Archivo de la categoría: Didáctica

Materiales, herramientas y técnicas para la enseñanza de la geología.

La huella de las rocas en el viaje subterráneo del agua

Texto: Fina Muñoz Sanz y Ana Isabel Casado Gómez

Ilustradora: Ana Isabel Casado Gómez

El agua es un líquido vital. Constituye aproximadamente el 60 % del cuerpo humano, cubre en torno al 71 % de la superficie de nuestro planeta y es imprescindible para que tengan lugar las reacciones metabólicas en el interior de las células. Su presencia es, por tanto, un criterio fundamental a la hora de valorar si en un planeta existe o ha existido vida. Quizá por ello solemos decir que “donde hay agua, hay vida”, aunque sería más preciso afirmar que “donde hay vida, hay agua”.

Como ya explicamos en el post dedicado a la formación de los océanos, existen varias hipótesis sobre el origen del agua en la Tierra. Algunas proponen un aporte externo mediante cometas o meteoritos, mientras que otras plantean que los impactos a alta velocidad habrían favorecido la combinación de átomos de oxígeno e hidrógeno durante las primeras etapas de formación del planeta.

¿POR QUÉ ES UN LÍQUIDO ESPECIAL?

Las propiedades del agua como sustancia son especialmente singulares. Analizar algunas de ellas, como su densidad anómala (fig. 1), permite comprender fenómenos tan llamativos como la formación de los icebergs. A diferencia de la mayoría de las sustancias, el agua en estado líquido es más densa que en estado sólido, alcanzando su densidad máxima a 4 °C.

Figura 1. La imagen es una ilustración educativa que explica la densidad anómala del agua. En la parte superior aparece el título “Densidad Anómala del Agua”, escrito con letras claras y bien contrastadas.

La escena principal muestra un paisaje acuático frío. En la superficie del agua se observa un gran iceberg de color blanco y azul claro, flotando. Solo una pequeña parte del iceberg sobresale por encima del agua, mientras que la mayor parte se encuentra sumergida, mostrando que el hielo flota.

Bajo la superficie del agua, el color es más oscuro y se aprecia la parte sumergida del iceberg, mucho más grande que la visible. En esta zona aparecen varios peces nadando, lo que indica que, aunque la superficie esté congelada, el agua inferior permanece líquida y permite la vida.

A la derecha de la imagen hay un gráfico que relaciona la densidad del agua con la temperatura. El eje vertical indica la densidad y el eje horizontal la temperatura en grados Celsius, desde valores negativos hasta unos 20 grados. La curva del gráfico tiene forma de colina y alcanza su punto máximo a 4 grados Celsius, marcado con un punto destacado. Esto señala que el agua alcanza su máxima densidad a esa temperatura.

El conjunto de la imagen transmite la idea de que el agua no se comporta como la mayoría de las sustancias: al enfriarse por debajo de 4 grados, su densidad disminuye, lo que permite que el hielo flote y que el agua más densa quede en el fondo, protegiendo a los seres vivos en ambientes fríos.

Así que, la imagen explica de forma visual por qué los lagos y mares pueden congelarse en la superficie sin helarse por completo, gracias a la densidad anómala del agua.
Figura 1. Densidad anómala del agua.
El agua alcanza su densidad máxima a 4 °C, de modo que el hielo (agua en estado sólido) es menos denso y flota sobre el agua líquida. Este comportamiento anómalo explica la formación de icebergs y permite que, bajo la capa de hielo superficial, el agua permanezca líquida, posibilitando la vida acuática en ambientes fríos.

Otra propiedad destacable es la elevada cohesión entre sus moléculas, lo que le aporta una alta tensión superficial (fig. 2). Los enlaces covalentes del agua, reforzados por los puentes de hidrógeno (fuerzas de Van der Waals), hacen que las moléculas se mantengan fuertemente unidas. Gracias a esta cohesión, algunos insectos, como los zapateros (Gerris lacustris), pueden desplazarse sobre la superficie del agua sin hundirse.

Figura 2. Ilustración de un insecto zapatero desplazándose sobre la superficie del agua sin hundirse. Junto a él se muestra un esquema ampliado de moléculas de agua unidas entre sí mediante puentes de hidrógeno. La imagen representa la tensión superficial del agua, causada por la fuerte cohesión entre sus moléculas, que permite que pequeños organismos se mantengan sobre su superficie.
Figura 2. Tensión superficial del agua.
La fuerte cohesión entre las moléculas de agua, debida a los enlaces covalentes y reforzada por los puentes de hidrógeno, genera una elevada tensión superficial. Esta propiedad permite que pequeños organismos, como los insectos zapateros, puedan desplazarse sobre la superficie del agua sin hundirse.

Asimismo, el agua presenta una notable capacidad de adhesión a otras superficies. Este fenómeno que llamamos capilaridad (fig. 3), puede observarse, por ejemplo, en las paredes de un tubo de ensayo o en los vasos conductores de las plantas, por los que la savia bruta asciende desde las raíces hasta las hojas.

Figura 3. La imagen es una ilustración didáctica que explica el proceso de capilaridad y el ascenso de la savia bruta en una planta. Tiene un estilo sencillo, con colores suaves y formas claras, pensada para fines educativos.

En la parte superior aparece la palabra “Capilaridad”, que nombra el fenómeno que se quiere explicar. En el centro de la imagen se ve una planta verde con varias hojas, creciendo hacia arriba desde el suelo. El tallo es recto y de color verde claro.

Debajo de la superficie del suelo se representa el sistema de raíces, extendido y ramificado. El suelo aparece seccionado, mostrando piedras y partículas de tierra en tonos marrones. Entre las raíces y el suelo se observan pequeños puntos azules que representan el agua presente en el terreno.

Desde el suelo hacia el interior de las raíces entran flechas y gotas azules, indicando la absorción de agua por la planta. A lo largo del tallo se dibuja un conducto vertical por el que ascienden flechas azules hacia arriba. Junto a este conducto aparece el texto “Savia bruta”, señalando el movimiento ascendente del agua y las sales minerales desde las raíces hasta las hojas.

Las flechas apuntan hacia arriba para mostrar que, gracias a la capilaridad, la savia bruta sube por el interior de la planta contra la gravedad. En la parte superior, las hojas se presentan sanas y verdes, indicando que reciben el agua necesaria para su funcionamiento.

En conjunto, la imagen explica de forma visual cómo el agua del suelo entra por las raíces y asciende por el tallo hasta las hojas mediante el proceso de capilaridad, facilitando la comprensión del transporte interno del agua en las plantas.
Figura 3. Capilaridad del agua.
La combinación de las fuerzas de cohesión entre las moléculas de agua y de adhesión a las superficies sólidas permite el ascenso del agua por conductos estrechos. Este fenómeno, conocido como capilaridad, resulta esencial en las plantas, ya que posibilita el transporte de la savia bruta desde las raíces hasta las hojas.

Por último, y no menos importante, destaca su gran poder disolvente. Debido al carácter dipolar de la molécula de agua, la carga eléctrica se distribuye de manera desigual, con una región ligeramente positiva y otra negativa. Esta característica permite disolver compuestos iónicos y polares, lo que convierte al agua en un medio fundamental para el transporte de sustancias. Por ejemplo la sal común (NaCl) en agua, se disuelve liberando iones Na⁺ y Cl⁻ (fig. 4).

Figura 4. Esquema de moléculas de agua rodeando iones sodio y cloruro. Las moléculas de agua se orientan de forma diferente según la carga del ion. La imagen muestra cómo el carácter dipolar del agua permite separar y mantener en disolución los iones de una sal, explicando su gran poder disolvente.
Figura 4. Gran poder disolvente del agua.
El carácter dipolar de la molécula de agua, con una distribución desigual de cargas eléctricas, permite la atracción y estabilización de iones con carga positiva y negativa. Esta propiedad facilita la disolución de compuestos iónicos, como el cloruro sódico, al rodear y separar los iones sodio (Na⁺) y cloruro (Cl⁻), haciendo posible su transporte en disolución.
Figura 5. Esquema comparativo de dos átomos: uno con carga positiva y otro con carga negativa. El primero ha perdido electrones y se identifica como catión; el segundo ha ganado electrones y se identifica como anión. La imagen explica visualmente cómo se forman los iones, un proceso clave para entender la disolución de sales en el agua.
Figura 5. Formación de cationes y aniones.
Un ion es un átomo o molécula que adquiere carga eléctrica al ganar o perder electrones. Cuando un átomo pierde uno o más electrones, queda con carga positiva y se denomina catión; cuando los gana, adquiere carga negativa y se denomina anión. Este proceso es fundamental para comprender la disolución de sales y la composición química de las aguas naturales.

EL RECORRIDO DE UNA GOTA DE AGUA

Tras la evaporación del agua de los océanos, el vapor se condensa y forma nubes que precipitan sobre la superficie terrestre. Parte de esta agua se infiltra en el subsuelo, empapando las rocas y dando lugar a los acuíferos. Un acuífero es una formación geológica capaz de almacenar y transmitir agua a través de sus poros y fracturas.

La infiltración del agua de lluvia hasta los acuíferos es un proceso lento que atraviesa los distintos horizontes del suelo. Aunque el agua no es completamente pura —puede contener partículas en suspensión, microorganismos o gases disueltos—, durante su recorrido subterráneo interactúa con los materiales que encuentra, modificando progresivamente su composición química. De este modo, cuando el ciclo natural del agua (fig. 6) se ve interrumpido por la captación humana mediante fuentes o pozos, el agua puede utilizarse, entre otros usos, como agua para consumo humano.

Figura 6. La imagen es un esquema ilustrado del ciclo natural del agua, presentado de forma panorámica y a color. En la parte superior aparece el título “El Ciclo del Agua”. En la esquina superior izquierda se ve el logotipo del USGS (Servicio Geológico de Estados Unidos). El fondo representa un paisaje amplio con cielo, montañas, ríos, lagos, océanos y zonas subterráneas.

En la parte superior derecha se muestra el Sol, que aporta la energía necesaria para el ciclo. Desde los océanos, lagos y ríos ascienden flechas que indican la evaporación, es decir, el paso del agua líquida a vapor. También se representa la evapotranspiración, que es el vapor de agua liberado por plantas y animales.

En la atmósfera, el vapor de agua se enfría y forma nubes mediante el proceso de condensación. Desde las nubes descienden flechas que indican la precipitación, que puede caer en forma de lluvia, nieve o granizo sobre montañas, suelos, ríos, lagos y océanos. En las zonas altas se observan hielo, nieve y glaciares, así como vapor volcánico.

Parte del agua que cae sobre la superficie fluye por el terreno como escorrentía, alimentando ríos y lagos, que finalmente llevan el agua hacia los océanos. Otra parte del agua penetra en el suelo mediante la infiltración, destacada en la imagen con un recuadro amarillo. Esta agua pasa a formar parte del agua subterránea, que se almacena bajo tierra y puede desplazarse lentamente hasta salir de nuevo a la superficie en manantiales, ríos o directamente al mar.

El esquema también muestra procesos como la sublimación (paso del hielo directamente a vapor), la desublimación, la formación de rocío y niebla, y la circulación del agua en humedales, lagos salinos y corrientes oceánicas.

En la parte inferior se representa el subsuelo, con flechas que indican el movimiento del agua subterránea y su descarga hacia ríos y océanos. Todo el diagrama está conectado por flechas azules que muestran que el agua se mueve continuamente entre la atmósfera, la superficie terrestre y el subsuelo.

En conjunto, la imagen explica de manera visual y completa cómo el agua circula de forma continua en la naturaleza, sin intervención humana, pasando por distintos estados y reservorios.
Figura 6. El ciclo natural del agua.
Esquema del ciclo hidrológico que muestra los principales procesos de circulación del agua entre la atmósfera, la superficie terrestre y el subsuelo, incluyendo evaporación, condensación, precipitación, escorrentía, infiltración y flujo subterráneo. Este ciclo continuo regula la distribución del agua en la Tierra y es esencial para el mantenimiento de los ecosistemas y de la vida.
Modificado de U.S. Geological Survey (USGS).

Estos iones permiten clasificar las aguas minerales según su composición química. Entre las más habituales se encuentran las aguas cálcicas, sódicas, magnésicas, bicarbonatadas, cloruradas o combinaciones iónicas varias.

Según la cantidad total de iones disueltos, las aguas minerales se clasifican en aguas de mineralización muy débil, débil, media o fuerte, en función del residuo seco (BOE n.º 16, de 19 de enero de 2011). Si el agua estuviera compuesta exclusivamente por H₂O, sería un líquido inodoro e insípido; sin embargo, el agua que consumimos presenta determinadas propiedades organolépticas. De este modo, la mineralización establece un vínculo directo entre la química del agua y su sabor u olor.

Las etiquetas de las botellas de agua mineral (fig. 7) proporcionan información detallada sobre el producto. Además de indicar la localización y denominación del manantial, las empresas embotelladoras están obligadas a realizar análisis periódicos de control de calidad, en los que se especifica la concentración de las sustancias disueltas y el laboratorio responsable del análisis.

Figura 7. Imagen de la etiqueta de una botella de agua mineral donde se detallan los valores del residuo seco y la concentración de distintos iones, como calcio, sodio o bicarbonato, expresados en miligramos por litro. También se indica el manantial de origen y el laboratorio que realizó el análisis. La figura muestra qué información química aporta una etiqueta de agua mineral.
Figura 7. Etiqueta de agua mineral natural y composición química.
Ejemplo de etiqueta de agua mineral en la que se detalla el residuo seco y la concentración de los principales iones disueltos, expresados en mg/L, junto con la fecha y el laboratorio responsable del análisis, así como la localización del manantial de origen. Esta información permite conocer el grado de mineralización del agua y relacionar su composición química con sus propiedades organolépticas.

El residuo seco es uno de los parámetros más relevantes y se refiere al peso del material obtenido tras evaporar un litro de agua, generalmente a unos 180 °C. Se expresa en mg/L y constituye un indicador directo del grado de mineralización, influyendo de forma notable en el sabor del agua (tabla 1).

MINERALIZACIÓN DEL AGUA MINERALRESIDUO SECO (mg/L)
Muy débilHasta 50
Débil50-500
Media500-1500
Fuertemás de 1500
Tabla 1: tipo de mineralización del agua mineral en función del residuo seco (mg/L), según BOE de 16 de enero de 2011.

Otro parámetro relacionado con el contenido mineral es la dureza del agua, definida como su capacidad para consumir jabón o producir incrustaciones. La dureza depende principalmente de la concentración de iones alcalinotérreos, especialmente calcio y magnesio, y está relacionada con la presencia de carbonatos disueltos. Es un parámetro utilizado en las instrucciones de las lavadoras, con diferencias en todo el territorio español (fig. 8) influenciadas en parte por la naturaleza geológica del terreno.

Figura 8. Mapa de dureza estimada del agua de distribución pública de España, similar al que incluyen las instrucciones de una lavadora doméstica. Modificado de Idris

Las aguas de mineralización media o fuerte se denominan aguas duras, mientras que las de mineralización débil se conocen como aguas blandas. Estos conceptos son habituales en ámbitos como la fontanería, ya que la dureza del agua influye en la formación de cal en las tuberías y en la eficacia de los detergentes; un agua dura dificulta la acción del jabón, lo que obliga a aumentar la cantidad de detergente para lograr una limpieza adecuada (fig. 9).

Figura 9. Tabla gráfica de dosificación de detergente para lavadora según la dureza del agua y el grado de suciedad de la ropa. Se indica que las aguas duras requieren mayor cantidad de detergente que las aguas blandas. La imagen relaciona la dureza del agua con la eficacia del lavado y el consumo de productos de limpieza.
Figura 9. Relación entre la dureza del agua y la dosificación de detergente.
Ejemplo de recomendaciones de dosificación de detergente en función de la dureza del agua y del grado de suciedad de la ropa. Las aguas duras, con mayor contenido en calcio y magnesio, requieren una mayor cantidad de detergente para lograr una limpieza eficaz, mientras que las aguas blandas permiten reducir la dosis necesaria.

¿PERO DE DÓNDE VIENEN ESOS MINERALES DISUELTOS?

Antes de ser embotellada, el agua de un manantial ha circulado por formaciones rocosas denominadas acuíferos, disolviendo minerales a lo largo de su recorrido, los componentes de la roca. No obstante, no existe una relación directa y sencilla entre el tipo de roca y la composición química del agua, ya que esta interacción depende además de numerosos factores, entre ellos:

  • las condiciones climáticas
  • el grado de alteración de la roca
  • el tiempo de contacto agua-roca
  • la permeabilidad del material
  • la longitud del recorrido subterráneo
  • la alterabilidad de los minerales

En términos generales, el paso del agua por las rocas deja una “huella” en forma de iones disueltos. Aunque es difícil establecer valores exactos, puede enunciarse una relación cualitativa: rocas duras suelen dar lugar a aguas blandas, mientras que rocas más alterables generan aguas más duras. Cuanto más fácilmente se altera una roca, mayor es la cantidad de iones que puede ceder al agua (fig. 10).

Infografía sobre fondo negro con dos flechas horizontales:

Arriba, una flecha grande hacia la derecha con el texto “ALTERABILIDAD DE LA ROCA”. En el extremo izquierdo aparece un signo menos (–) y en el derecho un más (+), indicando un aumento de alterabilidad de izquierda a derecha.

Abajo, otra flecha grande hacia la derecha con el texto “MINERALIZACIÓN DEL AGUA”, también con (–) a la izquierda y (+) a la derecha, indicando que la mineralización del agua aumenta en el mismo sentido.

Entre ambas flechas hay tres columnas (izquierda, centro y derecha):

Columna izquierda (baja alterabilidad / baja mineralización): arriba hay una roca gris moteada. Debajo, una gota vacía (o casi sin color) y una flecha vertical azul claro apuntando hacia una gota inferior con muy poca agua coloreada.

Columna central (alterabilidad y mineralización medias): arriba hay una roca con bandas o vetas oscuras y claras. Debajo, una gota y una flecha vertical naranja hacia una gota inferior con cantidad intermedia de agua coloreada en tono amarillento/anaranjado.

Columna derecha (alta alterabilidad / alta mineralización): arriba hay una roca clara, blanquecina. Debajo, una gota y una flecha vertical roja hacia una gota inferior con mayor cantidad de agua coloreada (más intensa y ocupando más volumen).

La idea visual es que, al pasar de izquierda a derecha, la roca es más alterable y el agua resultante aparece progresivamente más mineralizada.
Figura 10: Esquema que relaciona la alterabilidad de la roca (de menor a mayor) con la mineralización del agua (de menor a mayor): tres rocas en la parte superior y tres gotas de agua debajo; a mayor alterabilidad, el agua aparece más mineralizada (más “cargada” de sales).

Sin embargo, esta distinción no es absoluta. Existen calizas o areniscas muy compactas que se alteran con dificultad, de forma similar a algunas rocas ígneas o metamórficas. Además, diferentes tipos de roca pueden originar composiciones hidroquímicas similares, como ocurre con calizas y mármoles, ambos ricos en carbonatos.

Si unimos las rocas por donde pasa el agua con las propiedades derivadas de los iones disueltos que contiene, se puede aplicar ciertas conclusiones en muchos fenómenos relacionados con la calcificación de conducciones de aguas, descalcificadores domésticos o el uso del jabón para lavadoras. El sabor del agua es otra de las características que pueden ser utilizadas para realizar experiencias didácticas como catas de agua que pueden tener un objetivo didáctico más o menos avanzado en conocimientos geológicos (Gassiot, 2002; García-Frank et al., 2017).

DISTINTAS ROCAS, DISTINTAS HUELLAS

Se han escogido cuatro marcas de agua mineral representativas de la relación con los diferentes tipos de rocas. En el Sistema Central, aguas relacionadas con rocas ígneas, en el Sistema Bético, aguas procedentes de rocas metamórficas, en el Sistema Ibérico con rocas calcáreas y en la Comarca de La Moraña con rocas sedimentarias.

Gráfico de barras verticales sobre fondo blanco con rejilla horizontal. El eje vertical está rotulado “Residuo Seco (mg/L)” y va aproximadamente de 0 a 350 mg/L.

En el eje horizontal aparecen cuatro categorías (de izquierda a derecha):

Sistema Central: barra baja, alrededor de 25 mg/L.

Cordillera Bética: barra intermedia-baja, alrededor de 90 mg/L.

Sistema Ibérico: barra alta, alrededor de 235 mg/L.

La Moraña: barra más alta, alrededor de 315 mg/L.

La tendencia es un aumento claro del residuo seco desde el Sistema Central hacia La Moraña. La Moraña presenta la mayor mineralización (mayor residuo seco), seguida del Sistema Ibérico; Cordillera Bética y Sistema Central muestran valores notablemente menores.
Figura 11. Residuo Seco de aguas minerales procedentes de diferentes áreas. Las rocas sedimentarias de la Comarca de La Moraña imprimen una huella mineral mayor que las aguas procedentes de rocas calcáreas del Sistema Ibérico y que las rocas cristalinas del Sistema Central y la Cordillera Bética.

Un análisis más pormenorizado de los iones mayoritarios en estas aguas nos da más información (fig. 12). Las rocas ígneas plutónicas, como los granitos del Sistema Central, suelen dar aguas de baja mineralización, con predominio del ion bicarbonato (HCO₃⁻), sodio (Na⁺) y calcio (Ca²⁺), además de cantidades significativas de sílice disuelta. Por otra parte, las rocas metamórficas, muestran una gran variedad composicional, dando lugar a aguas con mayor mineralización aunque mayor contenido absoluto de bicarbonato que las rocas plutónicas, como ocurre con los los esquistos de la Cordillera Bética. Las aguas procedentes de acuíferos carbonatados, como los del Sistema Ibérico, ceden mayor proporción de ion bicarbonato y calcio. Por último, las rocas sedimentarias areno arcillosas al ser más porosas, son más alterables por el agua y dan mayor mineralización de sodio y cloruro, como se puede ver en el agua de la comarca de La Moraña.

Composición sobre fondo negro con cuatro diagramas circulares (gráficos de sectores) distribuidos en una cuadrícula de dos filas por dos columnas. Todos usan la misma paleta: azul, naranja, gris y amarillo. En la parte inferior hay una leyenda con cuatro recuadros de esos colores, pero sin texto legible asociado (solo los colores).

Valores mostrados en cada gráfico:

Arriba izquierda:

Amarillo: 10 (sector más grande).

Naranja: 3.

Gris: 0,94.

Azul: 2,44.

Arriba derecha:

Amarillo: 48 (sector más grande).

Naranja: 10.

Gris: 2.

Azul: 7.

Abajo izquierda:

Amarillo: 302 (sector claramente dominante).

Naranja: 66 (segundo sector).

Dos sectores muy pequeños aparecen con etiquetas fuera del círculo mediante líneas guía: 1 y 1,4 (corresponden a dos de los colores minoritarios).

Abajo derecha:

Amarillo: 247 (sector más grande).

Azul: 81,9.

Naranja: 32,1.

Gris: 29,7.

Imagen sobre fondo negro con cuatro diagramas circulares (gráficos de sectores) en disposición 2×2. Cada gráfico representa el reparto relativo de cuatro iones mayoritarios, codificados por color según la leyenda inferior: azul = sodio (Na+), naranja = calcio (Ca2+), gris = cloro (Cl-) y amarillo = bicarbonato (HCO3-).

Los cuatro gráficos corresponden a:

(a) Arriba izquierda: granitos del Sistema Central. Valores mostrados: HCO3- 10 (sector mayoritario), Ca2+ 3, Cl- 0,94 y Na+ 2,44.

(b) Arriba derecha: esquistos de la Cordillera Bética. Valores: HCO3- 48 (mayoritario), Ca2+ 10, Cl- 2 y Na+ 7.

(c) Abajo izquierda: calizas del Sistema Ibérico. Valores: HCO3- 302 (claramente dominante), Ca2+ 66, y dos sectores muy pequeños con valores 1 y 1,4 (correspondientes a Na+ y Cl- en proporciones mínimas).

(d) Abajo derecha: rocas sedimentarias detríticas de La Moraña. Valores: HCO3- 247 (mayoritario), Na+ 81,9, Ca2+ 32,1 y Cl- 29,7.

Interpretación indicada por el pie de figura: en términos relativos, el bicarbonato (HCO3-) es el ion predominante, seguido por sodio (Na+), calcio (Ca2+) y cloro (Cl-) como el menos abundante. En términos absolutos, las concentraciones difieren mucho entre orígenes, con mayor mineralización en las aguas asociadas a rocas más alterables, especialmente calizas (c) y sedimentarias detríticas (d).
Figura 12. Contenido de los iones mayoritarios de aguas con origen relacionado con granitos del sistema central (a), esquistos de la Cordillera Bética (b), calizas del Sistema Ibérico (c) y rocas sedimentarias detríticas de la Comarca abulense de La Moraña (d). El ion más abundante de forma relativa es el bicarbonato (HCO3), le sigue el sodio (Na+), el calcio (Ca2+) y en menor grado el cloro (Cl) aunque de forma absoluta las concentraciones son muy diferentes, presentando una mayor mineralización las aguas procedentes de rocas alterables, como las carbonáticas (c) y sedimentarias (d).

BIBLIOGRAFÍA

Custodio, E. y Llamas, R. 1996. Hidrología Subterránea. Ed. Omega.

Gassiot, X. 2002. Análisis y cata de aguas. Enseñanza de las Ciencias de la
Tierra, 10(1): 47-51.

García-Frank, A. y Fesharaki, O (2017). Cata de aguas a ciegas: un taller inclusivo sobre aguas minerales y geología. Livro de Resumos da XXII Bienal da RSEHN, Coimbra.

WEBGRAFÍA

https://www.bbc.com/

https://www.aiguacasa.com

https://www.usgs.gov/

¿Qué es un Tsunami?

Los tsunamis son unas manifestaciones fuertemente energéticas de la dinámica de nuestro planeta, espectaculares, pero también responsables de algunas de las catástrofes naturales recientes más tristes.

Los tsunamis de Japón en 2011 y del sudeste asiático en 2004 y su difusión a nivel global por redes cambiaron por completo nuestro imaginario colectivo al respecto de estos fenómenos (Fig. 1). Las estimaciones de víctimas mortales para ambos eventos son terroríficas, en Japón murieron cerca de 16.000 personas (hay todavía más de 2.500 desaparecidos) y en Indonesia fallecieron más de 280.000 personas.

Descripción accesible de la imagen:

A la izquierda, sobre un fondo azul, aparece el texto:
“5 de noviembre. Día Mundial de Concienciación sobre los Tsunamis. Empoderando a la próxima generación con las lecciones del Tsunami del Océano Índico de 200_” (el último número está incompleto).

A la derecha, ocupa la mayor parte de la imagen la fotografía de un gran barco oxidado y volcado de lado, parcialmente hundido en el mar. La estructura muestra tuberías, pasarelas metálicas y una cabina de color rojizo deteriorada. La imagen transmite la magnitud de la destrucción asociada a los tsunamis.
Figura 1. El 5 de noviembre es el día mundial de concienciación sobre los tsunamis. UNDRR, https://tsunamiday.undrr.org/es

Sus efectos nos resultan inquietantes. Un ejemplo claro es la película Lo imposible (2012), dirigida por J. A. Bayona, que narra la historia real de una familia que sobrevivió al devastador tsunami de 2004. Otro ejemplo es la preocupación por que se pueda repetir una catástrofe como la sucedida en la central nuclear de Fukushima, dañada por el tsunami de 2011, y que continúa generando contaminación y riesgo debido a los problemas aún no resueltos en su control.

La mayor parte de los tsunamis se generan como un efecto colateral de un gran terremoto.

¿Qué necesitamos para que se produzca un tsunami? Dos cosas:

  1. Un terremoto tan grande como para modificar la superficie del planeta
  2. Que el terremoto ocurra bajo el mar.

Cuando se genera un terremoto de gran magnitud (Fig. 2), si se produce cerca de la superficie de nuestro planeta pasan dos cosas, por un lado una rotura y desplazamiento de la superficie del planeta y por otro las conocidas ondas sísmicas que se propagan desde la zona de rotura y hacen vibrar el terreno.

Descripción accesible de la imagen:

La imagen es un esquema dividido en tres secciones horizontales que explican cómo se forma un tsunami debido a un terremoto submarino.

Primera sección: “Antes del terremoto”
Se muestra el fondo marino con una pendiente suave hacia la costa. A la izquierda, el océano tiene unos 4.000 metros de profundidad. La línea azul representa el “nivel del mar original”. En la orilla, sobre una pequeña loma, hay una palmera. Bajo el fondo marino se ve una línea roja que simboliza una falla geológica aún sin movimiento.

Segunda sección: “En el terremoto”
La falla se desplaza y genera un levantamiento del fondo marino. Aparecen flechas que indican el movimiento ascendente de la superficie y el desplazamiento del agua. El texto señala “Desplazamiento del mar” y “Desplazamiento de la superficie”. Una estrella roja marca el epicentro del “Terremoto”. El nivel del mar se modifica temporalmente, elevándose en una zona y descendiendo en otra.

Tercera sección: “Tsunami después del terremoto”
El fondo marino queda deformado de forma permanente. El agua se mueve en ondas que avanzan hacia la costa. En mar abierto, las olas son largas y bajas (menos de 1 metro de altura, velocidad de 150 a 300 km/h). Cerca de la costa, las olas se hacen mucho más altas (varias decenas de metros, velocidad de hasta 50 km/h). El texto “Tsunami en la costa” aparece en rojo, junto al dibujo de grandes olas que se acercan a la playa donde sigue en pie la palmera.

En conjunto, el esquema ilustra el proceso completo: desde la calma inicial, pasando por el sismo submarino, hasta la llegada del tsunami a la costa.
Figura 2. Esquema temporal del proceso de generación de un Tsunami. Necesitamos un terremoto que deforme la superficie del fondo del mar, de forma que desplace hacia arriba el agua del mar. Esta agua desplazada, al buscar su equilibrio gravitacional genera una onda que se propaga por el océano hasta llegar a la costa. Al llegar al litoral el tren de ondas se frena con el fondo marino más superficial y construye el tsunami. A mayor masa de agua desplazada por el terremoto, mayor velocidad de las ondas y mayor el tsunami resultante. Grafico: Javier Elez.

En geología llamamos falla a la fractura por la que se produce el desplazamiento del terreno. Para que os hagáis una idea el terremoto de Japón de 2011 desplazo hasta 2,4 metros la isla de Honshu, la mayor del archipiélago Japonés.

Si el desplazamiento de la corteza terrestre durante un terremoto ocurre bajo una gran masa de agua, como en el fondo del océano, el movimiento del suelo marino empuja la columna de agua que tiene encima. Si esto sucede a una profundidad de unos 4.000 metros, implica que se están moviendo cuatro kilómetros de columna de agua.

En ese momento el agua sube sobre su nivel habitual y luego por gravedad baja, oscilando de forma similar a cuando tiramos una piedrita a un lago y se forman las típicas ondas. La consecuencia de este movimiento oscilatorio es una onda estacionaria en el mar (Fig. 3).

Descripción accesible de la imagen:

La imagen muestra un conjunto de ondas concéntricas en la superficie del agua, vistas desde arriba. En el centro, un punto más oscuro indica el lugar donde una gota acaba de caer, formando un pequeño cráter circular rodeado por anillos que se expanden hacia fuera. Las ondas son simétricas y reflejan la luz, creando un efecto metálico o plateado. El fondo es difuso y grisáceo, lo que resalta el movimiento suave y regular de las ondas. La imagen transmite calma y representa visualmente cómo se propaga la energía a través del agua.
Figura 3. Ondas en el agua que se propagan de forma concéntrica al origen, igual que un tsunami. Fuente Wikipedia.

Estas ondas se mueven por los océanos a velocidades de cientos de km/h. En el océano abierto no son peligrosas, los barcos en muchas ocasiones ni siquiera las notan porque tienen longitudes de onda muy largas (de hasta 300 km) y amplitudes muy pequeñas (menores a un metro). Pueden cruzar el Océano Pacífico de Japón a California en unas 9 horas.

Pero cuando llegan a la costa la cosa cambia, al disminuir la profundidad la onda roza con el fondo, se frena, crece en la vertical y acumula agua y presión. Como el tren de ondas es continuo llega un momento en el que el agua amontonada en la zona litoral crece tanto que se cae hacia el continente inundando las zonas costeras en muchas ocasiones de forma violenta y generando los daños que tenemos todos en la retina.

En japonés, tsunami significa “Ola de Puerto” haciendo referencia a la dinámica del fenómeno, pues en mar abierto no se aprecia y solo cuando llega a la costa es cuando vemos las grandes olas.

En España tenemos registro geológico de Tsunamis, siendo los más recientes en la costa atlántica de Andalucía. El más conocido fue causado por el terremoto de Lisboa en 1755, con más de mil víctimas mortales solo en Andalucía. Este terremoto provocó en las costas andaluzas un tsunami con olas de 10 a 12 m de altura (equivalente a un edificio de cuatro plantas), con tiempos de inundación máximos superiores a los 8 minutos, llegando a inundar zonas situadas a más de 5 km hacia el interior de la costa.

Pero no ha sido el único. En la costa atlántica de Andalucía tenemos registro de siete grandes tsunamis en los últimos 7.000 años, de ellos cuatro se consideran que responden a terremotos de magnitudes muy importantes (mayores a 8)

Para más información:
https://www.ign.es/web/resources/sismologia/qhacertsu/qhacertsu.html
https://www.interior.gob.es/opencms/pdf/archivos-y-documentacion/documentacion-y-publicaciones/publicaciones-descargables/proteccion-civil/Guia_de_informacion_riesgo_tsunamis_126230890.pdf

Bibliografía:
https://earthobservatory.nasa.gov/images/148036/ten-years-after-the-tsunami
Lario , J., Za Zo, C., Goy, J. L., Silva , P. G., Bardaji, T., Cabero , A., Dabrio, C. J. (2011). Holocene palaeotsunami catalogue of SW Iberia. Quaternary International. doi:10.1016j.quaint.2011.01.036

Entradas relacionadas:

Abecevidas | Marie Tharp

Este año no llegamos a tiempo de participar con este retrato alfabético en la iniciativa de escritura creativa del mes de febrero 2025 de Café Hypatia: mujer y ciencia. #PVmujerciencia25 #11F #Polivulgadoras, pero aprovechamos el 8M Día Internacional de la Mujer Trabajadora para compartir este relato alfabético de la vida de Marie Tharp.

Analizó por primera vez, de manera detallada, los datos de batimetría del mar, pudiendo descubrir «montañas» en el fondo marino.

Primeros seis perfiles batimétricos del océano Atlántico representados por Marie Tharp. Créditos: Documento Especial #65 de la Sociedad Geológica de América – Los suelos de los océanos: I. Atlántico Norte

Batimetría, la ciencia utilizada por Tharp para estudia la topografía de fondo de lagos y mares en función del espesor de la columna de agua.

Marie Tharp dibujando el diagrama fisiográfico del océano Atlántico Norte. A la izquierda se ven los registros de sondeos, un prototipo del globo terráqueo con las dorsales representadas se encuentra en el medio, y una versión ampliada de sus seis perfiles del Atlántico Norte se ve en el esquina superior derecha de la foto. Finales de la década de 1950. Créditos:  Lamont-Doherty Earth Observatory.

Contratada para redactar y hacer cálculos para los estudiantes de la Universidad de Columbia, conoció a Maurice Ewing y Bruce Heezen trabajando para sus investigaciones.

Dió a conocer los fondos marinos con la publicación del primer mapa fisiográfico del Atlántico Norte en 1957. No pudo ser un mapa topográfico en detalle porque el gobierno norteamericano clasificó estos datos al considerar que podían resultar beneficiosos para la Unión Soviética en plena Guerra Fría.

Mapa del Océano Atlántico. Diagrama fisiográfico del Océano Atlántico.
Colección Mapas, Biblioteca Regenstein: G9101.C2 1957 H.4

En 2016, Google Earth lanzó una extensión descargable con el mapa histórico de Maire Tharps.

Imagen de Google Earth con el mapa histórico de Marie Tharp. Fuente: Google Earth.

Fue una de las Petroleum Geology Girls cuando se permitió a las mujeres entrar en el mundo de la Geología del Petróleo ante la necesidad de encontrar nuevos yacimientos de combustible para continuar en la guerra; siendo Standard Oil and Gas su primer lugar de trabajo.

Marie Tharp en 1944, cuando empezó a trabajar para Standard Oil and Gas. Créditos: Lamont-Doherty Earth Observatory.

Geología, una disciplina considerada masculina como muchas otras en esa época. Con la II Guerra Mundial los hombres se fueron al frente y la falta de geólogos posibilitó a las mujeres estudiar esta ciencia.

Hija única de Bertha Louise Tharp, maestra de alemán y latín , y William Edgar Tharp, topógrafo del Departamento de Agricultura de los Estados Unidos . Nació en Ypsilanti (Michigan) en 1920, y menudo acompañaba a su padre en su trabajo de campo, lo que le dio una temprana introducción a la cartografía.

Marie Tharp ayudando a su padre en la cartografía de suelos. Créditos: colección personal Marie Tharp

Identificó la dorsal en el centro del océano Atlántico (1953), prueba de la expansión de los océanos, pero su compañero Heezen tardó más de un año en aceptar que pudiera tener razón ya que él era partidario de la teoría de la tierra en expansión.

En primer plano, Marie Thurp dibujando sus mapas a mano con lápiz y tinta tras procesar los datos de ecosonda. Bruce Heezen de pie al fondo
Créditos: Joe Covello, National Geographic.

Juntó disciplinas como la geología, las matemáticas, la física y el dibujo en su trabajo diario, siendo hoy en día una referente de enfoque multidisciplinar de educación STEAM.

Kilómetros de líneas de datos les sirvieron a Maire Tharp y Bruce Heeze para cartografiar los distintos océanos del planeta y conocer así la realidad del fondo marino, hasta entonces interpretado como cubetas rellenas de fango.

Los mapas publicados entre 1959 y 1963 no contaban con el nombre de Marie Tharp, ni tampoco se le reconoció el mérito de ser la descubridora del rift de la dorsal mesoatlántica.

Marie Tharp trabajando con cientos de perfiles de ecosondeos para cartografiar la topografía del fondo oceánico. (Columbia, 1964). Créditos:  Lamont-Doherty Earth Observatory.

Maurice Ewing fue un importante geofísico que estudiaba el comportamiento de las ondas sísmicas en la superficie de los continentes y que desarrolló varios instrumentos para el análisis topográfico de los mares, todo con respaldo del Gobierno Norteamericano por la importancia estratégica de los fondos marinos. Sería el jefe del laboratorio donde trabajó Marie, y ante sus logros junto a Bruce entorpeció sus trabajos negándoles las subvenciones para los viajes en barco y no renovando sus contratos en 1968.

No fue hasta 1977 que empezó a reconocerse su trabajo con el Premio Nacional de Ciencias de los Estados Unidos. Posteriormente llegaron otros reconocimientos: premio Hubbard de la National Geographic Society (1978), premio por sus logros de la Sociedad de Mujeres Geógrafas (1996), nombrada una de las Cartógrafas Más Destacadas del Siglo XX por la Sociedad Phillips de la Biblioteca (1997), Premio a la Mujer Pionera en Oceanografía de la Institución Oceanográfica Woods Hole (1999), y el primer Premio Honorífico Lamont-Doherty de la Universidad de Columbia (2001).

Organizado el primer congreso oceanográfico internacional en Nueva York, el famoso oficial naval Jacques Cousteau acudió en su buque Calypso desde Europa arrastrando por el lecho marino un trineo con cámaras convencido de poder desmentir la existencia de la dorsal que proponían Tharp y Heezen, sin embargo, lo que obtuvo fueron imágenes que confirmaban su existencia.

Prohido para las mujeres de EE.UU. trabajar en barcos, Tharp se encargaba de interpretar y representar en gabinete los datos que su compañero Bruce Heezen le mandaba desde el buque de investigación. No le permitieron embarcar hasta 1965, cuando Tharp tenía 45 años.

Marie Tharp y Bruce Heezen observando el trazador sísmico a bordo del buque científico USNS Kane en su viaje inaugural, en 1968. Créditos: AIP Emilio Segrè Visual Archives, Gift of Bill Woodward, USNS Kane Collection

Quiso estudiar literatura como primera opción en St. John´s College (Annapolis) pero no admitían mujeres porque en ese tiempo las mujeres solo podían trabajar fuera de casa como maestras de escuela, enfermeras o secretarias.

Revolucionó la geología, la ciencia y la concepción del mundo. En sus propias palabras: “Yo tenía un lienzo blanco para llenar con extraordinarias posibilidades, un rompecabezas fascinante para armar. Eso era una vez en la vida –una vez en la historia del mundo–. Fue una oportunidad para cualquier persona, pero especialmente para una mujer de la década de 1940.”

Marie Tharp posa con su mapa, coloreado por Heinrich C. Berann, producido por National Geographic en 1968. Créditos:  Lamont-Doherty Earth Observatory.

Se graduó en Inglés y Música en la Universidad de Ohio (1943), en Geología del Petróleo en la Universidad de Michigan (1944) y en Matemáticas en la Universidad de Tulsa (1948).

Tharp es el nombre puesto a un pequeño cráter de impacto situado en el hemisferio sur de la cara oculta de la Luna como homenaje por parte de la Unión Astronómica Internacional.


Parte del mapa de la cara oculta de la Luna del USGS donde se ve el cráter nombrado como Tharp. Fuente: Wikipedia

Un joven graduado en Bellas Artes, Howard Foster, fue contratado por Heezen para dibujar sobre el mapa del océano Atlántico los epicentros de los terremotos marinos registrados. Coincidían con la dorsal descubierta por Tharp y reforzaba su propuesta del movimiento de los continentes.

Vema era el nombre del barco que adquirió el Instituto Lamont en 1953, y con el que Bruce pudo recopilar todos los datos que Tharp cartografió a mano, representando cada detalle submarino.

World Ocean Floor Map (Mapa Mundial de los Fondos Oceánicos) fue su gran obra final, publicada en 1977 junto con Heezen y el pintor Heinrich Berann. Heezen no llegó a verlo publicado ya que murió por un infarto cuando se encontraba en un submarino en las costas de Islandia ese mismo año.

Mapa Mundial de los Fondos Oceánicos. Mapa pintado manualmente por Heinrich Berann. Créditos: Heezen-Tharp «World ocean floor» de Berann. [?, 1977], Berann, Heinrich C, Bruce C Heezen y Marie Tharp.
Tharp y Heezen repasando el mapa de los fondos marinos en elaboración por el pintor Heinrich Berann. Créditos:  Lamont-Doherty Earth Observatory

Xerografía es el proceso con el que se reprodujeron muchos de sus mapas. En 1995 donó más de 40.000 artículos a la biblioteca del congreso norteamericano: información geológica y sísmica, datos de gravedad, mapas de referencia, revistas técnicas, informes, diagramas fisiográficos e incluso sus mapas del fondo oceánico.

Marie Tharp con los bibliotecarios del congreso Winston Tabb y James H. Billington visionando algunos de los articulos que Tharp donó a dicha biblioteca. Créditos: Rachel Evans.

Ya son muchos los reconocimientos a su figura, pero aún se sigue sin estudiar su nombre ni la importancia de sus descubrimientos para asentar los pilares fundamentales de la geología moderna.

Zambullida en un mundo de hombres, muchos fueron los obstáculos que le pusieron sus colegas masculinos y a los que tuvo que sobreponerse para hacer su trabajo.

Fotografía de Marie Trarp en 2001, junto al prototipo del globo terráqueo que hizo con Heezen en la década de los años 50, donde se representan las dorsales oceáncias. Marie falleció en 2006. Créditos:  Lamont-Doherty Earth Observatory.

Para conservar la naturaleza… ¿hay que tener en cuenta a la geología? Hablemos sobre geoconservación

Autoras: Thais de Siqueira Canesin y Ana Isabel Casado

Según la Unión Internacional de Conservación de la Naturaleza (UICN): “Esencialmente, la geoconservación es la práctica de conservar, mejorar y promover el conocimiento de la geodiversidad y del patrimonio geológico. Por lo tanto, la geoconservación se ocupa principalmente de la conservación de características y/o elementos que tienen una importancia geológica o geomorfológica especial. La geoconservación puede ayudar a mantener la biodiversidad y el funcionamiento de ecosistemas sanos”.

Otros conceptos necesarios para hablar de Geoconservación: geodiversidad y patrimonio geológico

La geodiversidad se refiere a la variedad de procesos y elementos geológicos (rocas, minerales, fósiles), geomorfológicos (geoformas) y pedológicos (suelos) que forman parte los ecosistemas (figura 1).

En el artículo se incluye la Figura 1, que ilustra cómo la geodiversidad se compone de los elementos geológicos, geomorfológicos, pedológicos y los procesos asociados presentes en un ecosistema. Imagina un diagrama o imagen que muestra estos componentes de forma integrada, resaltando su interrelación y dependencia.
Figura 1: La geodiversidad se compone de los elementos geológicos, geomorfológicos, pedológicos y los procesos asociados que se encuentran en ese ecosistema, y que forman parte de él.

En 2004, el geocientífico Murray Gray publicó el primer libro dedicado a la geodiversidad, “Geodiversity: valuing and conserving abiotic nature”, donde describe cómo estas diversas características de la Tierra son esenciales para comprender tanto la historia geológica como el equilibrio de los ecosistemas.

Para determinar la importancia de la geodiversidad de un lugar hay que evaluar sus elementos geológicos en relación a su valor:
1- Intrínseco
2- Cultural
3- Estético
4- Económico
5- Funcional
6- Científico
7- Educativo

Un mismo lugar puede tener uno o varios de estos valores.

El patrimonio geológico es definido por la UICN como “los elementos de la geodiversidad de la Tierra que tienen un valor significativo científico, educativo, cultural o estético”.


Las rocas, las cuevas, los valles, los fósiles, los volcanes… son esenciales para que la ciencia pueda entender y explicar cómo han evolucionado la Tierra y la vida a lo largo del tiempo.

Geoconservación y ecosistemas

Los ecosistemas naturales, como son los bosques, las barreras de coral, los desiertos… son esenciales para la correcta regulación del clima, el agua y la biodiversidad. La conservación de estos ecosistemas es fundamental para garantizar la sostenibilidad del planeta.

La geoconservación desde la perspectiva de la sostenibilidad y la diversidad de la vida en la Tierra, adquiere un significado aún más profundo. No se limita solo a la conservación de la geodiversidad y el patrimonio geológico, sino que también asegura que los ecosistemas y la biodiversidad puedan seguir existiendo.

Cuidar de la Tierra significa cuidar de la naturaleza tanto de su parte viva (biótica) como la parte no viva (abiótica), es decir, tanto de los seres vivos como del sustrato, la base y la geodiversidad que la componen, que están interconectadas para poder ser posibles.

Los elementos de la geodiversidad, los recursos naturales geológicos, están directamente conectados con el equilibrio ecológico. Por ejemplo, los bosques, los corales o los desiertos no solo son importantes por albergan distintas especies de flora y fauna, sino que también juegan un papel esencial en la regulación de los ciclos climáticos y la conservación del suelo. La destrucción de estas áreas puede poner en riesgo tanto los procesos naturales como la vida en el planeta.

Ejemplos muy claros son los ecosistemas de las regiones desérticas (figura 2), de los glaciares y de los ambientes acuáticos que tienen su biodiversidad específica, la cual ha evolucionado y se ha establecido en estos entornos concretos condicionada por el sustrato rocoso. A lo largo de los millones de años de edad del planeta, los ambientes, las rocas y los procesos han ido cambiando y la biodiversidad lo ha hecho con ellos adaptándose a las nuevas condiciones.

Se trata de una ilustración en acuarela que representa un ecosistema desértico. En ella, el cielo muestra tonos pardos que evocan aridez, altas temperaturas y baja humedad. La arena se acumula formando dunas, mientras que en el primer plano se distinguen rocas y suelos. Sobre estos suelos crecen arbustos y algunos árboles, y en el ambiente se pueden ver aves volando a lo lejos, una gacela, y se intuyen comunidades humanas adaptadas a este entorno. Se distinguen los elementos abióticos –como la arena, la temperatura, la humedad, la geomorfología, las rocas y los suelos– y los elementos bióticos, que incluyen la fauna, la vegetación y las comunidades humanas. La imagen enfatiza cómo los elementos vivos se adaptan a las condiciones impuestas por el entorno físico.
Figura 2: En un ecosistema de desierto se pueden distinguir sus elementos abióticos (arena, temperatura, humedad, geomorfología, rocas, suelos…) y sus elementos bióticos (fauna, vegetales, comunidades humanas…). Los elementos bióticos se adaptan a los abióticos.

¿La amenaza a la geodiversidad es también una amenaza para las comunidades humanas?

Comprendiendo los factores que vinculan a los pueblos, las culturas y los distintos grupos humanos con la geodiversidad nos encontramos con un nuevo concepto, la geología social.

En el caso de la humanidad, las distintas poblaciones también se han adaptado al lugar que habitan condicionadas por la geodiversidad. Las comunidades inuit, ribereña, pescadora o los pueblos nómadas del desierto son claros ejemplos de estas adaptaciones.

Cuidar de la naturaleza es, sobre todo, conservar la parte que la sustenta: la geodiversidad y el patrimonio geológico.

Por todo esto, la geoconservación es fundamental para mantener la resiliencia de la Tierra, permitiendo que los ciclos naturales continúen funcionando y que el planeta siga proporcionando recursos esenciales para la vida, como agua potable, aire limpio y suelos fértiles; al mismo tiempo que conserva la biodiversidad necesaria para la salud del ecosistema global.

Esta imagen presenta los 17 Objetivos de Desarrollo Sostenible adoptados por la ONU en 2015. Se visualizan íconos representativos de cada objetivo, que buscan impulsar acciones a nivel global para mejorar la calidad de vida, proteger el planeta y garantizar la paz y la prosperidad para todos.
Figura 3. Los 17 Objetivos de Desarrollo Sostenible (ODS) adoptados por la ONU en 2015. Referencia ONU


Referencias

Brilha, J. (2005). Património geológico e geoconservação: a conservação da natureza na sua vertente geológica. Braga: Palimage Editores. 190 p.

Brilha, J. (2016). Inventory and Quantitative Assessment of Geosites and Geodiversity Sites: a Review. Geoheritage, 8(2), 119–134.

Carcavilla, L. U. (2012) Geoconservación. Instituto Geológico y Minero de España. Madrid, España.

Gray, M. (2004). Geodiversity: valuing and conserving abiotic nature. John Wiley and Sons, Chichester, England, 434 p.

Gordon, J. E., Crofts, R., Díaz-Martínez, E., & Woo, K. S. (2018). Enhancing the Role of Geoconservation in Protected Area Management and Nature Conservation. Geoheritage, 10(2), 191–203. https://doi.org/10.1007/s12371-017-0240-5

IUCN (2025). International Union for Conservation of Nature. IUCN´s World Commission on Protected Areas (WCPA). (https://iucn.org/our-union/commissions/iucn-world-commission-protected-areas-2021-2025).

Sharples, C. (2002). Concepts and Principles of Geoconservation. Tasmanian Parks & Wildlife Service. 81 p.

Geolodía y Gamificación. ¿De qué trata el trabajo que presentamos en el Congreso Geológico de España 2024?

Puedes escuchar el contenido de esta entrada aquí:

En el XI Congreso Geológico de España presentamos una de nuestras propuestas de divulgación científica (figura 1). Esta propuesta se llevó a cabo a través de la gamificación, en el Geolodía de Ávila 22 en Villaflor, y en Ciencia en Acción 2023.

Nuestra compañera @anabelgeoraman durante la exposición del trabajo en la Sesión de Didáctica y divulgación del Congreso Geológico de España el pasado 3 de julio. Se puede ver a Ana Isabel detrás del atril, señalando a la pantalla con la proyección de la presentación de la ponencia, donde se puede leer "Gamificando el Geolodía de Ávila, experiencias en el campo y en entorno cerrado". También se ve a las dos geólogas responsables de la sesión sentadas alrededor de la mesa de organizadoras.
Figura 1: nuestra compañera @anabelgeoraman durante la exposición del trabajo en la Sesión de Divulgación y Enseñanza de las Ciencias de la Tierra, del Congreso Geológico de España el pasado 3 de julio.

La Evolución del Geolodía de Ávila

Desde 2016, el actual equipo organizador del Geolodía de Ávila ha trabajado en mejorar la experiencia de esta actividad. Tradicionalmente, este evento consistía en rutas autoguiadas con paradas en puntos geológicos significativos, donde geólogas y geólogos ofrecían explicaciones detalladas. Sin embargo, a pesar del éxito de este formato, las encuestas de participantes revelaban la necesidad de una aproximación más inclusiva y lúdica, especialmente para asistentes más jóvenes y familias.

Introducción a la Gamificación

En la edición de 2022, desarrollada en Villaflor (Ávila), se tomó la decisión de gamificar el Geolodía. La gamificación, una metodología que introduce elementos de juego en contextos no lúdicos; y busca aumentar la participación y el compromiso de quienes participan. La idea era sencilla pero poderosa: transformar el recorrido geológico en un juego de aventura, donde cada parada ofreciera no solo información científica, sino también retos y recompensas.

Elementos de la Gamificación en el Geolodía

La gamificación del Geolodía de Ávila se basó en los elementos que estructuran este tipo de actividades: dinámicos, mecánicos y componentes de juegos. Estos elementos se organizan de manera jerárquica en tres niveles (figura 2):

  1. Elementos Dinámicos: Aspectos generales que mantenían el funcionamiento de la actividad, como la historia subyacente y el flujo de la narrativa.
  2. Elementos Mecánicos: Reglas y procesos que guiaban el desarrollo del juego, incluyendo el uso de mapas y la búsqueda de paradas.
  3. Elementos componentes: Herramientas y objetos físicos utilizados, como pegatinas y mapas interactivos.
Pirámide propuesta por Werbach y Hunter (2012) para jerarquizar e interrelacionar los distintos elementos de la gamificación. En la cúspide se sitúan los elementos dinámicos, que son los aspectos generales que hacen funcionar la actividad. Inmediatamente debajo se sitúan los elementos dinámicos que provocan el desarrollo del juego y que condicionan los elementos dinámicos. Y en la base se encuentran los elementos componentes, medios por los que se ejecutan los elementos mecánicos y los elementos dinámicos por lo que ambos dependen de éstos.
Figura 2. Pirámide propuesta por Werbach y Hunter (2012) para jerarquizar e interrelacionar los distintos elementos de la gamificación.

La historia central involucraba a quienes se acercaron al Geolodía en una misión para resolver un desafío geológico final, explorando diferentes paradas que representaban puntos de interés geológico en Villaflor. Cada parada proporcionaba una insignia y una pista para resolver el enigma final, promoviendo tanto la colaboración como la competencia amistosa.

Impacto y Resultados

La respuesta a la gamificación fue abrumadoramente positiva. Las encuestas post-evento reflejaron comentarios entusiastas como «super divertido el laberinto» y «muy interesante, una actividad para repetir». Los datos recogidos mostraron que la gamificación no solo aumentó la satisfacción de quienes participaban, sino que también redujo el abandono y mejoró el aprendizaje.

La adaptación de la actividad para espacios cerrados, como aulas, fue igualmente exitosa. En el concurso internacional «Ciencia en Acción» en Viladecans, Barcelona, la versión gamificada del Geolodía de Ávila ganó el primer premio en la categoría de Laboratorio de Geología. Este reconocimiento destacó la capacidad de la gamificación para comunicar contenidos científicos de manera efectiva y atractiva.

Conclusión

La experiencia de gamificar el Geolodía de Ávila representa un avance significativo en la divulgación científica. Al integrar elementos lúdicos en actividades educativas, se logra captar la atención de un público amplio y diverso, desde jóvenes estudiantes hasta docentes y familias. Este enfoque innovador no solo mejora la experiencia de aprendizaje, sino que también demuestra el potencial de la gamificación para revitalizar la educación y la divulgación científica.


Puedes leer el trabajo completo en la web de reseachgate

Casado, A.I., Melón, P., Pérez-Tarruella, J., Canesis, T.S., Béjard, T.M., Muñoz, F., Díez-Canseco, J., Cuevas, J., Claro, A., Castilla-Cañamero, G., Cuerva, A. y Élez, J.;. (2024): Gamificando el Geolodía de Ávila, experiencias en el campo y en entorno cerrado. Geo-Temas, 20: 490-493.

Primera página del trabajo Casado et al. (2024).
Figura 3.: Primera página del trabajo Casado et al. (2024).

GEOLODÍA 24. ¿Qué es un glaciar y cómo funciona? Los glaciares de montaña

Por Ana Isabel Casado y Pablo Melón

Un glaciar (del francés glacier) es una gran masa de hielo comprimido, formada por acumulación, compactación y recristalización de nieve hasta crear hielo glaciar (figura 1); y que necesita de miles de años para que esto suceda.

Gráfico de cambios en la morfología y en la porosidad de la nieve con la profundidad hasta convertirse en hielo glaciar.
Figura 1. Cambios en la morfología y en la porosidad del agua sólida con la profundidad, desde nieve granular hasta hielo glaciar

Con esta compactación, el hielo se reorganiza perdiendo el aire que se encuentra entre las partículas sólidas hasta que solo queda el aire del interior de burbujas. El resultado es la formación de hielo glaciar, con su característico color azul.

Los glaciares son dinámicos (se mueven) y generan procesos de erosión, transporte y sedimentación, al igual que sucede con el agua líquida.

Clasificación de los glaciares

La clasificación morfológica de los glaciares se basa en tres factores: su tamaño, su forma y la posición de la masa de hielo (figura 2).

  • Glaciares de casquete: son de gran escala. Ocupan casi el 10% de la superficie terrestre. Su forma es masiva y fluye en todas direcciones.
  • Glaciares de meseta: son de mediana escala. Su forma también es masiva. Fluyen en todas direcciones y se encuentran cubriendo zonas elevadas y mesetas.
  • Glaciares de montaña (o alpinos): son de pequeña escala. Consisten en corrientes de hielo más largas que anchas y se encuentran entre zonas montañosas elevadas, formando valles en U.
GLACIARES DE CASQUETEGLACIARES DE MESETAGLACIARES DE MONTAÑA
TAMAÑOGrandeMedianoPequeño
FORMAMasivaMasivaCorriente de hielo más larga que ancha
POSICIÓNGrandes superficies (>10% de la Tierra)Zonas elevadas y mesetasEntre montañas elevadas, con valles en U
Figura 2. Tabla con las características de tamaño, forma y posición de los glaciares. Con estas características se pueden definir tres tipos de glaciares claramente distintos: de casquete, de meseta y de montaña.

Como ya has visto en la entrada del Paleograciar de la Serradilla (Cepeda la Mora, Ávila), en el Sistema Central existieron glaciares activos en el Último Máximo Glaciar (20.000-30.000 años). Estos glaciares eran del tipo Glaciar de Montaña.

Partes de un glaciar de montaña

Los glaciares de montaña son masas de hielo que fluyen pendiente abajo y que existen porque la acumulación de nieve a gran altura compensa la fusión de hielo a baja altura y la descarga por deshielo.

Esta masa de hielo en movimiento va incorporando fragmentos rocosos de todo tipo de tamaños, y genera morfologías propias que persistirás aún cuando el glaciar haya desaparecido, como ha pasado en La Serradilla.

Las dos zonas de un glaciar de montaña (acumulación vs. ablación)

  • ZONA DE ACUMULACIÓN (ganancia de masa): parte más alta donde más nieva y se alimenta el glaciar. Las bajas temperaturas se encargan de mantener este agua sólida.
  • ZONA DE ABLACIÓN O DE FUSIÓN (pérdida de masa): zona baja donde el agua sólida se derrite por el aumento de la temperatura. Se forman pequeños drenajes y escorrentías superficiales que alimentan los ríos ladera abajo. En ocasiones, el glaciar puede desembocar en un lago o mar y fragmentarse en grandes bloques de hielo llamados icebergs.
Figura 3. Los glaciares de montaña tienen dos zonas claramente diferenciadas, la zona de acumulación, donde hay una ganancia de masa por la precipitación de nieve, y la zona de ablación, donde se pierde masa por sublimación y deshielo. Donde no hay ni pérdida ni ganancia de masa se llama línea de equilibrio. Morfológicamente, existen estructuras propias de estos sistemas glaciares que permanecen una vez el hielo se ha retirado, como el circo, las morrenas o los bloques erráticos.

Estas dos zonas (acumulación y ablación) se encuentran separadas por la línea de equilibrio, lugar donde el conjunto de las ganancias y las pérdidas es igual a cero.

El dinamismo y la capacidad de cambio son las características más importantes de los sistemas glaciares de montaña. Estos modifican su forma, se mueven, crecen, decrecen…

Algunas definiciones

Los circos glaciares son depresiones con forma semicircular y paredes muy inclinadas, que se desarrollan en la zona de acumulación (figura 3). Su forma se debe a la suma de la erosión basal, el arrastre de fondo y la gelifracción de las rocas de las paredes.

Cuando el hielo ya no existe, quedan los circos en las zonas altas de las montañas, en los cuales es habitual que se formen lagos.

La lengua glaciar (figura 3) es la masa de hielo que se desborda del circo y se desplaza pendiente abajo.

La masa de hielo va incorporando fragmentos rocosos de todo tipo de tamaños mientras se desplaza, acumulándolos principalmente en sus bordes. A estas acumulaciones se les llama morrenas (figura 3). Estas morrenas se conservan una vez desaparecido el glaciar, y se diferencian como crestas formadas por detritos de tamaños variados que nos permiten conocer las dimensiones de las masas glaciares, ya que las limitan.

Dos tipos de morrenas principales:

  • Morrena lateral: se desarrolla a los lados del glaciar y se alimenta principalmente de las rocas que caen desde las paredes laterales del valle glaciar.
  • Morrena final o terminal: se desarrolla en el borde principal del glaciar y marca un periodo de estancamiento. Las más modernas se sitúan a mayor altitud que las más antiguas.

Los bloques erráticos son también seña de identidad de los glaciares de montaña. Son grandes bloques anguloso de roca que son transportados por el glaciar a grandes distancias. Cuando son transportados dentro de un iceberg , y se desprenden de él al derretirse el hielo, se llaman ice-rafting.

Línea de nieve

Que se desarrollen o no glaciares depende de muchos factores, como ya pudiste leer en la entrada de factores que condicionan la formación de un glaciar.

La suma de dos de estos factores, latitud y altitud, generan la denominada línea de nieve (figura 4). Ésta es una línea imaginaria global que marca el límite irregular entre la superficie cubierta de nieve y la superficie libre de nieve. Esta línea no es estática ya que, en general, los glaciares se encuentran en retroceso.

Gráfico sobre dónde se encuentra la línea de nieve en diversas regiones del planeta:
- Regiones polares: 0-600 m
- Regiones templadas: 1000-5000 m
- Regiones ecuatoriales: más de 5000 m
Figura 4. La línea de nieve se mide de manera directa por satélite o fotografías aéreas, o se calcula en base a la isoterma de 0ºC. Es un factor importante en los modelos hidrológicos para estimar caudales y modelos de escorrentía y precipitación.

Este contenido forma parte del Geolodía 2024 de Ávila en Cepeda la Mora, Ávila (España).

Bibliografía

Abecevidas | Florence Bascom

Participamos con este retrato alfabético en la iniciativa de escritura creativa del mes de febrero 2024 de Café Hypatia: mujer y ciencia. #PVmujerciencia24 #11F #Polivulgadoras

Apostó por la coeducación de mujeres y hombres.


Bryn Mawr College es la Universidad femenina donde trabajó de 1895 a 1928, donde fundó el Departamento de Geología y cuyo laboratorio de pregrado lleva su nombre.

Cristalografía, mineralogía y petrología eran sus campos de especialización.

Dibujos hechos a mano por Bascom de las láminas delgadas que estudió para una publicación del USGS en 1926.
Arnold, L. (2000). Becoming a geologist: Florence Bascom and Johns Hopkins, 1888-1895. Earth sciences history, 19(1), 2-25
Dibujos hechos a mano por Bascom de las láminas delgadas que estudió para una publicación del USGS en 1926.
Arnold, L. (2000). Becoming a geologist: Florence Bascom and Johns Hopkins, 1888-1895. Earth sciences history, 19(1), 2-25

Desarrolló una gran carrera con más de 40 publicaciones.


El asteroide 6084 y un cráter de Venus se llaman Bascom en su honor.


Fue la primera mujer en formar parte del consejo directivo de la Sociedad Geológica Americana (GSA).

Bascom se retiró de la enseñanza en 1928, pero siguió trabajando en el Servicio Geológico de Estados Unidos hasta 1936.
Bascom se retiró de la enseñanza en 1928, pero siguió trabajando en el Servicio Geológico de Estados Unidos hasta 1936.

Geóloga y docente, luchó por la igualdad de oportunidades de las mujeres en un área totalmente masculinizada como era la geología.

Hija de una maestra sufragista y un profesor de filosofía del Williams Collage.

Florence Bascom (arriba a la izquierda) y su familia. Su padre (a la izquierda) y su madre (a la derecha) fueron mentores clave a lo largo de la vida de Florence. (Dominio público, parte de la Colección Sophia Smith)
Florence Bascom (arriba a la izquierda) y su familia. Su padre (a la izquierda) y su madre (a la derecha) fueron mentores clave a lo largo de la vida de Florence. (Dominio público, parte de la Colección Sophia Smith)

Investigó la formación de los Montes Apalaches, siendo aún importantes sus estudios.


Junto a su tutor George Williams, se formó en la petrografía de campo y de microscopio.


Katharine Fowler fue una de sus famosas discípulas, junto a otras como Anna Jones Stose, Eleanora Bliss Knopf, Mary Porter, Julia Gardner, Ida Ogilvie


La educación superior de las mujeres de todo el mundo era una de sus metas.


Mantuvo correspondencia con el mineralogista V. M. Golschmidt durante casi 20 años, interrumpida solo 3 años por la II Guerra Mundial.


Nombrada consultora geológica por el Servicio Geológico Americano (USGS), siendo la primera mujer en este cargo.


Orgullosa profesora de futuras figuras femeninas de la geología, como ella misma se definió.


Florence Bascom (centro, mirando a la cámara) con un grupo de mujeres estudiantes en el campo en 1917.
Arnold, L. B. (1993). The Bascom-Goldschmidt-Porter Correspondence 1907 to 1922. Earth Sciences History, 196-223.
Florence Bascom (centro, mirando a la cámara) con un grupo de mujeres estudiantes en el campo en 1917.
Arnold, L. B. (1993). The Bascom-Goldschmidt-Porter Correspondence 1907 to 1922. Earth Sciences History, 196-223.

Primera mujer en doctorarse por la Universidad de J. Hopkins.


Quiso estudiar geología en el campo, aunque con ello incumplía las normas sociales.


Florence Bascom en el Parque Nacional Yellowstone. (Colección Sophia Smith, Smith College).
Florence Bascom en el Parque Nacional Yellowstone. (Colección Sophia Smith, Smith College).

Recibió sus clases de postgrado detrás de un biombo para que su presencia no molestara a sus compañeros varones.

Se graduó en Artes Artes y Letras (1882), en Ciencias (1884) e hizo un Máster en Geología (1898).


Tuvo el apoyo de importantes figuras masculinas del momento, que se aliaron para hacer posible su formación y sus primeras oportunidades laborales.


Una vez posicionada, fue el apoyo de las que le precedieron.


Florence Bascom con otras mujeres en una expedición al Gran Cañón, 1906 (Colección Sophia Smith, Smith College).
Florence Bascom con otras mujeres en una expedición al Gran Cañón, 1906 (Colección Sophia Smith, Smith College).

Viajó a Alemania en 1906 para ampliar sus conocimientos en microscopía, junto con el que se convirtió en gran amigo, V. M. Goldschmidt.


Florence Bascom en el laboratorio de Victor Goldschmidt durante su año sabático en 1907. (Dominio público)
Florence Bascom en el laboratorio de Victor Goldschmidt durante su año sabático en 1907. (Dominio público)

Williamstown, Massachusetts, ciudad donde nació.


Yacen sus restos en el cementerio de la universidad privada de su ciudad, Williams College.

Sepultura de Florence Bascon en el Williams College Cemetery
Sepultura de Florence Bascon en el Williams College Cemetery

En resumen

Nuestra experiencia en la final de Ciencia en Acción

El fin de semana del 28-29 de octubre 2023, Viladecans fue el epicentro de la divulgación científica con la celebración de la 24 edición del evento Ciencia en Acción. En esta ocasión el acontecimiento estuvo organizado por la red Innpulso, el Ministerio de Ciencia e Innovación y el Ayuntamiento de Viladecans, con el asesoramiento de distintas asociaciones científicas como la Sociedad Geológica de España.

Los 85 proyectos finalistas de este evento representaban 32 provincias españolas y 6 países iberoamericanos (Portugal, Argentina, Ecuador, Bolivia, Colombia y México).

El objetivo principal de este certamen es hacer llegar la ciencia a toda la ciudadanía, en especial a las familias y el público infantil y juvenil, de una manera divertida y motivadora a través de las propuestas finalistas en cada categoría.

Imagen corporativa del evento Ciencia en Acción. Consiste en un montaje donde se pueden ver seis  personas de distintas edades, sexos y orígenes, con cara de sorpresa, en blanco y negro sobre varias burbujas con colores y representaciones gráficas que podemos identificar como relacionados con ciencia y tecnología como ruedas, átomos, moléculas orgánicas e inorgánicas, telescopio, planetas, reciclaje, libros, figuras geométricas, etc. En la parte superior pone: Ciencia en Acción. 24ª   edición. Viladecans 2023.
Cartel oficial del evento.

Más de 300 personas, entre alumnado, profesorado y personal investigador de España e Iberoamérica, presentamos nuestros proyectos en alguna de las 14 modalidades. Nuestro trabajo, titulado «El laberinto de las tormentas: un desafío geológico en Villaflor (Ávila)», competía como finalista en la modalidad de Laboratorio de Geología.

Llegamos al edificio Cúbic, sede de la feria, el viernes por la mañana. Recoger credenciales, camisetas, bolsas… todo lo necesario para disfrutar de la experiencia. El revuelo de gente ilusionada montando sus experimentos hacía crecer el nerviosismo. Para nuestro equipo, era la primera vez en un evento de estas características, y no sabíamos si nuestro juego iba a gustar tanto como el resto de propuestas. El nivel de los proyectos que pasan a la final es muy alto.

Dos de las geólogas de nuestro equipo Geología desde Ávila, felices mostrando el stand preparado para las explicaciones de la actividad propuesta por Geología desde Ávila para la competición. Se ve un tablero detrás de ellas anunciando y explicando la actividad, y delante tienen la mesa con el material de la actividad.
El stand listo para recibir a quienes quieran participar en nuestro juego.

Tras comprobar que cada cosa estaba en su sitio y que todo estaba preparado para el sábado, tuvo lugar el acto inaugural con diferentes espectáculos científicos, como podéis ver en el video adjunto del perfil de instagram de @Cienciaaccion.

Video resumen de la inauguración del evento Ciencia en Acción (autoría @CienciaAccion).

La jornada del sábado fue intensa, un no parar de gente visitando la feria. Según Vilapress, fueron más de 1 500 las personas que se acercaron en algún momento a disfrutar de la ciencia de otra manera. Nosotras, felices, no paramos de explicar geología jugando.

Las tres geólogas encargadas en esta ocasión de defender la propuesta de Juego de mesa, sentadas tras la mesa donde se encuentra el material del juego.
Todo preparado para que dé comienzo la feria.

Como ya os adelantamos, el proyecto con el que hemos competido en Viladecans consiste en adaptar una actividad de campo (concretamente la que hicimos en el Geolodía de Ávila de 2022) a un juego de mesa.

Y así convertimos el mapa que utilizamos para orientarnos en el campo buscando las paradas en un tablero. Con el juego ya montado, no faltaron quienes miraban con curiosidad y se atrevían a preguntar qué era eso del laberinto de las tormentas.

Vista general de los materiales propuestos para llevar a cabo el juego.
Vista general de los materiales propuestos para llevar a cabo el juego.

Una breve explicación de las normas del juego y comenzamos. Tirando el dado, con suerte fueron a una parada distinta cada vez. Pero también perdieron turno o les tocó una prueba que ya habían completado, por lo que el dado no dejaba de cambiar de manos.

Fotografía en detalle de una de las paradas del juego, donde se ve el dado y las rocas implicadas en la explicación, y uno de los jugadores mostrando gran interés por aprender jugando.
La emoción de quienes participaban en el juego se palpaba en cada prueba. Podemos ver a uno de los jugadores mostrando gran entusiasmo en la parada de «Del inframundo al eterno canto de las sirenas».

Del inframundo al eterno canto de las sirenas, La datación relativa del tiempo… parada a parada y superando algunos retos, valientes participantes compitieron en nuestro juego consiguiendo las pistas necesarias para resolver el desafío final. La concentración y el interés de quienes compitieron en nuestro juego no decayó en ningún momento, y había público de todas las edades y condiciones.

¡¡Estuvimos jugando sin descanso las 8 horas que duró la feria!!

Selección de 11 fotografías de las partidas geológicas que jugamos en Viladecans. Se puede ver un público muy variado en edad, sexo y conocimientos previos.
Algunas fotos de las partidas geológicas que jugamos en Viladecans

Ejemplo del entusiasmo que despertó El laberinto de las tormentas en la feria fue el jugador de la foto de abajo, que a pesar de llevar poco tiempo escribiendo (y de momento solo con mayúsculas) quiso completar el desafío final, mostrándose un prodigio de la geología. Superó todos los retos y solo necesitó algo de ayuda para resolver las palabras de las frases del desafío.

Fotografía de uno del participante más joven que pasó por el stand. No se ve su rostro pero si se puede observar el esfuerzo que está realizando escribiendo en los espacios para resolver el enigma final.
Jovencísimo jugador completando letra a letra las palabras del desafío final.

Completado el desafío, el premio era una chapa con un diseño exclusivo. En la chapa se puede ver la mano de un esqueleto (quién sabe si será fósil) haciendo el símbolo de amor en Lengua de Signos Internacional, mientras sujeta un martillo geológico. Además, junto a ella se lee I Love Geology.

Chapas de premio tras completar el juego. En cada chapa se puede ver la mano de un esqueleto (quién sabe si será fósil) haciendo el símbolo de amor en Lengua de Signos Internacional, mientras sujeta un martillo geológico. Además, junto a ella se lee I Love Geology.
Las chapas que entregamos como premio final son toda una declaración de amor internacional y atemporal a la Geología.

La cita del domingo fue en el teatro Atrium a las 10.00h de la mañana. La organización de Ciencia en Acción había preparado una actuación a cargo de los Castellers de Viladecans y una conferencia titulada Acción Climática a cargo del científico José Miguel Viñas.

Fotografía de Miguel Viñas durante su conferencia de clausura. Se puede ver una de las diapositivas de su presentación donde compara la temperatura del aire y del océano en el tiempo ciendo como va en aumento y más se estan distanciando la una de la otra.
Miguel Viñas fue el encargado de la conferencia de clausura.

Después fue la entrega de premios a cargo de los representantes de las distintas sociedades y asociaciones científicas españolas. Uno a uno, los grupos premiados iban subiendo al escenario a recoger sus Menciones de Honor y sus Trofeos.

Llegó el turno de la Modalidad de Laboratorio de Geología. La entrega del primer premio corrió a cargo de Jordi Vilà (de geòleg.cat) en representación de la Sociedad Geológica de España. Nuestra alegría no pudo ser mayor cuando escuchamos: «…por su didáctica, su capacidad de comunicación y claridad de sus contenidos, se concede el primer premio al trabajo El Laberinto de las Tormentas, Un desafío geológico en Villaflor (Ávila)…»

Se observa el escenario de entrega del premio, con un moderador, cinco representantes de las sociedad de ciencia españolas y dos mujeres asistentes del evento.
Momento de nombramiento del Primer Premio en la modalidad de Laboratorio de Geología para nuestro trabajo
EL LABERINTO DE LAS TORMENTAS, UN DESAFÍO GEOLÓGICO EN VILLAFLOR (ÁVILA).

Sentimos un gran orgullo por recibir este prestigioso premio. Nuestra propuesta en Ciencia en Acción es el reflejo de nuestro trabajo. Este trofeo lo vivimos como el reconocimiento a una labor de divulgación y enseñanza de la geología que nos apasiona y en la que ponemos ilusión, energía y mucho trabajo.

De nuestro paso por la feria también nos llevamos una gran experiencia, aprendiendo de interesantísimos proyectos que se están llevan a cabo en centros de secundaria y de investigación. Hemos conocido a grandes docentes que saben transmitir la pasión por la ciencia a su alumnado. Y a colegas de profesión a los que hemos desvirtualizado después de años de seguir su trabajo en redes. ¡Y nos hemos divertido muchísimo!

Arriba a la izquierda con @Anabyuste y su alumnado del IES Consaburum (@Consaburumu) que presentaban otro de los proyectos de la modalidad de Laboratorio de Geología; y varias fotos de buenos momentos de las tres compañeras de @Geologia_avila
Arriba a la izquierda con @Anabyuste y su alumnado del IES Consaburum (@Consaburum) que presentaban otro de los proyectos de la modalidad de Laboratorio de Geología; y varias fotos de buenos momentos de las tres compañeras de @Geologia_avila.

Gracias a la organización de Ciencia en Acción por el buen funcionamiento de la feria y por atender a todas nuestras necesidades. Gracias al Jurado por la buena valoración de nuestro trabajo y por otorgarnos este importante reconocimiento. Ha sido una gran experiencia.

Trofeo del 1er premio de la modalidad de Laboratorio de Geología viajando en el AVE de camino a casa
Trofeo del 1er premio de la modalidad de Laboratorio de Geología viajando en el AVE de camino a casa.

Organizando la historia de la Tierra

La historia de la Tierra está grabada en las piedras y la Geología nos enseña a ver en ellas fotos instantáneas del momento en el que se formaron (figura 1). Y lo primero que nos podemos plantear es: ¿Cuándo se formó esta instantánea?

Figura 1: Cuando miramos una piedra, como la caliza de la foto, con ojos geológicos, lo que esta piedra nos devuelve es una instantánea de cómo era el ambiente y la propia Tierra cuando se formó.
Figura 1: Cuando miramos una piedra, como la caliza de la foto, con ojos geológicos, lo que esta piedra nos devuelve es una instantánea de cómo era el ambiente y la propia Tierra cuando se formó.

La escala de tiempo en Geología es muy amplia, mucho más que la nuestra propia, la escala humana. Mientras que para los seres humanos 100 años puede parecer una eternidad, en Geología ese tiempo a penas rascaría la superficie. ¡Hablamos de periodos de tiempo que se miden habitualmente en millones de años!

Por ejemplo, entre las dos fotos del Gran Cañón del Colorado de la figura 2 han pasado más de 150 años, pero vemos que la geología de ese paisaje no ha cambiado en todo este tiempo.

Figura 2. A la izquierda podemos ver una fotografía del Gran Cañón del Colorado de 1871 (de John K. Hiller) y a la derecha otra fotografía (de Alan Hull) del cañón en la actualidad, casi desde el mismo punto. Podemos comprobar como entre una fotografía y otra no existen diferencias apreciables en cuanto a la geología del paisaje, a pesar de haber pasado más de 150 años entre una fotografía y otra.
Figura 2. A la izquierda podemos ver una fotografía del Gran Cañón del Colorado de 1871 (de John K. Hiller) y a la derecha otra fotografía (de Alan Hull) del cañón en la actualidad, desdecasi el mismo punto en el mirador de Toroweap (Tuweep, Arizona). Podemos comprobar como entre una fotografía y otra no existen diferencias apreciables en cuanto a la geología del paisaje, a pesar de haber pasado más de 150 años entre ellas.

El tiempo en Geología es un parámetro escurridizo. Te puede venir bien leer este post para introducirte en el concepto: Cómo se entiende el tiempo en Geología.

Escala humana vs. Escala geológica. Organización/División del tiempo

Hoy en día disponemos de relojes y calendario muy precisos, incluso con exactitud atómica (solo se desajustan 1 segundo cada 300 millones de años). Pero antes de inventar todo tipo de medidores de tiempo solo disponíamos de las señales que ofrece la naturaleza para intentar contabilizarlo.

Cuando el ser humano quiso contabilizar el tiempo, lo dividió en función de los cambios que observaba en la naturaleza: la caída de las hojas de los árboles, el aumento de las horas de sol… Cambios que nos permiten agrupar el tiempo (como vimos en el altar del Castro Vetón de Ulaca o en distintos calendario solares o climáticos como el de la Figura 3).

Figura 3. Ejemplo de calendario solar o climático. El calendario solar chino divide el año en 24 etapas en base a la posición del Sol y a factores cíclicos del clima y de los seres vivos. Cada una de las etapas comprende 15 días, por lo que dos juntas forman un mes y cada tres meses una estación del año. Este calendario se sistematizó en el año 104 a.C. https://confuciomag.com/wp-content/uploads/2016/12/10_calendario_chino.pdf
Figura 3. Ejemplo de calendario solar o climático. El calendario solar chino divide el año en 24 etapas en base a la posición del Sol y a factores cíclicos del clima y de los seres vivos. Cada una de las etapas comprende 15 días, por lo que dos juntas forman un mes y cada tres meses una estación del año. Este calendario se sistematizó en el año 104 a.C. https://confuciomag.com/wp-content/uploads/2016/12/10_calendario_chino.pdf

De igual manera que nuestras antepasadas y antepasados organizaron el tiempo por los cambios que tenían asociados, en Geología organizamos el tiempo de la Tierra buscando marcadores de cambios a nivel planetario (en la composición de la atmósfera o la formación de súper-continentes, por ejemplo) que nos permita esta agrupación.

Ese modo de dividir el tiempo de la Tierra por hitos se parece también a la forma en que dividimos la Historia de la humanidad (Figura 4). En Historia, las edades están limitadas por hitos históricos como la caída del Imperio Romano de Occidente o el primer viaje de Cristóbal Colón a América. De esa forma, cada edad histórica tiene su propia duración porque cada edad ha mantenido unas condiciones sin cambios durante un intervalo de tiempo diferente. Este mismo criterio es el empleado en la organización del tiempo geológico, cada división tiene su propia duración.

Figura 4. La división del tiempo en Historia está marcada por hitos que cambiaron el curso de los acontecimientos y no por periodos fijos de tiempo. Esto mismo sucede con la división del tiempo en la Escala Geológica.
Figura 4. La división del tiempo en Historia está marcada por hitos que cambiaron el curso de los acontecimientos y no por periodos fijos de tiempo. Esto mismo sucede con la división del tiempo en la Escala Geológica.

Y al igual que sucede en Historia, cuanto más nos alejamos hacia atrás en el tiempo, menos «resolución» o detalle tenemos de esos cambios.

Este tipo de organización cobra aún más sentido cuando manejamos cantidades de tiempo tan grandes que son inimaginables. ¿Y dónde encontramos las pruebas de esos cambios en la historia de la Tierra? En el registro geológico, que es como la agenda de nuestro planeta donde nos ha dejado apuntada parte de su historia en esas instantáneas que son las piedras (figura 5).

Figura 5. Los límites entre periodos geológicos se establecen mediante eventos que alteraron el desarrollo de la Tierra. Estos eventos han quedado registrados en las rocas de la Tierra, como si fueran la agenda o el diario donde nuestro planeta ha apuntado algunas de sus actividades más importantes
Figura 5. Los límites entre periodos geológicos se establecen mediante eventos que alteraron el desarrollo de la Tierra. Estos eventos han quedado registrados en las rocas de la Tierra, como si fueran la agenda o el diario donde nuestro planeta ha apuntado algunas de sus actividades más importantes

Aquí te dejamos el enlace a la Tabla Cronoestratigráfica Internacional en castellano que está continuamente en revisión, actualización y mejora; y que supone una de las grandes contribuciones de la Geología a la Sociedad.

La jerarquización del tiempo geológico

El tiempo geológico se organiza de manera jerarquizada, como podemos ver en la Figura 6:

  • Los eones abarcan varias eras.
    • Las eras abarcan varios periodos.
      • Los periodos abarcan varias series, etc.

Cada una de estas divisiones son unidades temporales geológicas.

Figura 6. Esquema de la jerarquización de las distintas unidades geológicas que componen la Tabla del tiempos geológico.
Figura 6. Esquema de la jerarquización de las distintas unidades geológicas que componen la Tabla del tiempos geológico.

Recuerda que cada unidad tiene su propia duración.

El uso de unas u otras unidades dependerá del tipo de investigación o representación que se quiera realizar:

EÓN es la unidad de mayor intervalo de tiempo geológico.

Existen 4 eones, de más antiguo a más moderno:

  • Hádico (desde el origen del Sistema Solar hasta hace 4000 Ma).
  • Arcaico (desde hace 4000 Ma hasta hace 2500 Ma).
  • Proterozoico (entre 2500 y 539 Ma).
  • Y Fanerozoico (desde hace 543 Ma hasta la actualidad).

Es habitual que Hádico, Arcaico y Proterozoico se agrupen en una unidad informal llamada Precámbrico (lo de antes del Cámbrico).

¿Qué es lo que cambió de unos eones a otros para diferenciarlos entre sí? Algo tan propio de la Tierra como la aparición de la vida, y los cambios que ésta produjo en el planeta (figura 7).

  • Al comienzo, en el eón Hádico, no había vida y se producían bombardeos continuos de meteoritos siendo la Tierra una bola de material fundido.
  • Ya en el Arcaico, el bombardeo termina y aparecen las primeras formas de vida, pero la atmósfera terrestre es aún reductora, con gran cantidad de gases de efecto invernadero.
  • En el Proterozoico, con los continentes ya bien desarrollados, la actividad biológica de bacterias y cianobacterias cambia la composición de la atmósfera aumentando la presencia de oxígeno.
  • Los nuevos cambios favorecieron que se produjeran la explosión de la vida que marca el comienzo del cuarto eón en el que nos encontramos, el Fanerozoico.
Figura 7. División del tiempo geológico en Eones (Hádico, Arcaico, Proterozoico y Fanerozoico) según el desarrollo de continentes y la evolución de la vida.
Figura 7. División del tiempo geológico en Eones (Hádico, Arcaico, Proterozoico y Fanerozoico) según el desarrollo de continentes y la evolución de la vida.

Salvo el Hádico, del que no tenemos registro geológico, el resto de eones se dividen en ERAS. Las distintas eras están delimitadas por el inicio de distintos ciclos orogénicos de creación (y posterior desmantelamiento) de grandes cadenas montañosas por movimientos de los continentes. Por ejemplo, el Fanerozoico lo integran tres eras geológicas: Paleozoica, Mesozoica, y Cenozoica (figura 8).

Figura 8. División de la eón Fanerozoico en las eras Paleozoico, Mesozoico y Cenozoico en función de la tectónica continental.
Figura 8. División de la eón Fanerozoico en las eras Paleozoico, Mesozoico y Cenozoico en función de la tectónica continental.

Las eras a su vez se dividen en PERIODOS. Los periodos a su vez en SERIES y las series en PISOS. Estas otras divisiones están marcadas por cambios en los organismos, en las condiciones climáticas y/o en las condiciones geológicas.

Eón > Era > Periodo > Serie > Piso

Conclusión

Con esta entrada solo queremos dar una visión de cómo medimos el tiempo geológico y el funcionamiento de la potente herramienta que es la Tabla del Tiempo Geológico, una de las grandes aportaciones de nuestra ciencia.

Todo lo que ha sucedido en nuestro planeta queda englobado en ese concepto temporal. Y el tiempo no se detiene, así que esto no acaba aquí…

Algunos ejemplos de Tablas del Tiempo Geológico (en castellano)

Versión de 2023 de la Tabla Cronoestratigráfica Internacional en castellano publicada por la International Commission on Stratigraphy (ICS).
Tabla del Tiempo Geológico, trabajo con carácter pedagógico dirigido a alumnos iniciados en las Ciencias Geológicas, de Ángel Caballero García de Arévalo para el CSIC - Instituto Andaluz de Ciencias de la Tierra (IACT).
Tabla del Tiempo Geológico, trabajo con carácter pedagógico dirigido a alumnos iniciados en las Ciencias Geológicas, de Ángel Caballero García de Arévalo para el CSIC – Instituto Andaluz de Ciencias de la Tierra (IACT).

Referencias

Prácticas y recursos sobre la escala de tiempo geológico

GEOLODÍA 22. Los elementos del paisaje en Villaflor

Autoría: Davinia Díez Canseco y Jaime Cuevas

En esta panorámica general podemos ver tres elementos del paisaje que narran las historias que han ocurrido en este lugar a lo largo del tiempo geológico.

Desde esta panorámica vemos 3 elementos del paisaje que narran las historias que han ocurrido aquí a lo largo del tiempo geológico. Imagen de Gabriel Castilla.
Desde esta panorámica vemos 3 elementos del paisaje que narran las historias que han ocurrido aquí a lo largo del tiempo geológico. Imagen de Gabriel Castilla.
  1. El primer elemento son los arroyos, torrentes y procesos de erosión que modelan rápidamente el paisaje y que hacen preguntarnos si un romano vería el mismo entorno que vemos ahora.
  2. El segundo elemento es el relieve cercano formado por materiales geológicos del periodo Mioceno (14 millones de años), cuando esta zona fue habitada por antiguos vertebrados que dejaron sus restos en yacimientos paleontológicos como el que acabáis de ver. Estos fósiles, junto con las calcretas, permiten dibujar un entorno de clima y paisaje muy distinto al actual. ¿Qué tipo de paisaje vieron estos antiguos mamíferos?
  3. El tercer elemento son las montañas que hay al fondo, que permiten descifrar otras historias que emergen desde lo más profundo del tiempo. De allí son las rocas que en otro tiempo fueron sedimentos de océanos, se enterraron bajo cordilleras para luego volver a la superficie, incluso algunas que antes fueron magmas en el interior de la corteza.
Esta fue la última parada del Geolodía 22 de Ávila en Villaflor.

El desafío final

Además de sintetizar todos los elementos del paisaje que el público asistente había recorrido, aquí debían resolver el ‘desafío final’, acertar la frase oculta siguiendo las pistas recogidas durante su exploración del laberinto.

Las pistas recogidas en cada parada geológica
La frase oculta

Mapa central de la guía de campo. En él se indican el área de juego y la posición aproximada de las paradas geológicas. Además, se facilita un espacio para pegar cada una de las pistas recogidas durante la exploración del laberinto y el acertijo final que el público asistente tendrá que adivinar basándose en las pistas.
Mapa central de la guía de campo. En él se indican el área de juego y la posición aproximada de las paradas geológicas. Además, se facilita un espacio para pegar cada una de las pistas recogidas durante la exploración del laberinto y el acertijo final que el público asistente tendrá que adivinar basándose en las pistas.
La solución
Solución al desafío final del Geolodía 22 de Ávila en Villaflor.
Solución al desafío final del Geolodía 22 de Ávila en Villaflor.

Este contenido formó parte del Geolodía 2022 de Ávila.