Un glaciar (del francés glacier) es una gran masa de hielo comprimido, formada por acumulación, compactación y recristalización de nieve hasta crear hielo glaciar (figura 1); y que necesita de miles de años para que esto suceda.
Figura 1. Cambios en la morfología y en la porosidad del agua sólida con la profundidad, desde nieve granular hasta hielo glaciar
Con esta compactación, el hielo se reorganiza perdiendo el aire que se encuentra entre las partículas sólidas hasta que solo queda el aire del interior de burbujas. El resultado es la formación de hielo glaciar, con su característico color azul.
Los glaciares son dinámicos (se mueven) y generan procesos de erosión, transporte y sedimentación, al igual que sucede con el agua líquida.
Clasificación de los glaciares
La clasificación morfológica de los glaciares se basa en tres factores: su tamaño, su forma y la posición de la masa de hielo (figura 2).
Glaciares de casquete: son de gran escala. Ocupan casi el 10% de la superficie terrestre. Su forma es masiva y fluye en todas direcciones.
Glaciares de meseta: son de mediana escala. Su forma también es masiva. Fluyen en todas direcciones y se encuentran cubriendo zonas elevadas y mesetas.
Glaciares de montaña (o alpinos): son de pequeña escala. Consisten en corrientes de hielo más largas que anchas y se encuentran entre zonas montañosas elevadas, formando valles en U.
GLACIARES DE CASQUETE
GLACIARES DE MESETA
GLACIARES DE MONTAÑA
TAMAÑO
Grande
Mediano
Pequeño
FORMA
Masiva
Masiva
Corriente de hielo más larga que ancha
POSICIÓN
Grandes superficies (>10% de la Tierra)
Zonas elevadas y mesetas
Entre montañas elevadas, con valles en U
Figura 2. Tabla con las características de tamaño, forma y posición de los glaciares. Con estas características se pueden definir tres tipos de glaciares claramente distintos: de casquete, de meseta y de montaña.
Como ya has visto en la entrada del Paleograciar de la Serradilla (Cepeda la Mora, Ávila), en el Sistema Central existieron glaciares activos en el Último Máximo Glaciar (20.000-30.000 años). Estos glaciares eran del tipo Glaciar de Montaña.
Partes de un glaciar de montaña
Los glaciares de montaña son masas de hielo que fluyen pendiente abajo y que existen porque la acumulación de nieve a gran altura compensa la fusión de hielo a baja altura y la descarga por deshielo.
Esta masa de hielo en movimiento va incorporando fragmentos rocosos de todo tipo de tamaños, y genera morfologías propias que persistirás aún cuando el glaciar haya desaparecido, como ha pasado en La Serradilla.
Las dos zonas de un glaciar de montaña (acumulación vs. ablación)
En un glaciar de montaña se pueden diferenciar dos partes principales (figura 3):
ZONA DE ACUMULACIÓN (ganancia de masa): parte más alta donde más nieva y se alimenta el glaciar. Las bajas temperaturas se encargan de mantener este agua sólida.
ZONA DE ABLACIÓN O DE FUSIÓN (pérdida de masa): zona baja donde el agua sólida se derrite por el aumento de la temperatura. Se forman pequeños drenajes y escorrentías superficiales que alimentan los ríos ladera abajo. En ocasiones, el glaciar puede desembocar en un lago o mar y fragmentarse en grandes bloques de hielo llamados icebergs.
Figura 3. Los glaciares de montaña tienen dos zonas claramente diferenciadas, la zona de acumulación, donde hay una ganancia de masa por la precipitación de nieve, y la zona de ablación, donde se pierde masa por sublimación y deshielo. Donde no hay ni pérdida ni ganancia de masa se llama línea de equilibrio. Morfológicamente, existen estructuras propias de estos sistemas glaciares que permanecen una vez el hielo se ha retirado, como el circo, las morrenas o los bloques erráticos.
Estas dos zonas (acumulación y ablación) se encuentran separadas por la línea de equilibrio, lugar donde el conjunto de las ganancias y las pérdidas es igual a cero.
El dinamismo y la capacidad de cambio son las características más importantes de los sistemas glaciares de montaña. Estos modifican su forma, se mueven, crecen, decrecen…
Algunas definiciones
CIRCO
Los circos glaciares son depresiones con forma semicircular y paredes muy inclinadas, que se desarrollan en la zona de acumulación (figura 3). Su forma se debe a la suma de la erosión basal, el arrastre de fondo y la gelifracción de las rocas de las paredes.
Cuando el hielo ya no existe, quedan los circos en las zonas altas de las montañas, en los cuales es habitual que se formen lagos.
LENGUA GLACIAR
La lengua glaciar (figura 3) es la masa de hielo que se desborda del circo y se desplaza pendiente abajo.
MORRENAS
La masa de hielo va incorporando fragmentos rocosos de todo tipo de tamaños mientras se desplaza, acumulándolos principalmente en sus bordes. A estas acumulaciones se les llama morrenas (figura 3). Estas morrenas se conservan una vez desaparecido el glaciar, y se diferencian como crestas formadas por detritos de tamaños variados que nos permiten conocer las dimensiones de las masas glaciares, ya que las limitan.
Dos tipos de morrenas principales:
Morrena lateral: se desarrolla a los lados del glaciar y se alimenta principalmente de las rocas que caen desde las paredes laterales del valle glaciar.
Morrena final o terminal: se desarrolla en el borde principal del glaciar y marca un periodo de estancamiento. Las más modernas se sitúan a mayor altitud que las más antiguas.
BLOQUES ERRÁTICOS
Los bloques erráticos son también seña de identidad de los glaciares de montaña. Son grandes bloques anguloso de roca que son transportados por el glaciar a grandes distancias. Cuando son transportados dentro de un iceberg , y se desprenden de él al derretirse el hielo, se llaman ice-rafting.
La suma de dos de estos factores, latitud y altitud, generan la denominada línea de nieve (figura 4). Ésta es una línea imaginaria global que marca el límite irregular entre la superficie cubierta de nieve y la superficie libre de nieve. Esta línea no es estática ya que, en general, los glaciares se encuentran en retroceso.
Figura 4. La línea de nieve se mide de manera directa por satélite o fotografías aéreas, o se calcula en base a la isoterma de 0ºC. Es un factor importante en los modelos hidrológicos para estimar caudales y modelos de escorrentía y precipitación.
¿CÓMO SE DICE… …GLACIAR O GLACIAL?
Estas dos palabras se confunden con frecuencia, incluso hay quien las utiliza como sinónimos aunque se trata de dos conceptos diferentes. Glaciarhace referencia a lo relacionado con las masas de hielo. Puede ser un sustantivo, como cuando se habla del glaciar Perito Moreno; o ser un adjetivo como se ha utilizado ampliamente en este post ,circo glaciar, morrena glaciar… Glaciales un adjetivo que se refiere a algo extremadamente frío o helado. Por ejemplo, se usa para hablar del periodo glacial, momento de muy bajas temperaturas.
Al norte del pueblo de Cepeda la Mora, dentro de La Serrota, y en un paraje que se llama Alto de las Serradillas, queda una morfología singular, muy bien preservada y sin embargo muy habitual en el Parque Regional Sierra de Gredos y en todo el Sistema Central. Se trata de un paleoglaciar (Figura 1).
Figura 1. Fotografía del paleoglaciar de la Serradilla. Conserva todas las formas del antiguo glaciar, pero ya no hay hielo. El relieve no está en equilibrio con el clima actual. Fotografía de Javier Elez.
Un paleoglaciar son los restos de formas y sedimentos de lo que un día fue un glaciar y que ahora ya no tiene hielo. Esto no nos impide ver sus formas típicas (circos y morrenas) y nos invita a pensar que el clima de nuestro planeta ha cambiado de forma habitual a lo largo de su historia.
El paleoglaciar de la Serradilla
Hemos elegido este paleoglaciar específicamente, y no otro de los muchos que hay en Gredos y la Sierra de Béjar, por tener unas dimensiones modestas y ser de fácil acceso desde Cepeda La Mora (Figura 2).
Figura 2. Localización del Paleoglaciar de la Serradilla, en el recuadro en rojo.
Estas condiciones, junto con el buen grado de preservación que tiene, hacen que se pueda abarcar en su conjunto con la mirada desde el campo y se puedan entender de forma fácil sus formas más destacadas, depósitos de sedimentos y evolución.
En concreto, este paleoglaciar de la Serradilla está muy bien conservado (aunque le falte el hielo) y presenta varios niveles de morrenas y algunos circos como elementos más característicos (Figura 3).
Figura 3. Esquema geomorfológico del paleoglaciar de la Serradilla. En colores azules las distintas morrenas, cuanto más oscuro más altas topográficamente. Las líneas en azul oscuro indican el límite de los distintos circos (cresta) asociados a las morrenas. Las zonas verdes son antiguos lagos postglaciares tipo la laguna grande de Gredos, que ahora están llenos de sedimento y vegetación y por tanto no son lagos ya. Mapa: Javier Elez.
Recuerda que las morrenas son esos acúmulos de sedimentos que el hielo del glaciar arrastra, en su zona central o en los laterales, en su movimiento cuesta abajo (Figura 4).
Literalmente, el hielo se desborda del circo (que es la zona en donde se acumula la nieve y se compacta para formar hielo) y se cae en función de la pendiente existente.
Figura 4. Fotografía de primer plano de las morrenas del glaciar de las Serradillas, se observa su estructura caótica compuesta por bloques de todos los tamaños. Fotografía: Gabriel Castilla.
¿Cuándo estuvo activo el glaciar?
Si pensamos en el pasado, este paleoglaciar estuvo activo, incluyendo su lengua de hielo, probablemente al mismo tiempo que los grandes conjuntos de Gredos tan conocidos por las personas aficionadas a las montañas.
No hay dataciones geológicas concretas de la actividad de este paleoglaciar, pero si lo comparamos con los datos de edad que sí existen en otras zonas cercanas, podríamos interpretar que estuvo activo durante el Último Máximo Glaciar (hace unos 20.000 o 30.000 años) y que probablemente el hielo desaparecería definitivamente hace solo unos 13.000 años.
Todo esto es muy tentativo, ya que comparamos con datos de otros paleoglaciares más estudiados en el Sistema Central (Carrasco et al. 2020; Oliva et al., 2019), pero es una interpretación razonable, sujeta a cambiar cuando tengamos datos más precisos.
Figura 5. Vistas 3D desde el NE del paleoglaciar de la Serradilla. A) modelo sombreado con elementos geomorfológicos. B) modelo sombreado únicamente en donde se aprecia el relieve. C) foto de satélite. Mapa: Javier Elez.
El final de la glaciación
Las morrenas están pintadas en colores azules en los mapas de las Figuras 3 y 5, los escarpes de los distintos circos (la zona más alta erosionada por el hielo en el circo) en azul oscuro.
El hielo ocupaba desde los escarpes hasta las morrenas. En muchos glaciares de nuestro planeta, las morrenas más bajas topográficamente son más antiguas y corresponden a los episodios de máxima extensión de los hielos, mientras que las más altas topográficamente son más recientes.
Al incrementarse poco a poco la temperatura al final de la glaciación, el hielo se refugia en zonas cada vez más altas, moviendo los sedimentos y generando las morrenas en esas zonas, hasta que finalmente la temperatura sube lo suficiente como para que desaparezcan definitivamente los hielos.
En el paleoglaciar de la Serradilla vemos al menos 4 o 5 conjuntos de morrenas escalonadas en la vertical (Figura 5), marcando claramente esa retirada de los hielos que acompaña a un ciclo de calentamiento del planeta, en el cual, como sabes, estamos inmersos a día de hoy. Es una evidencia más de los cambios de clima del planeta en el que vivimos, siempre extremadamente dinámico.
Las zonas pintadas en verde son lagos de origen glaciar. Al desaparecer el hielo por el progresivo calentamiento del planeta, éste se transformó en agua, que fue retenida por las morrenas y dio origen a esos lagos. Estos, como el de la Laguna Grande de Gredos o la Laguna de la Nava o tantas otras, son muy efímeros en tiempo geológico y se rellenan rápidamente de sedimentos, dejando esas praderas planas con mucha vegetación que se ven en el interior del paleoglaciar de la Serradilla.
Carrasco, R.M. et al. (2020). Glacial geomorphology of the High Gredos Massif: Gredos and Pinar valleys (Iberian Central System, Spain). Journal of Maps, 16:2. Pp. 790-804.
Oliva, M. et al. (2019). Late Quaternary glacial phases in the Iberian Peninsula. Earth-Science Reviews 192. Pp. 564-600.
Por Gabriel Castilla Cañamero, Javier Pérez Tarruella y Javier Élez
De innumerables artimañas se sirve la naturaleza para convencer al hombre de su finitud: el fluir incesante de la marea, la furia de la tormenta, la sacudida del terremoto […]. Pero entre todas ellas la más temible, la más estremecedora, es la pasividad del silencio blanco.
El silencio blanco. Jack London, 1899.
Una definición y algunas preguntas
Los glaciares se forman en aquellos lugares fríos donde la nieve se acumula hasta transformarse en hielo. Conforme crece la capa de nieve, la presión de las capas profundas aumenta, haciendo que disminuya el volumen por compactación y, en consecuencia, que aumente la densidad hasta que se forma hielo glaciar (Figura 1).
Figura 1. Formación del hielo glaciar por enterramiento y compactación (izquierda). El movimiento de un glaciar es consecuencia del comportamiento del hielo compacto y denso bajo la acción de la fuerza de la gravedad (derecha). A partir de una situación de equilibrio entre la zona de acumulación y la zona de ablación los glaciares pueden retroceder, reduciéndose su zona de acumulación; o en caso contrario, avanzar. Figura: Gabriel Castilla, adaptado de Rubial (2005) y Anguita y Moreno (1993).
La diferencia entre un glaciar vivo y una masa de hielo muerto es el movimiento, y el motor que lo impulsa es el gradiente de presión que se forma entre la zona de acumulación donde se forma hielo glaciar y la zona de ablación, que es donde el hielo se pierde tanto por fusión como por la erosión que ejerce el viento (Figura 2).
Figura 2. El glaciar Río Túnel Superior (en la difusa frontera entre la Patagonia de Argentina y Chile). Al fondo se aprecia la zona de acumulación en forma de circo (depresión semicircular rodeada de montañas), y en primer plano el frente de la lengua glaciar. La laguna se ha formado por la fusión del hielo en la zona de ablación. Fotografía de Iván Pérez López.
Pero, ¿cómo llega a formarse un glaciar en un lugar concreto? ¿Qué variables lo condicionan?
Puesto que cada caso de estudio es único, no es posible ofrecer una respuesta general a estas preguntas; sin embargo, existen al menos diez variables que nos permiten aproximarnos a los entresijos de un proceso geológico de singular complejidad y belleza.
La latitud determina el ángulo con el que la radiación solar alcanza la superficie terrestre. Como podemos ver en la Figura 3, esta incide perpendicularmente en la región ecuatorial mientras que en los polos llega con mucha inclinación, lo que implica que se pierda una parte de la energía al atravesar la atmósfera.
Figura 3. La cantidad de radiación solar que incide sobre la superficie terrestre depende de la inclinación con la que atraviesa la atmósfera, es decir, varía con la latitud. La temperatura media anual en la zona ecuatorial es de 25 ºC, mientras que en los polos es de -40 ºC. Figura: Gabriel Castilla.
Es por ello que la cantidad de radiación que reciben las regiones polares es mucho menor que en el ecuador, y este es el principal motivo por el que existen glaciares al nivel del mar en la Antártida, Islandia y Groenlandia (Figura 4).
Las regiones ecuatoriales solo han albergado glaciares al nivel del mar durante los llamados episodios Snowball Earth (literalmente Tierra bola de nieve), intensas glaciaciones del período Criogénico, hace entre 720 y 635 millones de años.
2. Altitud
¿Significa esto que no puede haber glaciares en el ecuador? Sí los hay, pero situados a gran altitud.
Dado que la atmósfera se calienta desde la superficie terrestre, la temperatura desciende con la altura, y en las zonas templadas del planeta esta diferencia térmica es de aproximadamente un grado centígrado por cada 152 metros de ascenso vertical.
Esto quiere decir que en una región donde la temperatura al nivel del mar sea de 25 ºC, a los 4.500 m de altitud podrá alcanzar los -5 ºC (o sea, 30 grados menos), y explica por qué podemos encontrar glaciares a 4.500 m de altitud en la zona ecuatorial de la cordillera de los Andes y en las montañas Rwenzori, en el corazón de África Oriental (Figura 4).
En el caso de la Península Ibérica, situada a una latitud media de 40º norte, el momento álgido del Último Periodo Glaciar tuvo lugar hace entre 24.000 y 21.000 años, y los glaciares se formaron en el Sistema Central a una altitud comprendida entre los 1.500 m y los 2.500 m sobre el nivel del mar actual.
La cantidad de radiación solar que alcanza un punto de la superficie terrestre en un año depende de variables como la nubosidad y el relieve (en el hemisferio norte es la cara sur de las montañas la que recibe más radiación y por tanto es la más cálida).
En las zonas ecuatoriales, el Sol alcanza su altura máxima sobre el horizonte durante 30 días; sin embargo, en las zonas tropicales alcanza esta misma posición en el cielo durante 86 días (¡casi el triple de tiempo!) y es por ello que los trópicos son más cálidos y albergan grandes desiertos. La cantidad de radiación que recibe el área mediterránea es mucho mayor que la que alcanza Escandinavia, donde los inviernos son más rigurosos.
Durante el momento álgido del Último Periodo Glaciar, las zonas de menor insolación alojaron masas de hielo que alcanzaron los 3.000 m de espesor. Sin embargo, en la Península Ibérica el espesor máximo del hielo fue de unos 200 m en la Sierra de Béjar (Sistema Central).
Figura 5. Mapa de insolación de Europa (izquierda) comparado con la distribución de precipitaciones y masas de hielo durante el Último Máximo Glaciar (derecha). Se aprecia una relación entre baja insolación y mayor acumulación de hielo en la zona de Escandinavia. Estas masas de hielo, de hasta 3000 m de espesor, condicionaron el régimen de vientos y la humedad en Centroeuropa (vientos intensos, fríos y secos que depositaron un manto de loess –limo arcilloso- en el continente). Fuente de la imagen: Comisión Europea/Joint Reseach Center y Rea et al. (2020).
4. Albedo
Este término hace referencia a la cantidad de radiación solar que puede reflejar una superficie. El hielo y la nieve fresca son como un espejo y pueden reflejar hasta el 90% de la radiación que reciben, es decir, apenas se calientan por el Sol. Sin embargo, esta situación cambia cuando se deposita sobre ellos ceniza volcánica o sedimento, partículas oscuras de menor reflectividad que sí absorben la radiación solar.
De este hecho se desprende una idea importante: los glaciares se derriten desde dentro, bien por aumento de la temperatura ambiental, o bien porque absorben calor por cambios en el albedo (Figura 6).
Esta es la razón por la que países como Italia, Francia y China intentan conservar algunos glaciares emblemáticos cubriéndolos con material geotextil blanco de alta reflectividad que actúa como aislante térmico.
Figura 6. Vista panorámica del glaciar Svínafellsjökull (Islandia). Se aprecia una notable diferencia de albedo entre el hielo joven (al fondo) y el que contiene ceniza volcánica (primer plano). El hielo sucio de menor albedo se funde antes, creando una laguna de aspecto turbio debido a las finas partículas de ceniza que quedan en suspensión. Fotografía de Gabriel Castilla.
5. Orientación
Diversos estudios señalan que en el hemisferio norte los glaciares tienden a situarse en lugares de sombra (cara norte de los macizos montañosos), protegidos del viento dominante (a sotavento) y con mucha frecuencia orientados hacia el este (Figura 7).
En el hemisferio sur la orientación predominante es sureste, coincidiendo con la cara del relieve que recibe una menor insolación.
Figura 7. Durante el Último Máximo Glaciar, el glaciarismo de La Serrota (Ávila) se desarrolló en torno a los 2.200 m de altitud. La fotografía corresponde al llamado glaciar de la Serradilla, muy cerca de la localidad de Cepeda la Mora. En las imágenes de satélite captadas en marzo de 2024 se aprecia cómo las primeras nevadas dejadas por la borrasca Nelson (con vientos procedentes del oeste-suroeste) depositaron una mayor cantidad de nieve en los valles orientados hacia el noreste y el sureste, es decir, a sotavento. Fotografía de Javier Pérez Tarruella y Copernicus/Sentinel/UE, respectivamente.
6. Continentalidad
Es la lejanía de un territorio respecto de una masa de agua (mar un océano) que aporte humedad (recordemos que sin humedad no hay nieve) y suavice las temperaturas extremas. En el contexto de la Península Ibérica hace referencia a la influencia de frentes fríos y secos procedentes de Centro Europa y Siberia, en relación a los frentes cálidos y húmedos procedentes del Océano Atlántico.
El estudio de los campos de dunas fósiles que se formaron en Tierra de Pinares (comarca que abarca parte de las provincias de Ávila, Valladolid y Segovia), nos permiten conocer la dirección y sentido de los vientos dominantes durante los momentos de extrema aridez del Último Máximo Glaciar.
Diversos modelos señalan que vientos procedentes del suroeste y el oeste azotaron la meseta castellana, favoreciendo tanto el transporte de sedimento que formó las dunas como la erosión eólica (deflación) responsable de la ablación de los glaciares.
Figura 8. Modelo atmosférico para el último máximo glaciar. Las flechas señalan la dirección y el sentido del viento; el código de colores marca la velocidad. El modelo es compatible con los datos de la orientación de los campos de dunas en la península para esa época. Adaptado de Dietrich, 2011.
7. Efecto abrigo
Puesto que durante la última glaciación los vientos dominantes que barrían la península provenían principalmente del oeste y suroeste, es muy probable que los ventisqueros (trampas –abrigos- donde el viento forma torbellinos que atraen la nieve) estuvieran orientados en sentido opuesto, es decir, hacia el este y el noreste.
Como su propio nombre indica, durante las ventiscas la nieve se arremolina y acumula en estos puntos formando neveros (pequeñas masas de hielo que perduran todo el año), que en períodos fríos pueden actuar como áreas de acumulación de nieve.
Figura 9. Nevero en la cara sureste de un relieve montañoso en los Pirineos Orientales (Francia). La imagen fue tomada en agosto de 2017. Si un nevero persiste durante varios años reciben el nombre de nicho de nivación. Fotografía de Gabriel Castilla.
8. Morfología previa
Es importante reconstruir cómo era el relieve montañoso antes de la glaciación y, por tanto, antes de que los glaciares dejaran su huella en el paisaje.
Las cimas de las cordilleras que tienen poca pendiente son más propensas a acumular nieve (y por tanto a la formación hielo glaciar) que las cimas con mucha pendiente o que cuentan con un relieve muy acusado.
En estos casos la nieve tiende a caer en forma de aludes y por tanto no se acumula en las cimas, sino en la profundidad de los valles. Un buen ejemplo lo encontramos en la Sierra de Gredos, que por ser un sistema montañoso antiguo ha sido fuertemente erosionado y su línea de cumbres tiende a la horizontalidad, lo que favorecer la acumulación de nieve en la cuerda de cumbres.
Figura 10. Vista parcial de la cara norte de la Sierra de Gredos (sector oriental), formada durante la Orogenia Alpina, hace unos 40 millones de años. El paisaje que observamos en la actualidad (una línea de cumbres que tiende a la horizontalidad), es el resultado de la acción erosiva del Cuaternario (últimos 2,5 millones de años), periodo en el que se han sucedido hasta 51 episodios climáticos de frío-calor, aunque no todos ellos han dejado evidencias glaciares. Fotografía de Gabriel Castilla.
9. Redes de fractura y escarpes tectónicos
Las rocas se pueden romper por diferentes causas. Las fracturas de pequeña entidad se pueden disponerse al azar o seguir patrones de distribución en función de su origen: desde la existencia de heterogeneidades en la roca (por diferencias de composición, por ejemplo), pasando por desgaste debido a ciclos de calor-frío extremo, la descompresión o tensiones propias de la tectónica de placas. Las diaclasas (fracturas sin desplazamiento) favorecen la infiltración del agua en la roca y con ello la aceleración de los procesos de meteorización química (por alteración y disolución de minerales) y la erosión (Figura 11).
Figura 11. Red de fracturas de una de las cumbres de la Sierra de Gredos. La nieve se acumula principalmente en las zonas más erosionadas, siguiendo una red de fracturas que estás dispuestas verticalmente (líneas azules) y en diagonal (líneas rojas). Conforme la erosión vaya haciendo su trabajo, estas zonas de acumulación irán creciendo. Fotografía de Gabriel Castilla.
Los escarpes tectónicos son fracturas de mayor tamaño que implican un desplazamiento, normalmente formando un relieve con forma de escalón. Estas fallas también favorecen la meteorización, pero sobre todo los movimientos en masa (deslizamientos, vejigas, torrentes, etc.), formando cabeceras de vaciado donde pueden instalarse cuencas glaciares (Figura 12).
Figura 12. Cabecera de vaciado en uno de los picos de la Sierra de Gredos (detalle ampliado de la Figura 10). La montaña ha sido fuertemente erosionada y vaciada por una red de valles torrenciales rectos y paralelos entre sí, posiblemente escarpes de falla. Es en estos valles alargados, situados a gran altura, con pendiente moderada y a resguardo del viento, donde tienden a instalarse las cuencas glaciares durante los episodios de glaciación. Fotografía de Gabriel Castilla.
10. Polvo atmosférico
Durante las glaciaciones una gran cantidad del agua dulce de los continentes queda atrapada en forma de hielo. El resultado es un aumento generalizado de la aridez (falta de humedad ambiental) con una consecuente pérdida de masa vegetal que conlleva la degradación del suelo. Desprovisto de raíces, el suelo es erosionado por el viento con más intensidad, movilizando una gran cantidad de sedimento en forma de arena y grava (que puede formar dunas) y de polvo, que el viento arrastra hasta las capas altas de la atmósfera. Este polvo modificará el albedo de la superficie en la que se deposite, calentándola.
Un análogo podría ser la irrupción en Europa de nubes de polvo sahariano que aceleran el deshielo de las cumbres de Sierra Nevada (Figura 13). ¿Hasta qué punto el polvo puede condicionar la formación y el desarrollo de un glaciar? Algunos estudios señalan que el polvo del desierto del Gobi (entre el norte de China y el sur de Mongolia) podría ser la causa por la que no se formaron grandes masas de hielo en el norte de Asia durante la última glaciación.
Este año el #deshielo en los Lavaderos de la Reina ofrece unas imágenes muy particulares y asombrosas debido a los diferentes episodios de polvo sahariano. pic.twitter.com/A2OUKrpGHt
— Amig@s Sierra Nevada (@SNevada_Parque) May 24, 2022
Figura 13. En marzo de 2022 la borrasca Celia provocó un episodio de polvo sahariano que afectó a gran parte de la Península Ibérica. En la imagen podemos ver los efectos que posteriormente tuvo en el deshielo de Sierra Nevada. Además de cambios en el albedo de la nieve, el oscurecimiento del cielo provocó una disminución de la insolación, con una pérdida del 80% de la capacidad de producción fotovoltaica de España. ¿Cómo pudo afectar el polvo del Sáhara al desarrollo de los glaciares en la Península Ibérica? Publicación de Amig@s Sierra Nevada.
Recapitulación
Los 10 factores que acabamos de ver nos hablan fundamentalmente de cómo nos alcanza la radiación solar, de cómo la atmósfera y el relieve redistribuyen esa radiación en forma de calor mediante el viento y otros fenómenos meteorológicos, y de cómo la geología condiciona la existencia de lugares favorables para la acumulación del hielo glaciar.
En este contexto podemos afirmar que el glaciarismo es un proceso geológico complejo y para entender el origen, la dinámica y la evolución temporal de los glaciares necesitamos manejar conceptos relacionados con muchas disciplinas, desde la física de la atmósfera y la Geografía, pasando por la Astronomía y la Geología.
El estudio de los glaciares es, sin duda, un estimulante reto multidisciplinar para cualquier espíritu curioso y amante de la Naturaleza.
Anguita, F. y Moreno, F. (1993). Procesos Geológicos Externos y Geología Ambiental. Editorial Rueda. Madrid, 311 pp.
Bernat Rebollal, M. (2012). Geomorfología de los depósitos eólicos cuaternarios del centro de la Península Ibérica. Una caracterización de la actividad eólica en tierras depinares y la llanura manchega. Tesis Doctoral. Universidad Complutense de Madrid. Facultad de Ciencias Geológicas. Departamento de Geodinámica.
Carrasco, R.M. et al. (2023). The Prados del Cervunal morainic complex: Evidence of a MIS 2 glaciation in the Iberian Central System synchronous to the global LGM. Quaternary Science Reviews, 312.
Carrasco, R.M. et al. (2011). Reconstrucción y cronología del glaciar de meseta de la Sierra de Béjar (Sistema Central Español) durante el máximo glaciar. Boletín de la Real Sociedad Española de Historia Natural. Sección Geología. Nº 105 (1-4). Pp. 125-135.
Carrasco, R.M. et al. (2020). Glacial geomorphology of the High Gredos Massif: Gredos and Pinar valleys (Iberian Central System, Spain). Journal of Maps, 16:2. Pp. 790-804.
Dietrich, S. (2011). Palaeo wind system reconstruction of the last glacial period over Europe, using high resolution proxy data and model-data-comparison. Johannes Gutenberg-Universität Mainz.
Elis, R. y Palmer, M. (2016). Modulation of ice ages via precession and dust-albedo feedbacks. Geoscience Frontiers Vol. 7, nº 6, pp. 891-909.
Evans, I.S. (1977). World-wide variations in the direction and concentration of cirque and glacier aspects. Geografiska Annaler, 59A (3-4), 151-175.
Krinner, G.; Boucher, O. y Balkanski, Y. (2006). Ice-free glacial northern Asia due to dust deposition on Snow. Climate Dynamics Vol. 27, pp. 613-625.
Oerlemans, J.; Griesen, R.H. y Van Den Broeke, M.R. (2009). Retreating alpine glaciers: increased melt rates due to accumulation of dust (Vadret da Morterasch, Switzerland). Journal of Glaciology, Vol. 55, nº 192, pp. 729-736.
Oliva, M. et al. (2019). Late Quaternary glacial phases in the Iberian Peninsula. Earth-Science Reviews 192. Pp. 564-600.
Oliva. M.; Andrés, N.; Fernández-Fernández. J.M. y Palacios, D. (2023). The evolution of glacial landforms in the Iberian Mountains during the deglaciation. En Palacios, D.; Hughes, P.D.; García-Ruiz; J.M. y Andrés, N. European Glacial Landscapes. The Last Deglaciation. Cap. 22. Pp. 201-208. Elsevier, 2023.
Llamamos glaciaciones a los momentos de la historia de la Tierra en los que ha habido hielo permanente en forma de glaciares. O al menos a aquellos en los que tengamos evidencias de ello. Es decir: ¡Estamos en una glaciación! De hecho, a nuestra especie le ha tocado vivir en el periodo más frío y con más hielo de los últimos 300 millones de años.
Desde hace al menos 33 millones de años tenemos hielo permanente en la Antártida (Stickley et al., 2004), mientras que desde los últimos 3,3 millones de años tenemos hielo permanente en Groenlandia (Westerhold et al., 2020). Por tanto, estamos en una glaciación que afecta a ambos hemisferios (Figura 1).
En esta escala de millones de años, el principal condicionante de los casquetes glaciares es la distribución de los continentes y océanos. La apertura del Paso de Drake aislando la Antártida, o el cierre del itsmo de Panamá parecen momentos clave para la actual glaciación.
Figura 1.Abajo: Variaciones en la curva isotópica (clima) global durante los últimos 65 millones de años (datos de Westerhold et al., 2020). Marcamos las principales fases de la glaciación actual desde una Tierra sin hielo hace 50 millones de años. Arriba: Zoom en los últimos 400 000 años, reflejando los últimos periodos glaciares e interglaciares del Cuaternario (datos de Lisiecki y Raymo, 2005). La transición de un periodo glaciar a un interglaciar suele ser abrupta y condicionada por un cambio en la insolación de verano en el Hemisferio Norte.
Las curvas del clima global de la Figura 1 representan isótopos de oxígeno en foraminíferos bentónicos, cuyos valores dependen de la cantidad de hielo en planeta y de la temperatura de los océanos. Si quieres saber cómo se obtienen estos registros del clima a lo largo de la historia de la Tierra te recomendamos la entrada «Así conocemos el clima del pasado«.
El hielo glaciar, así como el hielo marino son muy sensibles a pequeñas variaciones del clima, ya que tan sólo 1 ºC puede suponer la diferencia entre el estado sólido y el líquido. Esta sensibilidad del hielo hace que sutiles alteraciones como las asociadas a pequeños cambios en la órbita de la Tierra, deriven en cambios climático extremos. Es por esto que en los últimos millones de años, en el período Cuaternario, con glaciación en ambos hemisferios, tenemos cambios constantes y muchas veces abruptos en las cantidades de hielo en el planeta (Figura 1).
Esas grandes variaciones, que se dan cada decenas o centenas de miles de años, las dividimos en periodos glaciares e interglaciares. Las «glaciaciones» que esculpieron los valles glaciares de Gredos o la Serrota en Ávila son en realidad esos últimos periodos glaciares del Cuaternario (Figura 1). En esta escala de decenas-cientos de miles de años, los principales desencadenantes de los cambios climáticos son los ciclos astronómicos de Milankovitch (Excentricidad de la órbita: 100 000 años; oblicuidad del eje de rotación: 41 000 años; Precesión eje + órbita: 23 000 años).
Además de los ciclos astronómicos principales, las resonancias gravitatorias entre diferentes cuerpos del sistema solar crean ciclos mayores, de hasta millones de años. Es decir, incluso Marte influye en las glaciaciones de nuestro planeta. (Dutkiewicz et al., 2024).
Además de las curvas de isótopos de oxígeno, que nos ayudan a conocer las variaciones de temperatura y hielo en el planeta, tenemos otras pistas para deducir la presencia de grandes glaciares en épocas muy remotas de la historia de la Tierra. Una de ellas son los «dropstones«: Rocas enormes incluidas en depósitos sedimentarios que se originaron en el fondo del océano. ¿Cómo pudieron llegar hasta allí estas rocas, tan lejos de los continentes? Te dejamos un vídeo con el ejemplo de la localidad de Checa, en Teruel.
Dutkiewicz, A., Boulila, S. & Dietmar Müller, R. Deep-sea hiatus record reveals orbital pacing by 2.4 Myr eccentricity grand cycles. Nat Commun15, 1998 (2024). https://doi.org/10.1038/s41467-024-46171-5
Lisiecki, L. E., & Raymo, M. E. (2005). A Pliocene‐Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography, 20(1).
Stickley, C. E., Brinkhuis, H., Schellenberg, S. A., Sluijs, A., Röhl, U., Fuller, M., … & Williams, G. L. (2004). Timing and nature of the deepening of the Tasmanian Gateway. Paleoceanography, 19(4).
Westerhold, T., Marwan, N., Drury, A. J., Liebrand, D., Agnini, C., Anagnostou, E., … & Zachos, J. C. (2020). An astronomically dated record of Earth’s climate and its predictability over the last 66 million years. Science, 369(6509), 1383-1387.
Imagen de portada: Cabra montesa frente a un circo glaciar de la sierra de Gredos. Javier P. Tarruella.
Participamos con este retrato alfabético en la iniciativa de escritura creativa del mes de febrero 2024 de Café Hypatia: mujer y ciencia. #PVmujerciencia24 #11F #Polivulgadoras
Bascom se retiró de la enseñanza en 1928, pero siguió trabajando en el Servicio Geológico de Estados Unidos hasta 1936.
Geóloga y docente, luchó por la igualdad de oportunidades de las mujeres en un área totalmente masculinizada como era la geología.
Hija de una maestra sufragista y un profesor de filosofía del Williams Collage.
Florence Bascom (arriba a la izquierda) y su familia. Su padre (a la izquierda) y su madre (a la derecha) fueron mentores clave a lo largo de la vida de Florence.(Dominio público, parte de la Colección Sophia Smith)
Investigó la formación de los Montes Apalaches, siendo aún importantes sus estudios.
Junto a su tutor George Williams, se formó en la petrografía de campo y de microscopio.
La Asamblea General de las Naciones Unidas designó el 11 de diciembre de 2003 como “Día Internacional de las Montañas”. Desde entonces se ha venido celebrando con la intención de sensibilizar a la humanidad sobre la importancia que las montañas tienen para la vida.
Las montañas merecen nuestra atención por muchos motivos, pero desde una perspectiva naturalística cabe destacar dos:
Primero, porque albergan más de una cuarta parte de las plantas y animales terrestres;
y segundo, porque la aceleración del cambio climático está derritiendo los glaciares a un ritmo sin precedentes. Se espera que la profundidad del hielo en las altas montañas disminuya hasta un 40 por ciento antes del año 2050; un proceso que sin duda tendrá un gran impacto sobre el bienestar, la salud y la economía de millones de personas.
Es por este vínculo entre montañas y glaciares que hemos elegido para la ocasión una secuencia de fotografías de las tierras altas de Islandia.
Además, te animamos a que la acompañes con una banda sonora muy especial: la versión musicada que el compositor Arvo Pärt hizo sobre un poema del escocés Robert Burns (1759-1796). Parafraseando el título de esta obra inmortal, hoy nuestro corazón está en las Tierras Altas.
Las tierras altas de Islandia en imágenes
Foto 1. Estos crestones de roca volcánica son las cumbres de las montañas que reposan bajo el glaciar Vatnajökull, una masa de hielo de 8.100 km2 (prácticamente la misma extensión que la provincia de Ávila) y que en este punto alcanza los 400 metros de espesor. Fotografía de Gabriel Castilla.Foto 2. Frente del glaciar Svínafellsjökull. El color oscuro del hielo se debe a la presencia de cenizas volcánicas. En los últimos 80 años la masa de hielo ha experimentado numerosos avances y retrocesos, fluctuaciones que han dado como resultado la formación de la laguna y la morrena (sedimentos de tamaño muy dispar) que forman el montículo que la delimita. Fotografía de Gabriel Castilla.Foto 3. Cascada de Gullfoss en el río Hvitá, el tercero más caudaloso de Islandia. Nace en el lago del glacial Langjökull, a unos 45 kilómetros al norte. Las paredes del cañón alcanzan una altura de 70 metros en algunos puntos. Fotografía de Gabriel Castilla.Foto 4. Vista panorámica del campo de lava de Mývatnsöraefi, en el noreste de Islandia. Aquí el relieve sobre la árida llanura lo configuran antiguos edificios de volcanes ya extintos. Fotografía de Gabriel Castilla.Foto 5. Nacimiento de una montaña por la erupción del volcán Fragadalsfjall en Islandia (julio de 2023). Fotografía de Gabriel Castilla.
Este año el tema para el Día Internacional de las Montañas, promovido por la FAO, es «Restauración de los ecosistemas de montaña» y pretende sensibilizar sobre la relevancia de los ecosistemas de montaña y demandar soluciones, mejores prácticas e inversiones basadas en la naturaleza que construyan resiliencia, reduzcan la vulnerabilidad y aumenten la capacidad de las montañas para adaptarse a las amenazas diarias y los eventos climáticos extremos.
Los 85 proyectos finalistas de este evento representaban 32 provincias españolas y 6 países iberoamericanos (Portugal, Argentina, Ecuador, Bolivia, Colombia y México).
El objetivo principal de este certamen es hacer llegar la ciencia a toda la ciudadanía, en especial a lasfamilias y el público infantil y juvenil, de una manera divertida y motivadora a través de las propuestas finalistas en cada categoría.
Cartel oficial del evento.
Más de 300 personas, entre alumnado, profesorado y personal investigador de España e Iberoamérica, presentamos nuestros proyectos en alguna de las 14 modalidades. Nuestro trabajo, titulado «El laberinto de las tormentas: un desafío geológico en Villaflor (Ávila)», competía como finalista en la modalidad de Laboratorio de Geología.
Viernes de viaje, montar y organizarlo todo
Llegamos al edificio Cúbic, sede de la feria, el viernes por la mañana. Recoger credenciales, camisetas, bolsas… todo lo necesario para disfrutar de la experiencia. El revuelo de gente ilusionada montando sus experimentos hacía crecer el nerviosismo. Para nuestro equipo, era la primera vez en un evento de estas características, y no sabíamos si nuestro juego iba a gustar tanto como el resto de propuestas. El nivel de los proyectos que pasan a la final es muy alto.
El stand listo para recibir a quienes quieran participar en nuestro juego.
Tras comprobar que cada cosa estaba en su sitio y que todo estaba preparado para el sábado, tuvo lugar el acto inaugural con diferentes espectáculos científicos, como podéis ver en el video adjunto del perfil de instagram de @Cienciaaccion.
Video resumen de la inauguración del evento Ciencia en Acción (autoría @CienciaAccion).
Sábado de mucha mucha Geología
La jornada del sábado fue intensa, un no parar de gente visitando la feria. Según Vilapress, fueron más de 1 500 las personas que se acercaron en algún momento a disfrutar de la ciencia de otra manera. Nosotras, felices, no paramos de explicar geología jugando.
Todo preparado para que dé comienzo la feria.
Como ya os adelantamos, el proyecto con el que hemos competido en Viladecans consiste en adaptar una actividad de campo (concretamente la que hicimos en el Geolodía de Ávila de 2022) a un juego de mesa.
Y así convertimos el mapa que utilizamos para orientarnos en el campo buscando las paradas en un tablero. Con el juego ya montado, no faltaron quienes miraban con curiosidad y se atrevían a preguntar qué era eso del laberinto de las tormentas.
Vista general de los materiales propuestos para llevar a cabo el juego.
Una breve explicación de las normas del juego y comenzamos. Tirando el dado, con suerte fueron a una parada distinta cada vez. Pero también perdieron turno o les tocó una prueba que ya habían completado, por lo que el dado no dejaba de cambiar de manos.
La emoción de quienes participaban en el juego se palpaba en cada prueba. Podemos ver a uno de los jugadores mostrando gran entusiasmo en la parada de «Del inframundo al eterno canto de las sirenas».
Del inframundo al eterno canto de las sirenas, La datación relativa del tiempo… parada a parada y superando algunos retos, valientes participantes compitieron en nuestro juego consiguiendo las pistas necesarias para resolver el desafío final. La concentración y el interés de quienes compitieron en nuestro juego no decayó en ningún momento, y había público de todas las edades y condiciones.
¡¡Estuvimos jugando sin descanso las 8 horas que duró la feria!!
Algunas fotos de las partidas geológicas que jugamos en Viladecans
Ejemplo del entusiasmo que despertó El laberinto de las tormentas en la feria fue el jugador de la foto de abajo, que a pesar de llevar poco tiempo escribiendo (y de momento solo con mayúsculas) quiso completar el desafío final, mostrándose un prodigio de la geología. Superó todos los retos y solo necesitó algo de ayuda para resolver las palabras de las frases del desafío.
Jovencísimo jugador completando letra a letra las palabras del desafío final.
Completado el desafío, el premio era una chapa con un diseño exclusivo. En la chapa se puede ver la mano de un esqueleto (quién sabe si será fósil) haciendo el símbolo de amor en Lengua de Signos Internacional, mientras sujeta un martillo geológico. Además, junto a ella se lee I Love Geology.
Las chapas que entregamos como premio final son toda una declaración de amor internacional y atemporal a la Geología.
Domingo de clausura y entrega de premios
La cita del domingo fue en el teatro Atrium a las 10.00h de la mañana. La organización de Ciencia en Acción había preparado una actuación a cargo de los Castellers de Viladecans y una conferencia titulada Acción Climática a cargo del científico José Miguel Viñas.
Miguel Viñas fue el encargado de la conferencia de clausura.
Después fue la entrega de premios a cargo de los representantes de las distintas sociedades y asociaciones científicas españolas. Uno a uno, los grupos premiados iban subiendo al escenario a recoger sus Menciones de Honor y sus Trofeos.
Llegó el turno de la Modalidad de Laboratorio de Geología. La entrega del primer premio corrió a cargo de Jordi Vilà (de geòleg.cat) en representación de la Sociedad Geológica de España. Nuestra alegría no pudo ser mayor cuando escuchamos: «…por su didáctica, su capacidad de comunicación y claridad de sus contenidos, se concede el primer premio al trabajo El Laberinto de las Tormentas, Un desafío geológico en Villaflor (Ávila)…»
Momento de nombramiento del Primer Premio en la modalidad de Laboratorio de Geología para nuestro trabajo EL LABERINTO DE LAS TORMENTAS, UN DESAFÍO GEOLÓGICO EN VILLAFLOR (ÁVILA).
Sentimos un gran orgullo por recibir este prestigioso premio. Nuestra propuesta en Ciencia en Acción es el reflejo de nuestro trabajo. Este trofeo lo vivimos como el reconocimiento a una labor de divulgación y enseñanza de la geología que nos apasiona y en la que ponemos ilusión, energía y mucho trabajo.
De nuestro paso por la feria también nos llevamos una gran experiencia, aprendiendo de interesantísimos proyectos que se están llevan a cabo en centros de secundaria y de investigación. Hemos conocido a grandes docentes que saben transmitir la pasión por la ciencia a su alumnado. Y a colegas de profesión a los que hemos desvirtualizado después de años de seguir su trabajo en redes. ¡Y nos hemos divertido muchísimo!
Arriba a la izquierda con @Anabyuste y su alumnado del IES Consaburum (@Consaburum) que presentaban otro de los proyectos de la modalidad de Laboratorio de Geología; y varias fotos de buenos momentos de las tres compañeras de @Geologia_avila.
Gracias a la organización de Ciencia en Acción por el buen funcionamiento de la feria y por atender a todas nuestras necesidades. Gracias al Jurado por la buena valoración de nuestro trabajo y por otorgarnos este importante reconocimiento. Ha sido una gran experiencia.
Trofeo del 1er premio de la modalidad de Laboratorio de Geología viajando en el AVE de camino a casa.
La historia de la Tierra está grabada en las piedras y la Geología nos enseña a ver en ellas fotos instantáneas del momento en el que se formaron (figura 1). Y lo primero que nos podemos plantear es: ¿Cuándo se formó esta instantánea?
Figura 1: Cuando miramos una piedra, como la caliza de la foto, con ojos geológicos, lo que esta piedra nos devuelve es una instantánea de cómo era el ambiente y la propia Tierra cuando se formó.
La escala de tiempo en Geología es muy amplia, mucho más que la nuestra propia, la escala humana. Mientras que para los seres humanos 100 años puede parecer una eternidad, en Geología ese tiempo a penas rascaría la superficie. ¡Hablamos de periodos de tiempo que se miden habitualmente en millones de años!
Por ejemplo, entre las dos fotos del Gran Cañón del Colorado de la figura 2 han pasado más de 150 años, pero vemos que la geología de ese paisaje no ha cambiado en todo este tiempo.
Figura 2. A la izquierda podemos ver una fotografía del Gran Cañón del Colorado de 1871 (de John K. Hiller) y a la derecha otra fotografía (de Alan Hull) del cañón en la actualidad, desdecasi el mismo punto en el mirador de Toroweap (Tuweep, Arizona). Podemos comprobar como entre una fotografía y otra no existen diferencias apreciables en cuanto a la geología del paisaje, a pesar de haber pasado más de 150 años entre ellas.
El tiempo en Geología es un parámetro escurridizo. Te puede venir bien leer este post para introducirte en el concepto: Cómo se entiende el tiempo en Geología.
Escala humana vs. Escala geológica. Organización/División del tiempo
Hoy en día disponemos de relojes y calendario muy precisos, incluso con exactitud atómica (solo se desajustan 1 segundo cada 300 millones de años). Pero antes de inventar todo tipo de medidores de tiempo solo disponíamos de las señales que ofrece la naturaleza para intentar contabilizarlo.
Cuando el ser humano quiso contabilizar el tiempo, lo dividió en función de los cambios que observaba en la naturaleza: la caída de las hojas de los árboles, el aumento de las horas de sol… Cambios que nos permiten agrupar el tiempo (como vimos en el altar del Castro Vetón de Ulaca o en distintos calendario solares o climáticos como el de la Figura 3).
Figura 3. Ejemplo de calendario solar o climático. El calendario solar chino divide el año en 24 etapas en base a la posición del Sol y a factores cíclicos del clima y de los seres vivos. Cada una de las etapas comprende 15 días, por lo que dos juntas forman un mes y cada tres meses una estación del año. Este calendario se sistematizó en el año 104 a.C. https://confuciomag.com/wp-content/uploads/2016/12/10_calendario_chino.pdf
De igual manera que nuestras antepasadas y antepasados organizaron el tiempo por los cambios que tenían asociados, en Geología organizamos el tiempo de la Tierra buscando marcadores de cambios a nivel planetario (en la composición de la atmósfera o la formación de súper-continentes, por ejemplo) que nos permita esta agrupación.
Ese modo de dividir el tiempo de la Tierra por hitos se parece también a la forma en que dividimos la Historia de la humanidad (Figura 4). En Historia, las edades están limitadas por hitos históricos como la caída del Imperio Romano de Occidente o el primer viaje de Cristóbal Colón a América. De esa forma, cada edad histórica tiene su propia duración porque cada edad ha mantenido unas condiciones sin cambios durante un intervalo de tiempo diferente. Este mismo criterio es el empleado en la organización del tiempo geológico, cada división tiene su propia duración.
Figura 4. La división del tiempo en Historia está marcada por hitos que cambiaron el curso de los acontecimientos y no por periodos fijos de tiempo. Esto mismo sucede con la división del tiempo en la Escala Geológica.
Y al igual que sucede en Historia, cuanto más nos alejamos hacia atrás en el tiempo, menos «resolución» o detalle tenemos de esos cambios.
Este tipo de organización cobra aún más sentido cuando manejamos cantidades de tiempo tan grandes que son inimaginables. ¿Y dónde encontramos las pruebas de esos cambios en la historia de la Tierra? En el registro geológico, que es como la agenda de nuestro planeta donde nos ha dejado apuntada parte de su historia en esas instantáneas que son las piedras (figura 5).
Figura 5. Los límites entre periodos geológicos se establecen mediante eventos que alteraron el desarrollo de la Tierra. Estos eventos han quedado registrados en las rocas de la Tierra, como si fueran la agenda o el diario donde nuestro planeta ha apuntado algunas de sus actividades más importantes
Aquí te dejamos el enlace a la Tabla Cronoestratigráfica Internacional en castellano que está continuamente en revisión, actualización y mejora; y que supone una de las grandes contribuciones de la Geología a la Sociedad.
La jerarquización del tiempo geológico
El tiempo geológico se organiza de manera jerarquizada, como podemos ver en la Figura 6:
Los eones abarcan varias eras.
Las eras abarcan varios periodos.
Los periodos abarcan varias series, etc.
Cada una de estas divisiones son unidades temporales geológicas.
Figura 6. Esquema de la jerarquización de las distintas unidades geológicas que componen la Tabla del tiempos geológico.
Recuerda que cada unidad tiene su propia duración.
El uso de unas u otras unidades dependerá del tipo de investigación o representación que se quiera realizar:
EÓN es la unidad de mayor intervalo de tiempo geológico.
Existen 4 eones, de más antiguo a más moderno:
Hádico (desde el origen del Sistema Solar hasta hace 4000 Ma).
Arcaico (desde hace 4000 Ma hasta hace 2500 Ma).
Proterozoico (entre 2500 y 539 Ma).
Y Fanerozoico (desde hace 543 Ma hasta la actualidad).
Es habitual que Hádico, Arcaico y Proterozoico se agrupen en una unidad informal llamada Precámbrico (lo de antes del Cámbrico).
¿Qué es lo que cambió de unos eones a otros para diferenciarlos entre sí? Algo tan propio de la Tierra como la aparición de la vida, y los cambios que ésta produjo en el planeta (figura 7).
Al comienzo, en el eón Hádico, no había vida y se producían bombardeos continuos de meteoritos siendo la Tierra una bola de material fundido.
Ya en el Arcaico, el bombardeo termina y aparecen las primeras formas de vida, pero la atmósfera terrestre es aún reductora, con gran cantidad de gases de efecto invernadero.
En el Proterozoico, con los continentes ya bien desarrollados, la actividad biológica de bacterias y cianobacterias cambia la composición de la atmósfera aumentando la presencia de oxígeno.
Los nuevos cambios favorecieron que se produjeran la explosión de la vida que marca el comienzo del cuarto eón en el que nos encontramos, el Fanerozoico.
Figura 7. División del tiempo geológico en Eones (Hádico, Arcaico, Proterozoico y Fanerozoico) según el desarrollo de continentes y la evolución de la vida.
Salvo el Hádico, del que no tenemos registro geológico, el resto de eones se dividen en ERAS. Las distintas eras están delimitadas por el inicio de distintos ciclos orogénicos de creación (y posterior desmantelamiento) de grandes cadenas montañosas por movimientos de los continentes. Por ejemplo, el Fanerozoico lo integran tres eras geológicas: Paleozoica, Mesozoica, y Cenozoica (figura 8).
Figura 8. División de la eón Fanerozoico en las eras Paleozoico, Mesozoico y Cenozoico en función de la tectónica continental.
Las eras a su vez se dividen en PERIODOS. Los periodos a su vez en SERIES y las series en PISOS. Estas otras divisiones están marcadas por cambios en los organismos, en las condiciones climáticas y/o en las condiciones geológicas.
Eón > Era > Periodo > Serie > Piso
Conclusión
Con esta entrada solo queremos dar una visión de cómo medimos el tiempo geológico y el funcionamiento de la potente herramienta que es la Tabla del Tiempo Geológico, una de las grandes aportaciones de nuestra ciencia.
Todo lo que ha sucedido en nuestro planeta queda englobado en ese concepto temporal. Y el tiempo no se detiene, así que esto no acaba aquí…
Algunos ejemplos de Tablas del Tiempo Geológico(en castellano)
Tabla del Tiempo Geológico, trabajo con carácter pedagógico dirigido a alumnos iniciados en las Ciencias Geológicas, de Ángel Caballero García de Arévalo para el CSIC – Instituto Andaluz de Ciencias de la Tierra (IACT).
Los investigadores de la NASA se enfrentan al grave problema de cómo distinguir [en Marte] entre los estromatolitos verdaderos y otras estructuras parecidas de origen no biológico.
La cuna de la vida. William Schopf, 2000
¿Cuáles fueron las primeras formas de vida en la Tierra?
¿Dónde están?
¿Encontraremos estas mismas formas de vida en nuestra vecindad planetaria?
¿Sabremos reconocerlas?
Las respuestas a estas apasionantes preguntas pasan por el estudio de un tipo de roca sedimentaria formada por la participación directa de organismos microscópicos: los estromatolitos.
Las primeras descripciones científicas se las debemos a Charles Doolittle Walcott y a otros geólogos del siglo XIX, quienes las interpretaron erróneamente como la impronta dejada por algún tipo desconocido de organismo de cuerpo blando, motivo por el que inicialmente acuñaron el término Cryptozoon (‘animal oculto’ en griego).
Fue en 1908 cuando el geólogo alemán Ernst Louis Kalkowsky propuso el término estromatolito, que literalmente significa ‘roca con capas’, para referirse al [entonces] misterioso fósil de aspecto laminar.
Estromatolitos fósiles encontrados en un bloque errático depositado por un glaciar en el Parc des Laurentides, cerca de Laterrière, Canadá. Provenía del lago Albanel, al noreste de Chibougamau, Québec (Canadá). Esta muestra se exhibe en el Jardín Geológico de la Université Laval, y fue donada por Jean-Guy Belley en 2003. La altura de la fotografía es de aproximadamente 1 metro. Fuente: André-P. Drapeau P., CC BY-SA 3.0, via Wikimedia Commons
El enigma perduró hasta 1956, cuando un grupo de topógrafos que trabajaban para una compañía de exploración petrolífera descubrieron en Australia estromatolitos vivos en las playas del sur de Bahía Shark.
Este hallazgo permitió al geólogo Brian W. Logan establecer la conexión entre Cryptozoon y su verdadera naturaleza: cada una de las láminas fueron antes tapetes microbianos o microbialitos, es decir, comunidades de microorganismos que vivieron y murieron una encima de otra.
Hoy el término Cryptozoon está en desuso y los estromatolitos se reconocen como la evidencia de vida microbiana más antigua conocida, con una presencia ininterrumpida en el registro fósil desde hace al menos 3.500 millones de años.
Los estromatolitos son el resultado de la sedimentación inducida por comunidades de microorganismos dispuestas en finas láminas sobre el lecho de lagos, ríos, zonas costeras y humedales.
Estas comunidades secretan una especie de gelatina conocida como EPS en jerga técnica (acrónimo de extracellular polymeric substances), compuesta principalmente por azúcares y proteínas que aglomeran el conjunto de partículas de sedimento sobre el que viven. Con el tiempo las células van formando un fino tapete que se va extendiendo para maximizar la superficie expuesta al agua, los nutrientes y la luz.
Etapas en la formación de un estromatolito: los microorganismos se adhieren a una superficie, normalmente sedimento (1). Con el tiempo colonizan la superficie y se multiplican (2). Conforme van creciendo forman colonias complejas (3). Según su forma las colonias se pueden clasificar en tres tipos: trombolito (A), estromatolito (B) y dendrolito (C). Adaptado de Rodríguez-Martínez, M. et al. (2010).
La mayoría de los estromatolitos actuales están formados por cianobacterias, es decir, células sin núcleo (procariotas) ni orgánulos membranosos que realizan la fotosíntesis.
Este proceso consume parte del CO2 que está disuelto en el agua, lo que modifica la acidez del medio y permite la formación de carbonato cálcico (CaCO3).
Lentamente el tapete de bacterias va quedando cubierto por sedimento que se va consolidando.
Las mareas e inundaciones estacionales favorecen que una nueva etapa de crecimiento bacteriano repita el proceso, formando una nueva lámina que se superpone a la anterior como las capas de una cebolla.
La forma definitiva de los estromatolitos depende de la profundidad y de las dos variables que de ella se derivan: (1) la cantidad de luz que reciben y (2) la exposición a las corrientes y el oleaje. En zonas más profundas, por debajo de la influencia de las mareas y con poca luz, las formas suelen ser cónicas; por el contrario, en lugares tranquilos y luminosos predomina la forma plana. Esquema de Gabriel Castilla.
Aunque más escasos, también existen estromatolitos de microorganismos que viven en ambientes extremos, como pueden ser lagos hipersalinos y fumarolas volcánicas.
En estos casos los microorganismos que los forman suelen ser arqueobacterias extremófilas, o sea, organismos muy primitivos que están adaptados a multitud de ambientes que podemos calificar de hostiles.
¿SABÍAS QUE en la cueva de El Soplao, en Cantabria (España), se han encontrado los primeros ejemplares de estromatolitos formados en el interior de una caverna y están compuestos por óxido de manganeso? ¿Cómo han podido prosperar en un ambiente de oscuridad perpetua, escasez de nutrientes y aporte limitado de materia orgánica desde el exterior?
Sección de un estromatolito de manganeso procedente del interior de la cueva de El Soplao, Cantabria (España). Este ejemplar forma parte de la colección permanente del Museo Geominero de Madrid (Instituto Geológico y Minero de España). Fotografía de Gabriel Castilla.
¿Estromatolitos marcianos?
El robot de exploración Perseverance fue diseñado para buscar marcadores biológicos en Marte. Nuestro planeta vecino es hoy un lugar inhóspito, pero diversas evidencias geológicas apuntan a que hace entre 4.000 y 3.500 millones de años las condiciones ambientales pudieron no ser tan hostiles.
Precisamente una de las primeras evidencias macroscópicas de vida en nuestro planeta son los estromatolitos fósiles encontrados en Warrawoona (Australia), cuya edad se estima en 3.500 millones de años, o sea, justo en el límite óptimo [hipotético] de habitabilidad marciana.
Si Marte albergó vida alguna vez, tal vez podamos encontrar evidencias en forma de estromatolitos fósiles en el lecho de algún lago y este delta que una vez albergó el interior del cráter Jezero (de 35 km de diámetro), situado en el hemisferio norte del planeta rojo. NASA/JPL-CALTECH/MSSS/JHU-APL/ESA.
Esta sugerente relación entre potencial habitabilidad planetaria y la evidencia fósil en el eón Arcaico, cuando las condiciones ambientales en ambos planetas pudieron ser similares, es la razón por la que el equipo de la NASA encargado de explorar el interior del cráter Jezero se ha entrenado durante años analizando estromatolitos, tanto fósiles como actuales. Una apasionante búsqueda que comenzó sobre el terreno en febrero de 2021 y que a día de hoy continúa.
El inesperado papel de los virus
Una de las grandes incógnitas en el estudio de los estromatolitos es entender cómo llega el tapete microbiano a litificarse, es decir, a transformarse en una roca.
Estudios recientes proponen que los virus pueden influir directa o indirectamente en el metabolismo microbiano que controla la transición del tapete microbiano blando al estromatolito.
En el escenario de impacto directo, los virus infiltran su genoma en las cianobacterias, alterando con ello el metabolismo celular. Este cambio puede suponer una adaptación biológica al medio que selecciona genes que potencialmente influyen en la precipitación de carbonato entre otros compuestos, lo que facilita el proceso de litificación.
En el escenario de impacto indirecto sería decisiva la llamada lisis viral, donde los virus invaden las células vivas y desencadenan la desintegración de sus membranas. Esto provoca la muerte de la célula y la liberación al medio de moléculas que promueven el metabolismo y la precipitación química.
En ambos escenarios los virus facilitarían la litificación de las capas microbianas y el crecimiento del estromatolito.
Bibliografía
Alcalde, S. (2023). El cráter Jezero, un lugar idóneo para encontrar vida en Marte. National Geographic España (versión online).
Allen White III, R.; Visscher, P.T. y Burns, B. B. (2021). Between a Rock and a Soft Place: The Role of Viruses in Lithification of Modern Microbial Mats. Trends in Microbiology Vol. 29 (3), pp. 204-213.
Allwood, A.C., et. al. (2006). Stromatolite reef from the early Archaean era of Australia. Nature 441 (7094): 714–718.
Knoll, A. (2004). La vida en un joven planeta. Los primeros tres mil millones de años de la Tierra. Ed. Crítica.
Logan, B. W. (1961). Cryptozoon and Associate Stromatolites from the Recent, Shark Bay, Western Australia. The Journal of Geology Vol. 69, nº 5, Sept. 1961.
Margulis, L. y Sagan, D. (1995). Microcosmos. Cuatro mil millones de años de evolución desde nuestros ancestros microbianos. Ed. Tusquets.
Mangold, N. et al. (2021). Perseverance rover reveals an ancient delta-lake system and flood deposit al Jezero crater, Mars. Science, 10.1126/science.abl4051.
Rodriguez-Martínez, M. et al. (2010). Estromatolitos: las rocas construidas por microorganismos. Reduca (Geología). Serie Paleontología, 2 (5) pp. 1-25.
Rossi, C., Lozano, R.P. y Isanta, N. (2011). Los estromatolitos de manganeso de El Soplao. En: El Soplao, una ventana a la ciencia subterránea. Gobierno de Cantabria. Consejería de Cultura, Turismo y Deporte, pp. 106-109.
Schopf, J. W. (2000). La cuna de la vida. El descubrimiento de los primeros fósiles de la Tierra. Ed. Crítica.
En Arévalo tienen su encuentro el río Adaja y su afluente el Arevalillo. Entre ambos drenan un área de casi 2.000 km2, pero sin la interacción con el subsuelo acabarían totalmente secos tras apenas dos días sin precipitaciones. La participación de las aguas subterráneas, la Geología, la evapotranspiración de las plantas o la presencia de embalses y lagunas condicionan el volumen de agua que acaba saliendo por el río y a qué ritmo lo hace.
Los Modelos Digitales del Terreno (MDT) son archivos que contienen datos de elevación de la superficie en un mapa de píxeles, estos nos permiten hacer una radiografía completa de estas cuencas de drenaje gracias a las diferencias de altitud entre píxeles. En la figura 1 vemos cómo cada punto de la red se ha coloreado en función del área drenada, es decir, en función del número de píxeles que llegan a él desde una altitud mayor. El Adaja recibe la mayor parte de sus aportes aguas arriba de la ciudad de Ávila, además en sus cursos altos las precipitaciones son mucho mayores, así que la mayor parte del caudal proviene de estas zonas.
Si cada gota de lluvia que cayese sus cuencas de drenaje acabase en los ríos, en Arévalo el Arevalillo llevaría un caudal medio de 9 m3/s y el Adaja de 25 m3/s ¡El caudal medio del Tormes en Salamanca!. Sin embargo, sin la interacción con el subsuelo estos caudales serían muy irregulares, muy elevados los días de lluvia, y con los cauces secos los días sin lluvia. La evaporación y evapotranspiración reduce el caudal del Adaja en un 75%. En el Arevalillo esta reducción es mucho más acusada, y es que es una cuenca muy particular, con zonas donde la red de drenaje no se ha organizado y existen cuencas endorreicas desconectadas del río, como es el caso de la Laguna de El Oso.
Las modelizaciones combinando los MDTs con la información climática, como la precipitación máxima diaria, nos permite, por ejemplo, calcular el peligro de inundación simulando lluvias torrenciales sobre este terreno. Como vemos en el mapa de la figura 2, en Arévalo este peligro no se traduce en un riesgo importante para la población, ya que las zonas expuestas al peligro no están pobladas ni cuentan con actividad económica.