso. Los granos de arena son arrancados del sustrato y desplazados a saltos (se dice que se desplaza por saltación) cerca del suelo, mientras que las partículas más livianas pueden ser elevadas varios metros formando nubes de polvo. El proceso por el cual el sustrato va perdiendo su material más fino y dejando al descubierto los fragmentos rocosos de mayor tamaño se conoce como deflacción.

Figura 3. Superficie erosionada por deflacción (izquierda) y canto pulido por abrasión (derecha) cerca de El Oso.

El resultado es un pavimento de rocas pulidas por la abrasión que ejerce el continuo piqueteo de los granos de arena que impactan sobre ellas. En aquellos lugares donde la deflacción es especialmente fuerte (normalmente en la cara de barlovento de las dunas parabólicas) se pueden formar depresiones que ocasionalmente pueden contener agua.

Bajo los pinares que conforman el paisaje de La Moraña abulense encontramos los restos de lo que en su día fue un extenso mar de arena cuyos restos aún se extienden por las provincias de Valladolid y Segovia. En esta comarca encontramos dunas parabólicas que se formaron por vientos provenientes del Oeste, así como dunas parabólicas semicirculares abiertas que tienen su origen en vientos procedentes del Suroeste. Allí donde la deflacción fue más intensa aún se aprecian depresiones con forma de artesa que ocasionalmente pueden retener una lámina de agua de poca profundidad (la laguna de El Ejido, en el término municipal de Riocabado, es un claro ejemplo – Figura 4).

Figura 4. Campo de dunas parabólicas al Norte de El Oso.

Cuándo se formaron las dunas

Las dataciones mediante termoluminiscencia (TL) señalan que este mar de arena se formó hace unos 11.600 años, coincidiendo con el evento de enfriamiento climático global conocido como Joven Dryas, también conocido como Dryas Reciente o Younger Dryas en inglés.

¿Sabías que…? Este nombre hace referencia a la planta de flor Dryas octopetala que en la actualidad crece en la rocalla de zonas árticas pero que en aquella época se podía encontrar en la fría y extensa tundra que cubrió toda Europa durante la última glaciación.

¿Qué desencadenó el cambio climático que hace 11.600 años transformó La Moraña en un mar de dunas? ¿Cómo era aquel paisaje y qué animales y plantas lo habitaban? Estas son algunas de las preguntas que intentaremos responder en el próximo #Geolodía19.

Referencias