Todas las entradas por miosorex

GEOLODÍA 23. El Patrimonio Geológico como herencia y su conservación

Autor: Jaime Cuevas

Si lo prefieres, puedes escuchar este artículo aquí:

Cualquier forma de terreno natural que no haya sido modificada por la acción humana se ha formado o configurado por procesos geológicos. Tanto las discretas lomas en campo abierto como una imponente montaña tienen detrás procesos y materiales geológicos que generalmente se remontan a cientos, miles o millones de años.

Imagen de Monument Valley, Arizona, USA. Foto de Iván Pérez.
Monument Valley (Arizona, USA). Imagen de Iván Pérez.

La lentitud de estos procesos, junto con la profundidad del tiempo geológico, crea una abrumadora relación de escala comparada con la percepción humana del tiempo.

Para saber más sobre el tiempo geológico: Cómo se entiende el tiempo en geología.

Por esta razón, la destrucción de un fósil o la modificación del relieve por expansión de infraestructuras u obtención de recursos deja una sensación de proceso irreversible: si desaparece una forma o elemento del paisaje, sin duda los procesos geológicos la podrán repetir, pero probablemente no esté ya la humanidad para observarlo.

Por ello, tenemos la responsabilidad de cuidar y valorar una herencia de formas y elementos geológicos, para trasmitirla a futuras generaciones y que también puedan observarlas, estudiarlas o simplemente disfrutarlas. La idea de herencia entre generaciones es uno de los enfoques más claros para entender el concepto de Patrimonio Geológico.

¿Qué es el Patrimonio Geológico?

Bajo el marco de Patrimonio Geológico se hace referencia a aquellos lugares u objetos naturales de origen geológico que tienen valores científicos, culturales o educativos, tales como rocas, minerales, fósiles o paisajes.

Debido al largo tiempo necesario para formarse, estos objetos naturales contienen fragmentos de información sobre procesos del pasado que ayudan a comprender la historia de la Tierra, de la Vida e incluso del Universo.

Los avances tecnológicos actuales permiten llegar a un nivel de resolución muy preciso sobre esa información, pero obviamente esta resolución irá aumentando con futuras técnicas analíticas aún no desarrolladas.

Esta es otra buena razón para conocer, cuidar y mantener en las mejores condiciones posibles la herencia geológica que hemos recibido y que dejaremos a las futuras generaciones.

Evolución de la geoconservación

Las primeras iniciativas de geoconservación de lugares o elementos geológicos en España las promueve y coordina el Instituto Geológico y Minero de España (IGME).

Con la elaboración durante las décadas de los 70 y 80 del Mapa Geológico Nacional por parte del IGME se pone en marcha el Inventario Nacional de Puntos de Interés Geológico, un primer catálogo donde se recogen lugares emblemáticos desde el punto de vista geológico.

En la década de los 90 hay un creciente interés general por la geoconservación y surgen distintas iniciativas de catalogación por parte de algunas Comunidades Autónomas, pero con una cobertura muy desigual del territorio.

Hacia el final del siglo XX la UNESCO y la Sociedad Geológica Internacional (IUGS) promueven el proyecto Global Geosites, un catálogo de lugares de interés geológico que sigue unos criterios específicos para justificar su relevancia mundial.

Lógicamente, hay muchos otros lugares que no alcanzan ese grado de singularidad global, aunque no por ello sean menos interesantes y merecedores de una catalogación y puesta en valor.

Inventario Español de Lugares de Interés Geológico (IELIG)

Con el objetivo de hacer un inventario nacional completo y unificado, en 2011 el IGME pone en marcha el Inventario Español de Lugares de Interés Geológico (IELIG) que pretende unir y ampliar las anteriores propuestas de catalogación, tanto internacionales como de ámbito nacional y autonómico.

Actualmente el IELIG tiene más de 4.500 lugares de interés geológico que en la web info.igme.es/ielig/ se pueden consultar públicamente para que los conozca la ciudadanía, las instituciones y que, en última instancia, sean considerados en los planes de ordenación territorial de cada municipio. Además, este catálogo está abierto a seguir ampliándose incluyendo nuevas propuestas de lugares de interés geológico.

Imagen de la base de datos de Lugares de Interés Geológico (IELIG) del IGME. Permite realizar búsquedas por poblaciones o puntos geográficos.
Imagen de la base de datos de Lugares de Interés Geológico (IELIG) del IGME. Permite realizar búsquedas por poblaciones o puntos geográficos.

IELIGs en Arévalo

En el entorno de Arévalo hay actualmente tres puntos catalogados en el IELIG.

Mapa de localización de los tres lugares de interés geológico en las inmediaciones de Arévalo (Ávila).
Mapa de localización de los tres lugares de interés geológico en las inmediaciones de Arévalo (Ávila).

Dos de ellos son de interés geomorfológico, sedimentológico y estratigráfico y se encuentran en campos de dunas pleistocenas del último episodio glacial hace unos 10.000 años. Son formaciones geológicas de arenales naturales, donde en algunos puntos aún se pueden observar antiguas canteras para la extracción de áridos. Estas formaciones de dunas son importantes para los estudios paleoclimáticos ya que constituyen registros de una época con un clima en la región de Ávila muy distinto al actual.

Vista de los frentes de la cantera abandonada del LIG Dunas eólicas cuaternarias de Arévalo (DI127). Tomada de info.igme.es/ielig/
Vista de los frentes de la cantera abandonada del LIG Dunas eólicas cuaternarias de Arévalo (DI127). Tomada de info.igme.es/ielig/

Si quieres ampliar información sobre las dunas de Ávila, te recomendamos: Un mar de dunas en La Moraña | Herramientas para descubrir los cinturones de dunas de Ávila

El tercer LIG se encuentra en las márgenes del río Arevalillo y es el yacimiento de vertebrados de La Lugareja. En él se han encontrado fósiles de tortugas gigantes y del mamífero Hispanomerix, un pariente del actual ciervo almizclero asiático. Este yacimiento es del periodo Mioceno superior hace 9 millones de años y es de especial relevancia por su interés paleontológico.

Parte anterior del peto de Titanochelon bolivari encontrado en Arévalo (Ávila) y expuesto en la Sala de las Tortugas, en la Universidad de Salamanca. Hernández-Pacheco, 1917.

Apadrina una roca

En el contexto del IELIG está incluida la iniciativa “Apadrina una roca”.

Se trata de un programa de participación ciudadana en el que cualquier persona puede “apadrinar” un LIG que le resulte interesante y que pueda visitar con frecuencia.

Desde la página web del IELIG se puede participar mediante un formulario de datos básicos y con el compromiso de visitar regularmente el LIG para comprobar su estado.

El objetivo es crear un vínculo entre los participantes de esta iniciativa y los LIG que han elegido, de forma que tengan un canal de comunicación con el IGME para informar de incidencias que puedan amenazar su integridad.

Logo del proyecto de participación ciudadana Apadrina una Roca está promovido por el IGME para el cuidado y protección de los lugares de interés geológico
El proyecto de participación ciudadana Apadrina una Roca está promovido por el IGME para el cuidado y protección de los lugares de interés geológico.

Este contenido forma parte del Geolodía 2023 de Ávila en Arévalo, Ávila (España).

GEOLODÍA 22. Los elementos del paisaje en Villaflor

Autoría: Davinia Díez Canseco y Jaime Cuevas

En esta panorámica general podemos ver tres elementos del paisaje que narran las historias que han ocurrido en este lugar a lo largo del tiempo geológico.

Desde esta panorámica vemos 3 elementos del paisaje que narran las historias que han ocurrido aquí a lo largo del tiempo geológico. Imagen de Gabriel Castilla.
Desde esta panorámica vemos 3 elementos del paisaje que narran las historias que han ocurrido aquí a lo largo del tiempo geológico. Imagen de Gabriel Castilla.
  1. El primer elemento son los arroyos, torrentes y procesos de erosión que modelan rápidamente el paisaje y que hacen preguntarnos si un romano vería el mismo entorno que vemos ahora.
  2. El segundo elemento es el relieve cercano formado por materiales geológicos del periodo Mioceno (14 millones de años), cuando esta zona fue habitada por antiguos vertebrados que dejaron sus restos en yacimientos paleontológicos como el que acabáis de ver. Estos fósiles, junto con las calcretas, permiten dibujar un entorno de clima y paisaje muy distinto al actual. ¿Qué tipo de paisaje vieron estos antiguos mamíferos?
  3. El tercer elemento son las montañas que hay al fondo, que permiten descifrar otras historias que emergen desde lo más profundo del tiempo. De allí son las rocas que en otro tiempo fueron sedimentos de océanos, se enterraron bajo cordilleras para luego volver a la superficie, incluso algunas que antes fueron magmas en el interior de la corteza.
Esta fue la última parada del Geolodía 22 de Ávila en Villaflor.

El desafío final

Además de sintetizar todos los elementos del paisaje que el público asistente había recorrido, aquí debían resolver el ‘desafío final’, acertar la frase oculta siguiendo las pistas recogidas durante su exploración del laberinto.

Las pistas recogidas en cada parada geológica
La frase oculta

Mapa central de la guía de campo. En él se indican el área de juego y la posición aproximada de las paradas geológicas. Además, se facilita un espacio para pegar cada una de las pistas recogidas durante la exploración del laberinto y el acertijo final que el público asistente tendrá que adivinar basándose en las pistas.
Mapa central de la guía de campo. En él se indican el área de juego y la posición aproximada de las paradas geológicas. Además, se facilita un espacio para pegar cada una de las pistas recogidas durante la exploración del laberinto y el acertijo final que el público asistente tendrá que adivinar basándose en las pistas.
La solución
Solución al desafío final del Geolodía 22 de Ávila en Villaflor.
Solución al desafío final del Geolodía 22 de Ávila en Villaflor.

Este contenido formó parte del Geolodía 2022 de Ávila.

Pilancones Vs Marmitas de gigante

Textos y fotografías de Jaime Cuevas

Las formas circulares que se encuentran con frecuencia en las zonas altas de las regiones graníticas son los pilancones y pueden ser confundidos con las marmitas de gigante, aunque son estructuras que tienen orígenes distintos.

pilancones
Conjunto de pilancones en la parte alta de un domo granítico.

Tal y como explicábamos en este artículo previo, las marmitas son formas de erosión asociadas a canales fluviales, con una elevada relación profundidad/anchura y fondos curvos o cónicos. Por el contrario, los pilancones suelen tener relaciones de profundidad/anchura menores y además mostrar fondos generalmente planos. De hecho, los pilancones están más cerca de parecerse a una paella (o paellera) que a un perol o marmita.

Formación inicial: irregularidades

Al contrario que en el caso de las marmitas de gigante, que hay que buscarlas en los valles, para la formación de los pilancones se necesita una superficie horizontal que esté bien expuesta a los agentes meteorológicos (los altos de los lanchares o los domos graníticos son zonas ideales), donde el agua puede quedar retenida en pequeñas irregularidades de la roca horizontal.

irregularidades
Irregularidades sobre una superficie horizontal del granito, suficientes para retener un poco de agua y comenzar el proceso de formación de los pilancones.

Profundización: meteorización química

Una vez retenida el agua, comienzan a actuar procesos de meteorización química que van haciendo más profunda y ancha la irregularidad. Esta situación genera un sistema de realimentación, ya que a mayor tamaño más agua es retenida y, por tanto, habrá mayor meteorización química.

En el caso de los granitos, esta meteorización afecta con mayor intensidad a las micas y feldespatos, creando así un residuo de granos de cuarzo que quedarán retenidos como sedimento en el fondo del pilancón.

sedimentos
Sedimento de tamaño arena retenido en el fondo de un pilancón. Este sedimento procede del mismo pilancón y es generado por los procesos de meteorización que afectan al granito.

Esta primera fase continúa hasta que se alcanza un tamaño en el que los granos de sedimento puedan moverse libremente por el fondo del pilancón incipiente, dando lugar a la aparición de los procesos de meteorización física.

Crecimiento de la estructura: meteorización física

Con ayuda de las lluvias intensas que remueven el fondo arenoso comienza un efecto de «molienda» (abrasión mecánica) que acelera el crecimiento de la estructura.

Hay que destacar también el papel de la gelifracción, ya que la congelación de la lámina de agua retenida en los pilancones produce un notable efecto de micro-roturas en las paredes que facilita la incorporación de granos de sedimento al fondo, así como el aumento del diámetro de la estructura.

gelifraccion
Modelo detallado del efecto de la gelifracción o crioclastia sobre paredes cuando se congela la lámina de agua retenida en el pilancón. Autor: David Domínguez Villar en Análisis morfométrico de pilancones: consideraciones genéticas, evolutivas y paleoambientales (2007).

Estos procesos de meteorización física justifican los fondos planos de los pilancones y el hecho de que sean generalmente más anchos que profundos, llegando a unirse unos con otros para formar geometrías muy llamativas.

pilancones-unidos
Pareja de pilancones que se han unido debido a su crecimiento horizontal preferente.

Otra diferencia importante entre las marmitas de gigante y los pilancones, es que las primeras necesitan tiempos de formación muy cortos (ya que se asocian a regímenes de aguas turbulentas de mucha energía), mientras que para la formación de los pilancones los procesos son mucho más lentos y en ocasiones suelen hacer falta varios miles de años.

pilancon-marmita

Arroyos de montaña

Autoría – Davinia Díez-Canseco y Jaime Cuevas

Un par de publicaciones atrás hablábamos de las cuencas hidrográficas y las redes de drenaje.

Vamos a profundizar con esta pequeña aproximación a los arroyos de montaña y su papel en la configuración del paisaje.

img_1721
Bolos arrastrados por el río

Los canales de una misma red de drenaje cumplen distintas funciones según su posición en la red:

  • Así, los ríos de gran caudal que vertebran la cuenca hidrográfica (en nuestro caso el río Alberche) se encargan principalmente del transporte de agua y sedimentos hasta la zona de salida de la cuenca.
  • Mientras que los pequeños canales o arroyos que se encuentran en las puntas finales de la ramificación hacen el duro trabajo de desmantelar el sustrato rocoso, o dicho de otra manera, tienen un importante papel en la construcción del paisaje.

Jerarquía de los canales de la red

strahler
Representación gráfica del orden de Horton-Strahler o escala jerárquica de canales.

Estas diferencias en la función y el trabajo que desempeñan cada uno de los canales de una red de drenaje se pueden organizar en una escala jerárquica conocida como “orden de Horton-Strahler”.

  • Los canales de orden mayor se encuentran en el eje central de la cuenca y se encargan de desaguar todo el sistema de la red de drenaje.
  • Los canales de orden menor se sitúan hacia los bordes de la cuenca (suelen ser arroyos y torrentes) y se encargan principalmente de la erosión y desmantelamiento del terreno.
  • Los grados más bajos de la jerarquía se asignan a los pequeños arroyos y canales más lejanos, que son los responsables de “esculpir el terreno”.
gredos
En la esta imagen de la vertiente norte de la Sierra de Gredos, en Ávila, se aprecian los canales y torrentes de orden jerárquico menor, los auténticos responsables de este espectacular paisaje.

Diferencias entre ríos y arroyos

La diferencia entre los ríos y los arroyos es que mientras los ríos mantienen un caudal relativamente estable a lo largo de todo el año, lo arroyos reducen significativamente su caudal en verano hasta incluso desaparecer.

El Arroyo Garganta de los Aquilones del Puerto, que veremos en la ruta del #Geolodía17 en Burgohondo, encaja en la tipología de “arroyo” con un orden bajo de jerarquía en la ramificación de la red.

Si comparamos este canal (punto 1 de la figura) con los que se observan en Puente Arco en Burgohondo (punto 2) o en las proximidades de Navaluenga (punto 3 ), donde el Alberche ya ha recibido aportes importantes de los afluentes de jerarquía menor, vemos diferencias, no sólo en su caudal, sino también en el tipo de depósito que encontramos en sus cauces.

jerarquia-fluvial

1. Garganta de los Aquilones

Canal de orden jerárquico bajo, con caudal moderado muy inestable que puede desarrollar con frecuencia episodios de riada. El depósito de sedimento es muy desordenado y de gran tamaño, con algunos bloques de más de 1 metro de diámetro.

rio-1
Arroyo Garganta de los Aquilones

2. Río Alberche desde Puente Arco, Burgohondo

En este punto el río Alberche tiene un orden jerárquico intermedio con un caudal relativamente estable, aunque en momentos de alta energía puede llegar a desbordarse. Como depósito de sedimento empieza a ser abundante la arena, aunque aún pueden observarse bloques y bolos.

rio-2
Vista del Alberche desde Puente Arco en Burgohondo

3. Río Alberche a su paso cerca de Navaluenga

Canal con alto orden jerárquico que es capaz de mantener un caudal estable a lo largo de todo el año. A esta altura el río es capaz de desarrollar extensas terrazas fluviales de arena y arcilla mientras que los bolos son cada vez más escasos y pequeños.

rio-3
Río Alberche cerca de Navaluenga

Para saber más sobre el papel de los arroyos de montaña en la configuración del paisaje: El abanico aluvial de Candeleda, la huella de una montaña vaciada.

Recursos docentes relacionados

HERRAMIENTARECURSO DIDÁCTICO. Interactive water cycle diagram for kids (inglés)

RECURSO DIDÁCTICO. Temas y prácticas de hidrogeología e hidrología superficial

RECURSO DIDÁCTICO. Serie documental que repasa cuestiones fundamentales del agua subterránea

Qué es una cuenca hidrográfica

Autores – Davinia Díez-Canseco y Jaime Cuevas

La cuenca hidrográfica del Alberche

Una cuenca hidrográfica es un área del terreno cuyo relieve está controlado por una única red de drenaje. Estas redes son sistemas cerrados de canales que pueden enmarcarse en sistemas mayores. De esta forma, la cuenca hidrográfica del río Alberche pertenece al conjunto de sistemas fluviales que alimentan la cuenca del Tajo.

cuenca-hidrografica
Cuenca hidrográfica del río Alberche. Gráfico de Javier Elez.

Dentro de una misma cuenca hidrográfica los canales fluviales no se comportan de la misma manera. Así, el tipo de sustrato va a condicionar el comportamiento de los canales fluviales.

  • El sustrato aluvial se suele encontrar en el sector final de las cuencas y está formado por rocas sedimentarias de tamaño fino (areniscas y arcilla) y en esta zona los ríos desarrollan canales relativamente estables, de gran caudal y anchura y con desarrollo de extensas terrazas fluviales.
  • El sustrato rocoso, por el contrario, se localiza en la zona inicial o zona de cabecera de la cuenca, donde los canales son de menor caudal pero tienen mayor energía, siendo frecuente en la zona de cabecera los episodios de riadas. En este contexto los canales discurren directamente sobre la roca, dando lugar a formas fluviales erosivas como las marmitas de gigante  y frecuentes depósitos de bolos y bloques.

Algunas imágenes de la cuenca de captación del río Alberche.

Para saber más sobre redes de drenaje, cuencas de captación y sedimentos: El abanico aluvial de Candeleda, la huella de una montaña vaciada.

Recursos docentes relacionados

RECURSO DIDÁCTICO. Temas y prácticas de hidrogeología e hidrología superficial

RECURSO DIDÁCTICO. Serie documental que repasa cuestiones fundamentales del agua subterránea

HERRAMIENTARECURSO DIDÁCTICO. Interactive water cycle diagram for kids (inglés)