Al norte del pueblo de Cepeda la Mora, dentro de La Serrota, y en un paraje que se llama Alto de las Serradillas, queda una morfología singular, muy bien preservada y sin embargo muy habitual en el Parque Regional Sierra de Gredos y en todo el Sistema Central. Se trata de un paleoglaciar (Figura 1).
Figura 1. Fotografía del paleoglaciar de la Serradilla. Conserva todas las formas del antiguo glaciar, pero ya no hay hielo. El relieve no está en equilibrio con el clima actual. Fotografía de Javier Elez.
Un paleoglaciar son los restos de formas y sedimentos de lo que un día fue un glaciar y que ahora ya no tiene hielo. Esto no nos impide ver sus formas típicas (circos y morrenas) y nos invita a pensar que el clima de nuestro planeta ha cambiado de forma habitual a lo largo de su historia.
El paleoglaciar de la Serradilla
Hemos elegido este paleoglaciar específicamente, y no otro de los muchos que hay en Gredos y la Sierra de Béjar, por tener unas dimensiones modestas y ser de fácil acceso desde Cepeda La Mora (Figura 2).
Figura 2. Localización del Paleoglaciar de la Serradilla, en el recuadro en rojo.
Estas condiciones, junto con el buen grado de preservación que tiene, hacen que se pueda abarcar en su conjunto con la mirada desde el campo y se puedan entender de forma fácil sus formas más destacadas, depósitos de sedimentos y evolución.
En concreto, este paleoglaciar de la Serradilla está muy bien conservado (aunque le falte el hielo) y presenta varios niveles de morrenas y algunos circos como elementos más característicos (Figura 3).
Figura 3. Esquema geomorfológico del paleoglaciar de la Serradilla. En colores azules las distintas morrenas, cuanto más oscuro más altas topográficamente. Las líneas en azul oscuro indican el límite de los distintos circos (cresta) asociados a las morrenas. Las zonas verdes son antiguos lagos postglaciares tipo la laguna grande de Gredos, que ahora están llenos de sedimento y vegetación y por tanto no son lagos ya. Mapa: Javier Elez.
Recuerda que las morrenas son esos acúmulos de sedimentos que el hielo del glaciar arrastra, en su zona central o en los laterales, en su movimiento cuesta abajo (Figura 4).
Literalmente, el hielo se desborda del circo (que es la zona en donde se acumula la nieve y se compacta para formar hielo) y se cae en función de la pendiente existente.
Figura 4. Fotografía de primer plano de las morrenas del glaciar de las Serradillas, se observa su estructura caótica compuesta por bloques de todos los tamaños. Fotografía: Gabriel Castilla.
¿Cuándo estuvo activo el glaciar?
Si pensamos en el pasado, este paleoglaciar estuvo activo, incluyendo su lengua de hielo, probablemente al mismo tiempo que los grandes conjuntos de Gredos tan conocidos por las personas aficionadas a las montañas.
No hay dataciones geológicas concretas de la actividad de este paleoglaciar, pero si lo comparamos con los datos de edad que sí existen en otras zonas cercanas, podríamos interpretar que estuvo activo durante el Último Máximo Glaciar (hace unos 20.000 o 30.000 años) y que probablemente el hielo desaparecería definitivamente hace solo unos 13.000 años.
Todo esto es muy tentativo, ya que comparamos con datos de otros paleoglaciares más estudiados en el Sistema Central (Carrasco et al. 2020; Oliva et al., 2019), pero es una interpretación razonable, sujeta a cambiar cuando tengamos datos más precisos.
Figura 5. Vistas 3D desde el NE del paleoglaciar de la Serradilla. A) modelo sombreado con elementos geomorfológicos. B) modelo sombreado únicamente en donde se aprecia el relieve. C) foto de satélite. Mapa: Javier Elez.
El final de la glaciación
Las morrenas están pintadas en colores azules en los mapas de las Figuras 3 y 5, los escarpes de los distintos circos (la zona más alta erosionada por el hielo en el circo) en azul oscuro.
El hielo ocupaba desde los escarpes hasta las morrenas. En muchos glaciares de nuestro planeta, las morrenas más bajas topográficamente son más antiguas y corresponden a los episodios de máxima extensión de los hielos, mientras que las más altas topográficamente son más recientes.
Al incrementarse poco a poco la temperatura al final de la glaciación, el hielo se refugia en zonas cada vez más altas, moviendo los sedimentos y generando las morrenas en esas zonas, hasta que finalmente la temperatura sube lo suficiente como para que desaparezcan definitivamente los hielos.
En el paleoglaciar de la Serradilla vemos al menos 4 o 5 conjuntos de morrenas escalonadas en la vertical (Figura 5), marcando claramente esa retirada de los hielos que acompaña a un ciclo de calentamiento del planeta, en el cual, como sabes, estamos inmersos a día de hoy. Es una evidencia más de los cambios de clima del planeta en el que vivimos, siempre extremadamente dinámico.
Las zonas pintadas en verde son lagos de origen glaciar. Al desaparecer el hielo por el progresivo calentamiento del planeta, éste se transformó en agua, que fue retenida por las morrenas y dio origen a esos lagos. Estos, como el de la Laguna Grande de Gredos o la Laguna de la Nava o tantas otras, son muy efímeros en tiempo geológico y se rellenan rápidamente de sedimentos, dejando esas praderas planas con mucha vegetación que se ven en el interior del paleoglaciar de la Serradilla.
Carrasco, R.M. et al. (2020). Glacial geomorphology of the High Gredos Massif: Gredos and Pinar valleys (Iberian Central System, Spain). Journal of Maps, 16:2. Pp. 790-804.
Oliva, M. et al. (2019). Late Quaternary glacial phases in the Iberian Peninsula. Earth-Science Reviews 192. Pp. 564-600.
Por Gabriel Castilla Cañamero, Javier Pérez Tarruella y Javier Élez
De innumerables artimañas se sirve la naturaleza para convencer al hombre de su finitud: el fluir incesante de la marea, la furia de la tormenta, la sacudida del terremoto […]. Pero entre todas ellas la más temible, la más estremecedora, es la pasividad del silencio blanco.
El silencio blanco. Jack London, 1899.
Una definición y algunas preguntas
Los glaciares se forman en aquellos lugares fríos donde la nieve se acumula hasta transformarse en hielo. Conforme crece la capa de nieve, la presión de las capas profundas aumenta, haciendo que disminuya el volumen por compactación y, en consecuencia, que aumente la densidad hasta que se forma hielo glaciar (Figura 1).
Figura 1. Formación del hielo glaciar por enterramiento y compactación (izquierda). El movimiento de un glaciar es consecuencia del comportamiento del hielo compacto y denso bajo la acción de la fuerza de la gravedad (derecha). A partir de una situación de equilibrio entre la zona de acumulación y la zona de ablación los glaciares pueden retroceder, reduciéndose su zona de acumulación; o en caso contrario, avanzar. Figura: Gabriel Castilla, adaptado de Rubial (2005) y Anguita y Moreno (1993).
La diferencia entre un glaciar vivo y una masa de hielo muerto es el movimiento, y el motor que lo impulsa es el gradiente de presión que se forma entre la zona de acumulación donde se forma hielo glaciar y la zona de ablación, que es donde el hielo se pierde tanto por fusión como por la erosión que ejerce el viento (Figura 2).
Figura 2. El glaciar Río Túnel Superior (en la difusa frontera entre la Patagonia de Argentina y Chile). Al fondo se aprecia la zona de acumulación en forma de circo (depresión semicircular rodeada de montañas), y en primer plano el frente de la lengua glaciar. La laguna se ha formado por la fusión del hielo en la zona de ablación. Fotografía de Iván Pérez López.
Pero, ¿cómo llega a formarse un glaciar en un lugar concreto? ¿Qué variables lo condicionan?
Puesto que cada caso de estudio es único, no es posible ofrecer una respuesta general a estas preguntas; sin embargo, existen al menos diez variables que nos permiten aproximarnos a los entresijos de un proceso geológico de singular complejidad y belleza.
La latitud determina el ángulo con el que la radiación solar alcanza la superficie terrestre. Como podemos ver en la Figura 3, esta incide perpendicularmente en la región ecuatorial mientras que en los polos llega con mucha inclinación, lo que implica que se pierda una parte de la energía al atravesar la atmósfera.
Figura 3. La cantidad de radiación solar que incide sobre la superficie terrestre depende de la inclinación con la que atraviesa la atmósfera, es decir, varía con la latitud. La temperatura media anual en la zona ecuatorial es de 25 ºC, mientras que en los polos es de -40 ºC. Figura: Gabriel Castilla.
Es por ello que la cantidad de radiación que reciben las regiones polares es mucho menor que en el ecuador, y este es el principal motivo por el que existen glaciares al nivel del mar en la Antártida, Islandia y Groenlandia (Figura 4).
Las regiones ecuatoriales solo han albergado glaciares al nivel del mar durante los llamados episodios Snowball Earth (literalmente Tierra bola de nieve), intensas glaciaciones del período Criogénico, hace entre 720 y 635 millones de años.
2. Altitud
¿Significa esto que no puede haber glaciares en el ecuador? Sí los hay, pero situados a gran altitud.
Dado que la atmósfera se calienta desde la superficie terrestre, la temperatura desciende con la altura, y en las zonas templadas del planeta esta diferencia térmica es de aproximadamente un grado centígrado por cada 152 metros de ascenso vertical.
Esto quiere decir que en una región donde la temperatura al nivel del mar sea de 25 ºC, a los 4.500 m de altitud podrá alcanzar los -5 ºC (o sea, 30 grados menos), y explica por qué podemos encontrar glaciares a 4.500 m de altitud en la zona ecuatorial de la cordillera de los Andes y en las montañas Rwenzori, en el corazón de África Oriental (Figura 4).
En el caso de la Península Ibérica, situada a una latitud media de 40º norte, el momento álgido del Último Periodo Glaciar tuvo lugar hace entre 24.000 y 21.000 años, y los glaciares se formaron en el Sistema Central a una altitud comprendida entre los 1.500 m y los 2.500 m sobre el nivel del mar actual.
La cantidad de radiación solar que alcanza un punto de la superficie terrestre en un año depende de variables como la nubosidad y el relieve (en el hemisferio norte es la cara sur de las montañas la que recibe más radiación y por tanto es la más cálida).
En las zonas ecuatoriales, el Sol alcanza su altura máxima sobre el horizonte durante 30 días; sin embargo, en las zonas tropicales alcanza esta misma posición en el cielo durante 86 días (¡casi el triple de tiempo!) y es por ello que los trópicos son más cálidos y albergan grandes desiertos. La cantidad de radiación que recibe el área mediterránea es mucho mayor que la que alcanza Escandinavia, donde los inviernos son más rigurosos.
Durante el momento álgido del Último Periodo Glaciar, las zonas de menor insolación alojaron masas de hielo que alcanzaron los 3.000 m de espesor. Sin embargo, en la Península Ibérica el espesor máximo del hielo fue de unos 200 m en la Sierra de Béjar (Sistema Central).
Figura 5. Mapa de insolación de Europa (izquierda) comparado con la distribución de precipitaciones y masas de hielo durante el Último Máximo Glaciar (derecha). Se aprecia una relación entre baja insolación y mayor acumulación de hielo en la zona de Escandinavia. Estas masas de hielo, de hasta 3000 m de espesor, condicionaron el régimen de vientos y la humedad en Centroeuropa (vientos intensos, fríos y secos que depositaron un manto de loess –limo arcilloso- en el continente). Fuente de la imagen: Comisión Europea/Joint Reseach Center y Rea et al. (2020).
4. Albedo
Este término hace referencia a la cantidad de radiación solar que puede reflejar una superficie. El hielo y la nieve fresca son como un espejo y pueden reflejar hasta el 90% de la radiación que reciben, es decir, apenas se calientan por el Sol. Sin embargo, esta situación cambia cuando se deposita sobre ellos ceniza volcánica o sedimento, partículas oscuras de menor reflectividad que sí absorben la radiación solar.
De este hecho se desprende una idea importante: los glaciares se derriten desde dentro, bien por aumento de la temperatura ambiental, o bien porque absorben calor por cambios en el albedo (Figura 6).
Esta es la razón por la que países como Italia, Francia y China intentan conservar algunos glaciares emblemáticos cubriéndolos con material geotextil blanco de alta reflectividad que actúa como aislante térmico.
Figura 6. Vista panorámica del glaciar Svínafellsjökull (Islandia). Se aprecia una notable diferencia de albedo entre el hielo joven (al fondo) y el que contiene ceniza volcánica (primer plano). El hielo sucio de menor albedo se funde antes, creando una laguna de aspecto turbio debido a las finas partículas de ceniza que quedan en suspensión. Fotografía de Gabriel Castilla.
5. Orientación
Diversos estudios señalan que en el hemisferio norte los glaciares tienden a situarse en lugares de sombra (cara norte de los macizos montañosos), protegidos del viento dominante (a sotavento) y con mucha frecuencia orientados hacia el este (Figura 7).
En el hemisferio sur la orientación predominante es sureste, coincidiendo con la cara del relieve que recibe una menor insolación.
Figura 7. Durante el Último Máximo Glaciar, el glaciarismo de La Serrota (Ávila) se desarrolló en torno a los 2.200 m de altitud. La fotografía corresponde al llamado glaciar de la Serradilla, muy cerca de la localidad de Cepeda la Mora. En las imágenes de satélite captadas en marzo de 2024 se aprecia cómo las primeras nevadas dejadas por la borrasca Nelson (con vientos procedentes del oeste-suroeste) depositaron una mayor cantidad de nieve en los valles orientados hacia el noreste y el sureste, es decir, a sotavento. Fotografía de Javier Pérez Tarruella y Copernicus/Sentinel/UE, respectivamente.
6. Continentalidad
Es la lejanía de un territorio respecto de una masa de agua (mar un océano) que aporte humedad (recordemos que sin humedad no hay nieve) y suavice las temperaturas extremas. En el contexto de la Península Ibérica hace referencia a la influencia de frentes fríos y secos procedentes de Centro Europa y Siberia, en relación a los frentes cálidos y húmedos procedentes del Océano Atlántico.
El estudio de los campos de dunas fósiles que se formaron en Tierra de Pinares (comarca que abarca parte de las provincias de Ávila, Valladolid y Segovia), nos permiten conocer la dirección y sentido de los vientos dominantes durante los momentos de extrema aridez del Último Máximo Glaciar.
Diversos modelos señalan que vientos procedentes del suroeste y el oeste azotaron la meseta castellana, favoreciendo tanto el transporte de sedimento que formó las dunas como la erosión eólica (deflación) responsable de la ablación de los glaciares.
Figura 8. Modelo atmosférico para el último máximo glaciar. Las flechas señalan la dirección y el sentido del viento; el código de colores marca la velocidad. El modelo es compatible con los datos de la orientación de los campos de dunas en la península para esa época. Adaptado de Dietrich, 2011.
7. Efecto abrigo
Puesto que durante la última glaciación los vientos dominantes que barrían la península provenían principalmente del oeste y suroeste, es muy probable que los ventisqueros (trampas –abrigos- donde el viento forma torbellinos que atraen la nieve) estuvieran orientados en sentido opuesto, es decir, hacia el este y el noreste.
Como su propio nombre indica, durante las ventiscas la nieve se arremolina y acumula en estos puntos formando neveros (pequeñas masas de hielo que perduran todo el año), que en períodos fríos pueden actuar como áreas de acumulación de nieve.
Figura 9. Nevero en la cara sureste de un relieve montañoso en los Pirineos Orientales (Francia). La imagen fue tomada en agosto de 2017. Si un nevero persiste durante varios años reciben el nombre de nicho de nivación. Fotografía de Gabriel Castilla.
8. Morfología previa
Es importante reconstruir cómo era el relieve montañoso antes de la glaciación y, por tanto, antes de que los glaciares dejaran su huella en el paisaje.
Las cimas de las cordilleras que tienen poca pendiente son más propensas a acumular nieve (y por tanto a la formación hielo glaciar) que las cimas con mucha pendiente o que cuentan con un relieve muy acusado.
En estos casos la nieve tiende a caer en forma de aludes y por tanto no se acumula en las cimas, sino en la profundidad de los valles. Un buen ejemplo lo encontramos en la Sierra de Gredos, que por ser un sistema montañoso antiguo ha sido fuertemente erosionado y su línea de cumbres tiende a la horizontalidad, lo que favorecer la acumulación de nieve en la cuerda de cumbres.
Figura 10. Vista parcial de la cara norte de la Sierra de Gredos (sector oriental), formada durante la Orogenia Alpina, hace unos 40 millones de años. El paisaje que observamos en la actualidad (una línea de cumbres que tiende a la horizontalidad), es el resultado de la acción erosiva del Cuaternario (últimos 2,5 millones de años), periodo en el que se han sucedido hasta 51 episodios climáticos de frío-calor, aunque no todos ellos han dejado evidencias glaciares. Fotografía de Gabriel Castilla.
9. Redes de fractura y escarpes tectónicos
Las rocas se pueden romper por diferentes causas. Las fracturas de pequeña entidad se pueden disponerse al azar o seguir patrones de distribución en función de su origen: desde la existencia de heterogeneidades en la roca (por diferencias de composición, por ejemplo), pasando por desgaste debido a ciclos de calor-frío extremo, la descompresión o tensiones propias de la tectónica de placas. Las diaclasas (fracturas sin desplazamiento) favorecen la infiltración del agua en la roca y con ello la aceleración de los procesos de meteorización química (por alteración y disolución de minerales) y la erosión (Figura 11).
Figura 11. Red de fracturas de una de las cumbres de la Sierra de Gredos. La nieve se acumula principalmente en las zonas más erosionadas, siguiendo una red de fracturas que estás dispuestas verticalmente (líneas azules) y en diagonal (líneas rojas). Conforme la erosión vaya haciendo su trabajo, estas zonas de acumulación irán creciendo. Fotografía de Gabriel Castilla.
Los escarpes tectónicos son fracturas de mayor tamaño que implican un desplazamiento, normalmente formando un relieve con forma de escalón. Estas fallas también favorecen la meteorización, pero sobre todo los movimientos en masa (deslizamientos, vejigas, torrentes, etc.), formando cabeceras de vaciado donde pueden instalarse cuencas glaciares (Figura 12).
Figura 12. Cabecera de vaciado en uno de los picos de la Sierra de Gredos (detalle ampliado de la Figura 10). La montaña ha sido fuertemente erosionada y vaciada por una red de valles torrenciales rectos y paralelos entre sí, posiblemente escarpes de falla. Es en estos valles alargados, situados a gran altura, con pendiente moderada y a resguardo del viento, donde tienden a instalarse las cuencas glaciares durante los episodios de glaciación. Fotografía de Gabriel Castilla.
10. Polvo atmosférico
Durante las glaciaciones una gran cantidad del agua dulce de los continentes queda atrapada en forma de hielo. El resultado es un aumento generalizado de la aridez (falta de humedad ambiental) con una consecuente pérdida de masa vegetal que conlleva la degradación del suelo. Desprovisto de raíces, el suelo es erosionado por el viento con más intensidad, movilizando una gran cantidad de sedimento en forma de arena y grava (que puede formar dunas) y de polvo, que el viento arrastra hasta las capas altas de la atmósfera. Este polvo modificará el albedo de la superficie en la que se deposite, calentándola.
Un análogo podría ser la irrupción en Europa de nubes de polvo sahariano que aceleran el deshielo de las cumbres de Sierra Nevada (Figura 13). ¿Hasta qué punto el polvo puede condicionar la formación y el desarrollo de un glaciar? Algunos estudios señalan que el polvo del desierto del Gobi (entre el norte de China y el sur de Mongolia) podría ser la causa por la que no se formaron grandes masas de hielo en el norte de Asia durante la última glaciación.
Este año el #deshielo en los Lavaderos de la Reina ofrece unas imágenes muy particulares y asombrosas debido a los diferentes episodios de polvo sahariano. pic.twitter.com/A2OUKrpGHt
— Amig@s Sierra Nevada (@SNevada_Parque) May 24, 2022
Figura 13. En marzo de 2022 la borrasca Celia provocó un episodio de polvo sahariano que afectó a gran parte de la Península Ibérica. En la imagen podemos ver los efectos que posteriormente tuvo en el deshielo de Sierra Nevada. Además de cambios en el albedo de la nieve, el oscurecimiento del cielo provocó una disminución de la insolación, con una pérdida del 80% de la capacidad de producción fotovoltaica de España. ¿Cómo pudo afectar el polvo del Sáhara al desarrollo de los glaciares en la Península Ibérica? Publicación de Amig@s Sierra Nevada.
Recapitulación
Los 10 factores que acabamos de ver nos hablan fundamentalmente de cómo nos alcanza la radiación solar, de cómo la atmósfera y el relieve redistribuyen esa radiación en forma de calor mediante el viento y otros fenómenos meteorológicos, y de cómo la geología condiciona la existencia de lugares favorables para la acumulación del hielo glaciar.
En este contexto podemos afirmar que el glaciarismo es un proceso geológico complejo y para entender el origen, la dinámica y la evolución temporal de los glaciares necesitamos manejar conceptos relacionados con muchas disciplinas, desde la física de la atmósfera y la Geografía, pasando por la Astronomía y la Geología.
El estudio de los glaciares es, sin duda, un estimulante reto multidisciplinar para cualquier espíritu curioso y amante de la Naturaleza.
Anguita, F. y Moreno, F. (1993). Procesos Geológicos Externos y Geología Ambiental. Editorial Rueda. Madrid, 311 pp.
Bernat Rebollal, M. (2012). Geomorfología de los depósitos eólicos cuaternarios del centro de la Península Ibérica. Una caracterización de la actividad eólica en tierras depinares y la llanura manchega. Tesis Doctoral. Universidad Complutense de Madrid. Facultad de Ciencias Geológicas. Departamento de Geodinámica.
Carrasco, R.M. et al. (2023). The Prados del Cervunal morainic complex: Evidence of a MIS 2 glaciation in the Iberian Central System synchronous to the global LGM. Quaternary Science Reviews, 312.
Carrasco, R.M. et al. (2011). Reconstrucción y cronología del glaciar de meseta de la Sierra de Béjar (Sistema Central Español) durante el máximo glaciar. Boletín de la Real Sociedad Española de Historia Natural. Sección Geología. Nº 105 (1-4). Pp. 125-135.
Carrasco, R.M. et al. (2020). Glacial geomorphology of the High Gredos Massif: Gredos and Pinar valleys (Iberian Central System, Spain). Journal of Maps, 16:2. Pp. 790-804.
Dietrich, S. (2011). Palaeo wind system reconstruction of the last glacial period over Europe, using high resolution proxy data and model-data-comparison. Johannes Gutenberg-Universität Mainz.
Elis, R. y Palmer, M. (2016). Modulation of ice ages via precession and dust-albedo feedbacks. Geoscience Frontiers Vol. 7, nº 6, pp. 891-909.
Evans, I.S. (1977). World-wide variations in the direction and concentration of cirque and glacier aspects. Geografiska Annaler, 59A (3-4), 151-175.
Krinner, G.; Boucher, O. y Balkanski, Y. (2006). Ice-free glacial northern Asia due to dust deposition on Snow. Climate Dynamics Vol. 27, pp. 613-625.
Oerlemans, J.; Griesen, R.H. y Van Den Broeke, M.R. (2009). Retreating alpine glaciers: increased melt rates due to accumulation of dust (Vadret da Morterasch, Switzerland). Journal of Glaciology, Vol. 55, nº 192, pp. 729-736.
Oliva, M. et al. (2019). Late Quaternary glacial phases in the Iberian Peninsula. Earth-Science Reviews 192. Pp. 564-600.
Oliva. M.; Andrés, N.; Fernández-Fernández. J.M. y Palacios, D. (2023). The evolution of glacial landforms in the Iberian Mountains during the deglaciation. En Palacios, D.; Hughes, P.D.; García-Ruiz; J.M. y Andrés, N. European Glacial Landscapes. The Last Deglaciation. Cap. 22. Pp. 201-208. Elsevier, 2023.
Llamamos glaciaciones a los momentos de la historia de la Tierra en los que ha habido hielo permanente en forma de glaciares. O al menos a aquellos en los que tengamos evidencias de ello. Es decir: ¡Estamos en una glaciación! De hecho, a nuestra especie le ha tocado vivir en el periodo más frío y con más hielo de los últimos 300 millones de años.
Desde hace al menos 33 millones de años tenemos hielo permanente en la Antártida (Stickley et al., 2004), mientras que desde los últimos 3,3 millones de años tenemos hielo permanente en Groenlandia (Westerhold et al., 2020). Por tanto, estamos en una glaciación que afecta a ambos hemisferios (Figura 1).
En esta escala de millones de años, el principal condicionante de los casquetes glaciares es la distribución de los continentes y océanos. La apertura del Paso de Drake aislando la Antártida, o el cierre del itsmo de Panamá parecen momentos clave para la actual glaciación.
Figura 1.Abajo: Variaciones en la curva isotópica (clima) global durante los últimos 65 millones de años (datos de Westerhold et al., 2020). Marcamos las principales fases de la glaciación actual desde una Tierra sin hielo hace 50 millones de años. Arriba: Zoom en los últimos 400 000 años, reflejando los últimos periodos glaciares e interglaciares del Cuaternario (datos de Lisiecki y Raymo, 2005). La transición de un periodo glaciar a un interglaciar suele ser abrupta y condicionada por un cambio en la insolación de verano en el Hemisferio Norte.
Las curvas del clima global de la Figura 1 representan isótopos de oxígeno en foraminíferos bentónicos, cuyos valores dependen de la cantidad de hielo en planeta y de la temperatura de los océanos. Si quieres saber cómo se obtienen estos registros del clima a lo largo de la historia de la Tierra te recomendamos la entrada «Así conocemos el clima del pasado«.
El hielo glaciar, así como el hielo marino son muy sensibles a pequeñas variaciones del clima, ya que tan sólo 1 ºC puede suponer la diferencia entre el estado sólido y el líquido. Esta sensibilidad del hielo hace que sutiles alteraciones como las asociadas a pequeños cambios en la órbita de la Tierra, deriven en cambios climático extremos. Es por esto que en los últimos millones de años, en el período Cuaternario, con glaciación en ambos hemisferios, tenemos cambios constantes y muchas veces abruptos en las cantidades de hielo en el planeta (Figura 1).
Esas grandes variaciones, que se dan cada decenas o centenas de miles de años, las dividimos en periodos glaciares e interglaciares. Las «glaciaciones» que esculpieron los valles glaciares de Gredos o la Serrota en Ávila son en realidad esos últimos periodos glaciares del Cuaternario (Figura 1). En esta escala de decenas-cientos de miles de años, los principales desencadenantes de los cambios climáticos son los ciclos astronómicos de Milankovitch (Excentricidad de la órbita: 100 000 años; oblicuidad del eje de rotación: 41 000 años; Precesión eje + órbita: 23 000 años).
Además de los ciclos astronómicos principales, las resonancias gravitatorias entre diferentes cuerpos del sistema solar crean ciclos mayores, de hasta millones de años. Es decir, incluso Marte influye en las glaciaciones de nuestro planeta. (Dutkiewicz et al., 2024).
Además de las curvas de isótopos de oxígeno, que nos ayudan a conocer las variaciones de temperatura y hielo en el planeta, tenemos otras pistas para deducir la presencia de grandes glaciares en épocas muy remotas de la historia de la Tierra. Una de ellas son los «dropstones«: Rocas enormes incluidas en depósitos sedimentarios que se originaron en el fondo del océano. ¿Cómo pudieron llegar hasta allí estas rocas, tan lejos de los continentes? Te dejamos un vídeo con el ejemplo de la localidad de Checa, en Teruel.
Dutkiewicz, A., Boulila, S. & Dietmar Müller, R. Deep-sea hiatus record reveals orbital pacing by 2.4 Myr eccentricity grand cycles. Nat Commun15, 1998 (2024). https://doi.org/10.1038/s41467-024-46171-5
Lisiecki, L. E., & Raymo, M. E. (2005). A Pliocene‐Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography, 20(1).
Stickley, C. E., Brinkhuis, H., Schellenberg, S. A., Sluijs, A., Röhl, U., Fuller, M., … & Williams, G. L. (2004). Timing and nature of the deepening of the Tasmanian Gateway. Paleoceanography, 19(4).
Westerhold, T., Marwan, N., Drury, A. J., Liebrand, D., Agnini, C., Anagnostou, E., … & Zachos, J. C. (2020). An astronomically dated record of Earth’s climate and its predictability over the last 66 million years. Science, 369(6509), 1383-1387.
Imagen de portada: Cabra montesa frente a un circo glaciar de la sierra de Gredos. Javier P. Tarruella.
Esta vez os envío una panorámica con dos magníficos ejemplos de picos piramidales o horns, en la jerga geológica.
El horn de la izquierda es el Monte Reynolds, uno de los más emblemáticos, con 2781 m de altura. Su forma es el resultado de la acción erosiva de varias lenguas glaciares actuando sobre la cima de una montaña. El número de caras que forman las vertientes de la pirámide depende del número de circos glaciares que participaron en su formación, pudiendo ser tres o cuatro. En este caso fueron cuatro, lo que hace del Monte Reynolds un pico piramidal perfecto.
En España este tipo de relieve es menos frecuente, pero podemos encontrar algunos buenos ejemplos en el Pirineo.
Iván Pérez López es fotógrafo y viajero y actualmente se encuentra embarcado en un viaje alrededor del mundo en furgoneta. Síguele la pista en: iplfoto.com, Instagram y Facebook.
Durante la última glaciación una masa de hielo de más de 3 kilómetros de espesor cubría toda esta región, erosionando el lecho rocoso hasta crear valles con forma de U o artesa, como el de esta foto.
La gran masa de hielo desapareció hace unos 11.000 años, pero entre los años 1550 y 1850 el hemisferio norte experimentó un enfriamiento (conocido como Pequeña Edad de Hielo) y los glaciares de montaña ganaron terreno.
En 1910, cuando se creó el Parque, había más de 150 glaciares. Sin embargo, el aumento de la temperatura desde entonces ha hecho que experimenten un fuerte retroceso y para el año 2030 podría no quedar ninguno 😔
Iván Pérez López es fotógrafo y viajero y actualmente se encuentra embarcado en un viaje alrededor del mundo en furgoneta. Síguele la pista en: iplfoto.com, Instagram y Facebook.
Sabemos que el clima de la Tierra ha cambiado constantemente. En el Mesozoico (la era de los dinosaurios, hace entre 252 y 66 millones de años) apenas había hielo en los polos. Aragón o Castilla y León tenían playa, en una península ibérica que no era tal sino una isla tropical. Hace solo unos miles de años, ya con nuestra especie extendida por todos los continentes, el planeta se encontraba en una intensa glaciación.
Saber que algún momento del pasado ha sido más frío que la actualidad es relativamente sencillo: los glaciares esculpen valles en forma de U y dejan en ellos unos depósitos sedimentarios característicos, o pulen la roca (rocas aborregadas) y dejan arañazos en ella (estrías glaciares). A día de hoy encontramos muchos de estos valles y morfologías sin hielo. Podemos deducir entonces, que si en el pasado había más hielo en ese lugar, es probable que las temperaturas fuesen más bajas.
Vista del circo glaciar y valle en U de la garganta de La Vega, cerca de El Barco de Ávila (España). Imagen de Javier Pérez Tarruella. Además de la morfología, podemos observar grandes bloques erráticos en el centro del valle.
Pero… ¿Cómo saber cuáles eran las temperaturas o qué cantidad total de hielo había en el planeta? ¿Cómo podemos conocer el clima de hace millones de años?
De esto se encarga la ciencia de la Paleoclimatología, que utiliza indicadores o «Datos Proxy« que pueden ser de lo más variados. Y en esta entrada veremos un par de ejemplos: isótopos estables y foraminíferos.
Un dato «Proxy» es un dato indirecto. Como no es posible medir directamente la temperatura o la precipitación del pasado, se utilizan registros de otras variables a partir de las cuales se pueden deducir las primeras, igual que en el ejemplo de los glaciares. La interpretación de estos datos «Proxy» está basada siempre en principios físicos, químicos o biológicos.
El registro paleoclimático más completo que existe abarca los últimos 65 Millones de años, y utiliza como Proxy los isótopos de Oxígeno en foraminíferos bentónicos (Zachos et al., 2001). En nuestro post Geolodía 24 Qué es una glaciación puedes ver una versión actualizada de este registro paleoclimático.
1. Los isótopos de Oxígeno y el hielo
La mayoría de átomos de oxígeno están formados por 8 protones y 8 neutrones en su núcleo, lo que conocemos como el isótopo «Oxígeno 16». Sin embargo, existe una pequeña proporción de estos átomos que tiene 8 protones y 10 neutrones: el isótopo «Oxigeno 18».
Dos isótopos de un mismo elemento, en este caso Oxígeno 16 y 18 tienen idénticas propiedades químicas al tener el mismo número de protones y electrones. Pero su diferente masa les hace tener comportamientos diferentes frente a procesos como la evaporación o la condensación.
Así, existen moléculas de agua (H2O) con Oxígeno 16 y otras con Oxígeno 18, y la proporción entre ellas nos permite deducir cambios climáticos gracias a una serie de procesos que denominamos «fraccionamiento isotópico»:
Las moléculas con O-16 se evaporan con mayor facilidad por su menor masa. Así, las nubes tienen más O-16 que el agua del océano que las formó. Y el océano se verá enriquecido en O-18 por la pérdida de O-16.
Las moléculas de agua con O-18 se condensan con mayor facilidad (tienen mayor masa), por lo que el agua de lluvia tiene más O-18 que el vapor que la formó.
Las nubes van perdiendo agua al enfriarse hacia los polos, por formación de lluvia y por la disminución de la evaporación en estas zonas. Por ello, cuanto más cerca de los polos nos encontremos y cuanto menor sea la temperatura, menor será la cantidad de O-18 en las precipitaciones.
La nieve que cae sobre los polos y forma el hielo del casquete glaciar, teniendo en cuenta lo anterior, está muy empobrecida en O-18. Además, esta señal isotópica varía con los cambios de temperatura en la zona. Es por esto que la señal isotópica de los hielos de Groenlandia o la Antártida nos permite reconstruir temperaturas para los últimos cientos de miles de años.
Fraccionamiento de los isótopos de oxígeno en el planeta. Distintos procesos hacen que cambie la proporción de átomos de Oxígeno-18/Oxígeno-16. Gracias a los registros marinos de conchas de microorganismos como los foraminíferos, y a los registros del hielo de los casquetes polares, podemos conocer estos cambios isotópicos que reflejan el clima del pasado. Gráfico: Javier Pérez Tarruella. Parcialmente basado en Silva et al. (2017)
Como el hielo de los casquetes polares y glaciares acumula isótopo ligeros O-16 y el océano se enriquece en isótopospesados O-18 durante las glaciaciones, los sedimentos de fondos oceánicos nos permiten conocer en qué momentos ha habido más o menos hielo en el planeta. Así, los periodos glaciares se muestran en forma de valores elevados de los isótopos de oxígeno-18 en los sedimentos oceánicos.
2. Foraminíferos, pequeños historiadores del clima
Los minerales que componen las partes duras de los organismos contienen oxígeno (especialmente conchas de carbonato de organismos acuáticos) , y su proporción O-18/O-16 nos puede aproximar a la temperatura a la que se formaron. Cuando la temperatura es baja, las conchas asimilan más O-18, y viceversa.
Algunos de los organismos con concha más abundantes del planeta son los foraminíferos . Son unicelulares y pertenecen al reino Protista. Muchos tienen aspecto de palomitas de maíz, miden menos de 1mm y fosilizan con facilidad, por lo que podemos encontrarlos en casi cualquier roca sedimentaria de origen marino.
Fotografías de algunos de los foraminíferos planctónicos más emblemáticos del entorno de la Península Ibérica. Escalas = 100 micras. Autoría: Javier P. Tarruella.
El indicador que se utiliza para conocer los cambios de temperatura GLOBALES del pasado es la señal isotópica de la concha de foraminíferos que habitan en los fondos profundos de los océanos (organismos bentónicos), pues la temperatura de las aguas profundas cambia muy lentamente y es un buen reflejo del clima global. Esa señal isotópica depende tanto de la temperatura como de la cantidad de hielo sobre los continentes. Valores elevados en 18O indican bajas temperaturas y/o mayor cantidad de hielo glaciar. AQUÍ Puedes ver un ejemplo interpretado de estos registros.
Otros foraminíferos, los planctónicos, viven en las aguas superficiales. Las especies de este grupo llevan sin cambios desde hace unos 500.000 años, así que podemos estudiar en qué condiciones vive cada especie actualmente y qué agrupaciones de especies hay a diferentes temperaturas. De esta forma, conociendo las diferentes especies que se encuentran en un sedimento antiguo y sus proporciones (cuáles son más abundantes), podemos conocer la temperatura del agua superficial en el momento en que vivieron, gracias a los datos del mundo actual. Esto es un buen ejemplo de la aplicación del Actualismo.
Sabías que… Para conseguir los mejores registros sedimentarios se utilizan grandes buques científicos especiales, equipados con una torre de perforación muy similar a la que se emplea en el mundo del petróleo. Así se obtienen sondeos del fondo marino, donde se han ido enterrando los foraminíferos bentónicos que allí vivían. Los planctónicos, que vivían en el agua superficial, cayeron y se depositaron junto a los bentónicos una vez muertos. Cuanto mayor haya sido esta acumulación y durante más tiempo se haya producido de forma continua, mejor será el registro climático que se podrá obtener.
Otros indicadores Proxy
Aunque sólo hemos hablado de hielo y organismos marinos, el clima del pasado se puede conocer a través de muchos otros indicadores Proxy: depósitos en lagos, espeleotemas en cuevas, estudios de polen en sedimentos, depósitos de turberas, estudios geoquímicos e isotópicos en dientes de mamíferos o incluso a través de los anillos de los árboles (Dendrocronología), etc.
Descubre más sobre otros indicadores paleoclimáticos:
Alonso-Garcia, M., Perez-Tarruella, J., Bejard, T. M., Azibeiro, L. A., & Sierro, F. J. (2022). La micropaleontología como herramienta de datación e identificación de eventos climáticos en registros sedimentarios marinos. Cuaternario y Geomorfología, 36(3-4), 171-188.
Silva Barroso, P. G., Bardají, T., Roquero García-Casal, E., Baena Preysler, J., Cearreta, A., Rodríguez-Pascua, M. A., … & Goy, J. L. (2017). El periodo cuaternario: La historia geológica de la Prehistoria.
Hace 18.000 años nuestro planeta se encontraba inmerso en el último máximo glacial. La nieve caída sobre los continentes no llegaba a fundirse en verano, formándose grandes acumulaciones de hielo. Y como el agua de precipitación no retornaba al océano el nivel del mar descendió hasta 125 metros por debajo del actual.
18.000 años es un parpadeo en términos geológicos. Y es que el periodo en el que le ha tocado vivir a nuestra especie (el Cuaternario) se caracteriza por un clima que cambia rápidamente (fig. 1).
Figura 1. Variación climática en los últimos 500.000 años. A grandes rasgos se diferencian 5 glaciaciones y 5 periodos interglaciales, en el último de los cuales nos encontramos ahora. En este artículo nos centraremos en la transición de la última glaciación al presente Interglacial (la ¨Última Terminación»). Datos de Lisiecki & Raymo (2005).
Estos cambios climáticos, que a grandes rasgos dan lugar a una glaciación y un periodo interglacial cada 100.000 años aproximadamente, son debidos a:
Cambios en la cobertura de hielo y las concentraciones de gases de efecto invernadero, que amplifican mucho los cambios disparados por los factores anteriores.
Estos cambios no siempre son graduales. Si estudiamos en detalle la última glaciación vemos que hay decenas de cambios bruscos en las temperaturas. Cuando parecía que la glaciación se retiraba definitivamente en el hemisferio Norte, dio un último coletazo hace unos 12.800 años con el llamado Younger Dryas (también conocido como Dryas Reciente o Joven Dryas).
Este enfriamiento súbito fue el responsable del último periodo de actividad del mar de dunas de La Moraña, y es que la precipitación en Ávila disminuyó. Al reducirse la evaporación del Atlántico Norte por las bajas temperaturas, la disponibilidad de humedad hacia la penísula Ibérica también se redujo. Seguramente este sistema dunar estuvo también activo en varios momentos de la última glaciación, coincidiendo con los eventos Heinrich (hace 16.000, 24.000, 30.000, 39.000, 48.000 y 62.000 años aproximadamente).
La hipótesis más aceptada durante mucho tiempo sobre el origen de este cambio climático fue la del vaciado del Lago Agassiz. Este lago se formó por el deshielo del casquete glaciar de Norteamérica, en la región de los Grandes Lagos, alcanzando un tamaño similar al de la Península Ibérica (figura 2). En determinado momento este lago habría vertido sus aguas al Atlántico, deteniendo las corrientes oceánicas y enfriando especialmente el Atlántico Norte. Aunque ya no se asocie el Younger Dryas al lago Agassiz, sí se ha confirmado la relación del conocido como evento 8.2 ka (hace 8200 años) con el último vaciado de este lago (You et al., 2023).
Figura 2. El Lago Agassiz y las posibles vías de vertido de sus aguas al océano.
¿Sabías que…? La película Ice Age 2 está basada en la hipótesis del Lago Agassiz. Los protagonistas viven junto a una presa de hielo que retiene el agua del deshielo acumulada en el Lago Agassiz y deben escapar antes de que se rompa y el lago se vacíe de golpe, es decir: ¡antes de que comience el Younger Dryas!
El final del Younger Dryas y el inicio de la agricultura
Como se observa en la figura 3, a pesar de que los factores astronómicos aumentaban la insolación de verano sobre el hemisferio norte, la temperatura disminuyó, y con ella la precipitación.
Sin embargo, más destacable que el enfriamiento del Younger Dyas fue su final. Y es que ese calentamiento y deshielo que se habían visto frustrados remontaron rápidamente, con una subida del nivel del mar de más de 40 mm/año durante unos siglos y un calentamiento de más de 7ºC en Groenlandia para ese periodo.
Figura 3. Gráfica que muestra 5.000 años de evolución climática, incluyendo el Younger Dryas. La temperatura y la precipitación en el Atlántico Norte disminuyeron en este periodo, a pesar del aumento de la insolación de verano en el hemisferio Norte. El enfriamiento finalizó de golpe, provocando la fusión masiva de glaciares y un aumento brusco del nivel del mar.
Los registros arqueológicos muestran que el inicio de la agricultura y las civilizaciones complejas (el Neolítico) coincide con el final del Younger Dryas, el calentamiento que dio paso al presente Interglacial. Ahora, gracias a unos sondeos en el Mar Muerto, en el entorno de Mesopotamia o “Cuna de la Civilización” sabemos que esta coincidencia es exacta. La incipiente actividad agrícola y el pastoreo habrían provocado un aumento de la erosión y por tanto el incremento de la sedimentación observado en la zona.
Por una parte, parece que un cambio ambiental tan brusco obligó a modificar el modo en que obteníamos el alimento; y por otra parte, la relativa estabilidad climática del presente periodo Interglacial (Holoceno) nos permitió perfeccionar la técnica hasta llegar a los tractores que hoy aran La Moraña.
Quizá sin el Younger Dryas no habría surgido este nuevo paradigma de vida de nuestra especie, o quizá hubiese aparecido 2.000 años antes. En cualquier caso, fue un evento que nos invita a preguntarnos cuánto han condicionado los cambios climáticos la historia de la Humanidad.
¿Sabías que…? Otra de las hipótesis utilizadas para explicar el cambio climático del Younger Dryas es el impacto de un meteorito en Groenlandia. Esta hipótesis se lanzó en 2007 y en 2018 se descubrió bajo el casquete glaciar de Groenlandia un enorme cráter de impacto de 30 km de diámetro. Los cálculos sugieren que un meteorito de 1 km impactó contra la Tierra hace entre 10.000 y 2 millones de años, de momento es el único sospechoso que tenemos como culpable cósmico del Younger Dryas. Además, se han encontrado evidencias de impacto en más de 60 yacimientos de todo el planeta. Sin embargo, estos cambios tan abruptos son habituales en el transcurso de los periodos glaciales, y en su mayoría son explicados por la propia dinámica del sistema climático sometido a la vulnerabilidad de los glaciares y del hielo de la banquisa.
Autor (texto, gráficos e imágenes) – Gabriel Castilla Cañamero
En aquellas regiones del planeta donde el ambiente es tan seco que la vegetación apenas puede subsistir, los suelos quedan desprotegidos y expuestos a la acción del viento. El viento actúa arrancando del suelo materiales sueltos, principalmente arena y limo, que pueden viajar largas distancias. Cuando el viento se frena, bien porque disminuye su intensidad o bien porque se topa con un obstáculo, entonces se forma una duna. Una duna es, en definitiva, un montículo de arena que es transportado por el viento.
Figura 1. Esquema de una duna.
Aunque solemos asociar las dunas con lugares cálidos como el desierto del Sahara, lo cierto es que también son frecuentes, aunque menos conocidas, las dunas en desiertos fríos como el Gobi o la Antártida. De hecho las dunas son tan frecuentes en ambientes fríos que se han identificado hasta en las llanuras heladas de Martey Plutón.
Tipos de dunas
El tamaño y la forma de una duna dependen de la dirección y velocidad del viento, la disponibilidad de arena y la cantidad de vegetación presente. En base a estos factores podemos clasificar las dunas en cuatro tipos:
Las de tipo barján tienen forma de media luna y sus cuernos apuntan en dirección al viento.
Las de tipo seif presentan crestas rectas que se disponen longitudinalmente siguiendo la dirección del viento dominante.
Las de tipo transversal son montículos alargados con crestas onduladas perpendiculares a la dirección del viento.
Y por último las de tipo parabólico, que tienen forma de U con sus brazos apuntando en sentido opuesto al viento.
Figura 2. Principales tipos de dunas.
Dunas parabólicas de La Moraña
Las dunas parabólicas son frecuentes allí donde el terreno está parcialmente cubierto por vegetación que fija la arena de los brazos dejando que la parte central avance, siendo propias de zonas áridas frías en las que existe una cubierta vegetal. Este tipo de dunas son las que encontramos bajo los pinares de La Moraña abulense.
Como el viento es un fluido (similar a un río pero de aire) selecciona las partículas que puede mover según su tamaño y peso. Los granos de arena son arrancados del sustrato y desplazados a saltos (se dice que se desplaza por saltación) cerca del suelo, mientras que las partículas más livianas pueden ser elevadas varios metros formando nubes de polvo. El proceso por el cual el sustrato va perdiendo su material más fino y dejando al descubierto los fragmentos rocosos de mayor tamaño se conoce como deflacción.
Figura 3. Superficie erosionada por deflacción (izquierda) y canto pulido por abrasión (derecha) cerca de El Oso.
El resultado es un pavimento de rocas pulidas por la abrasión que ejerce el continuo piqueteo de los granos de arena que impactan sobre ellas. En aquellos lugares donde la deflacción es especialmente fuerte (normalmente en la cara de barlovento de las dunas parabólicas) se pueden formar depresiones que ocasionalmente pueden contener agua.
Bajo los pinares que conforman el paisaje de La Moraña abulense encontramos los restos de lo que en su día fue un extenso mar de arena cuyos restos aún se extienden por las provincias de Valladolid y Segovia. En esta comarca encontramos dunas parabólicas que se formaron por vientos provenientes del Oeste, así como dunas parabólicas semicirculares abiertas que tienen su origen en vientos procedentes del Suroeste. Allí donde la deflacción fue más intensa aún se aprecian depresiones con forma de artesa que ocasionalmente pueden retener una lámina de agua de poca profundidad (la laguna de El Ejido, en el término municipal de Riocabado, es un claro ejemplo – Figura 4).
Figura 4. Campo de dunas parabólicas al Norte de El Oso.
Cuándo se formaron las dunas
Las dataciones mediante termoluminiscencia (TL) señalan que este mar de arena se formó hace unos 11.600 años, coincidiendo con el evento de enfriamiento climático global conocido como Joven Dryas, también conocido como Dryas Reciente o Younger Dryas en inglés.
¿Sabías que…? Este nombre hace referencia a la planta de flor Dryas octopetala que en la actualidad crece en la rocalla de zonas árticas pero que en aquella época se podía encontrar en la fría y extensa tundra que cubrió toda Europa durante la última glaciación.
¿Qué desencadenó el cambio climático que hace 11.600 años transformó La Moraña en un mar de dunas? ¿Cómo era aquel paisaje y qué animales y plantas lo habitaban? Estas son algunas de las preguntas que intentaremos responder en el próximo #Geolodía19.