Archivo de la categoría: Paleontología

Para conservar la naturaleza… ¿hay que tener en cuenta a la geología? Hablemos sobre geoconservación

Autoras: Thais de Siqueira Canesin y Ana Isabel Casado

Según la Unión Internacional de Conservación de la Naturaleza (UICN): “Esencialmente, la geoconservación es la práctica de conservar, mejorar y promover el conocimiento de la geodiversidad y del patrimonio geológico. Por lo tanto, la geoconservación se ocupa principalmente de la conservación de características y/o elementos que tienen una importancia geológica o geomorfológica especial. La geoconservación puede ayudar a mantener la biodiversidad y el funcionamiento de ecosistemas sanos”.

Otros conceptos necesarios para hablar de Geoconservación: geodiversidad y patrimonio geológico

La geodiversidad se refiere a la variedad de procesos y elementos geológicos (rocas, minerales, fósiles), geomorfológicos (geoformas) y pedológicos (suelos) que forman parte los ecosistemas (figura 1).

En el artículo se incluye la Figura 1, que ilustra cómo la geodiversidad se compone de los elementos geológicos, geomorfológicos, pedológicos y los procesos asociados presentes en un ecosistema. Imagina un diagrama o imagen que muestra estos componentes de forma integrada, resaltando su interrelación y dependencia.
Figura 1: La geodiversidad se compone de los elementos geológicos, geomorfológicos, pedológicos y los procesos asociados que se encuentran en ese ecosistema, y que forman parte de él.

En 2004, el geocientífico Murray Gray publicó el primer libro dedicado a la geodiversidad, “Geodiversity: valuing and conserving abiotic nature”, donde describe cómo estas diversas características de la Tierra son esenciales para comprender tanto la historia geológica como el equilibrio de los ecosistemas.

Para determinar la importancia de la geodiversidad de un lugar hay que evaluar sus elementos geológicos en relación a su valor:
1- Intrínseco
2- Cultural
3- Estético
4- Económico
5- Funcional
6- Científico
7- Educativo

Un mismo lugar puede tener uno o varios de estos valores.

El patrimonio geológico es definido por la UICN como “los elementos de la geodiversidad de la Tierra que tienen un valor significativo científico, educativo, cultural o estético”.


Las rocas, las cuevas, los valles, los fósiles, los volcanes… son esenciales para que la ciencia pueda entender y explicar cómo han evolucionado la Tierra y la vida a lo largo del tiempo.

Geoconservación y ecosistemas

Los ecosistemas naturales, como son los bosques, las barreras de coral, los desiertos… son esenciales para la correcta regulación del clima, el agua y la biodiversidad. La conservación de estos ecosistemas es fundamental para garantizar la sostenibilidad del planeta.

La geoconservación desde la perspectiva de la sostenibilidad y la diversidad de la vida en la Tierra, adquiere un significado aún más profundo. No se limita solo a la conservación de la geodiversidad y el patrimonio geológico, sino que también asegura que los ecosistemas y la biodiversidad puedan seguir existiendo.

Cuidar de la Tierra significa cuidar de la naturaleza tanto de su parte viva (biótica) como la parte no viva (abiótica), es decir, tanto de los seres vivos como del sustrato, la base y la geodiversidad que la componen, que están interconectadas para poder ser posibles.

Los elementos de la geodiversidad, los recursos naturales geológicos, están directamente conectados con el equilibrio ecológico. Por ejemplo, los bosques, los corales o los desiertos no solo son importantes por albergan distintas especies de flora y fauna, sino que también juegan un papel esencial en la regulación de los ciclos climáticos y la conservación del suelo. La destrucción de estas áreas puede poner en riesgo tanto los procesos naturales como la vida en el planeta.

Ejemplos muy claros son los ecosistemas de las regiones desérticas (figura 2), de los glaciares y de los ambientes acuáticos que tienen su biodiversidad específica, la cual ha evolucionado y se ha establecido en estos entornos concretos condicionada por el sustrato rocoso. A lo largo de los millones de años de edad del planeta, los ambientes, las rocas y los procesos han ido cambiando y la biodiversidad lo ha hecho con ellos adaptándose a las nuevas condiciones.

Se trata de una ilustración en acuarela que representa un ecosistema desértico. En ella, el cielo muestra tonos pardos que evocan aridez, altas temperaturas y baja humedad. La arena se acumula formando dunas, mientras que en el primer plano se distinguen rocas y suelos. Sobre estos suelos crecen arbustos y algunos árboles, y en el ambiente se pueden ver aves volando a lo lejos, una gacela, y se intuyen comunidades humanas adaptadas a este entorno. Se distinguen los elementos abióticos –como la arena, la temperatura, la humedad, la geomorfología, las rocas y los suelos– y los elementos bióticos, que incluyen la fauna, la vegetación y las comunidades humanas. La imagen enfatiza cómo los elementos vivos se adaptan a las condiciones impuestas por el entorno físico.
Figura 2: En un ecosistema de desierto se pueden distinguir sus elementos abióticos (arena, temperatura, humedad, geomorfología, rocas, suelos…) y sus elementos bióticos (fauna, vegetales, comunidades humanas…). Los elementos bióticos se adaptan a los abióticos.

¿La amenaza a la geodiversidad es también una amenaza para las comunidades humanas?

Comprendiendo los factores que vinculan a los pueblos, las culturas y los distintos grupos humanos con la geodiversidad nos encontramos con un nuevo concepto, la geología social.

En el caso de la humanidad, las distintas poblaciones también se han adaptado al lugar que habitan condicionadas por la geodiversidad. Las comunidades inuit, ribereña, pescadora o los pueblos nómadas del desierto son claros ejemplos de estas adaptaciones.

Cuidar de la naturaleza es, sobre todo, conservar la parte que la sustenta: la geodiversidad y el patrimonio geológico.

Por todo esto, la geoconservación es fundamental para mantener la resiliencia de la Tierra, permitiendo que los ciclos naturales continúen funcionando y que el planeta siga proporcionando recursos esenciales para la vida, como agua potable, aire limpio y suelos fértiles; al mismo tiempo que conserva la biodiversidad necesaria para la salud del ecosistema global.

Esta imagen presenta los 17 Objetivos de Desarrollo Sostenible adoptados por la ONU en 2015. Se visualizan íconos representativos de cada objetivo, que buscan impulsar acciones a nivel global para mejorar la calidad de vida, proteger el planeta y garantizar la paz y la prosperidad para todos.
Figura 3. Los 17 Objetivos de Desarrollo Sostenible (ODS) adoptados por la ONU en 2015. Referencia ONU


Referencias

Brilha, J. (2005). Património geológico e geoconservação: a conservação da natureza na sua vertente geológica. Braga: Palimage Editores. 190 p.

Brilha, J. (2016). Inventory and Quantitative Assessment of Geosites and Geodiversity Sites: a Review. Geoheritage, 8(2), 119–134.

Carcavilla, L. U. (2012) Geoconservación. Instituto Geológico y Minero de España. Madrid, España.

Gray, M. (2004). Geodiversity: valuing and conserving abiotic nature. John Wiley and Sons, Chichester, England, 434 p.

Gordon, J. E., Crofts, R., Díaz-Martínez, E., & Woo, K. S. (2018). Enhancing the Role of Geoconservation in Protected Area Management and Nature Conservation. Geoheritage, 10(2), 191–203. https://doi.org/10.1007/s12371-017-0240-5

IUCN (2025). International Union for Conservation of Nature. IUCN´s World Commission on Protected Areas (WCPA). (https://iucn.org/our-union/commissions/iucn-world-commission-protected-areas-2021-2025).

Sharples, C. (2002). Concepts and Principles of Geoconservation. Tasmanian Parks & Wildlife Service. 81 p.

Estromatolitos, las rocas de la vida… ¿en Marte?

Los investigadores de la NASA se enfrentan al grave problema de cómo distinguir [en Marte] entre los estromatolitos verdaderos y otras estructuras parecidas de origen no
biológico.

La cuna de la vida. William Schopf, 2000

  • ¿Cuáles fueron las primeras formas de vida en la Tierra?
  • ¿Dónde están?
  • ¿Encontraremos estas mismas formas de vida en nuestra vecindad planetaria?
  • ¿Sabremos reconocerlas?

Las respuestas a estas apasionantes preguntas pasan por el estudio de un tipo de roca sedimentaria formada por la participación directa de organismos microscópicos: los estromatolitos.

Las primeras descripciones científicas se las debemos a Charles Doolittle Walcott y a otros geólogos del siglo XIX, quienes las interpretaron erróneamente como la impronta dejada por algún tipo desconocido de organismo de cuerpo blando, motivo por el que inicialmente acuñaron el término Cryptozoon (‘animal oculto’ en griego).

Fue en 1908 cuando el geólogo alemán Ernst Louis Kalkowsky propuso el término estromatolito, que literalmente significa ‘roca con capas’, para referirse al [entonces] misterioso fósil de aspecto laminar.

Estromatolitos fósiles encontrados en un bloque errático depositado por un glaciar en el Parc des Laurentides, cerca de Laterrière, Canadá. Provenía del lago Albanel, al noreste de Chibougamau, Québec (Canadá). Esta muestra se exhibe en el Jardín Geológico de la Université Laval, y fue donada por Jean-Guy Belley en 2003. La altura de la fotografía es de aproximadamente 1 metro. Fuente: André-P. Drapeau P., CC BY-SA 3.0, via Wikimedia Commons

El enigma perduró hasta 1956, cuando un grupo de topógrafos que trabajaban para una compañía de exploración petrolífera descubrieron en Australia estromatolitos vivos en las playas del sur de Bahía Shark.

Este hallazgo permitió al geólogo Brian W. Logan establecer la conexión entre Cryptozoon y su verdadera naturaleza: cada una de las láminas fueron antes tapetes microbianos o microbialitos, es decir, comunidades de microorganismos que vivieron y murieron una encima de otra.

Hoy el término Cryptozoon está en desuso y los estromatolitos se reconocen como la evidencia de vida microbiana más antigua conocida, con una presencia ininterrumpida en el registro fósil desde hace al menos 3.500 millones de años.

Estromatolitos vivos en Hamelin Pool (Bahía Shark). Su edad se estima en unos 1000 años. Fuente: Reserva Marina Natural Hamelin Pool y Parque Marino de Bahía Shark.
Estromatolitos vivos en Hamelin Pool (Bahía Shark, Australia). Su edad se estima en unos 1000 años. Fuente: Reserva Marina Natural Hamelin Pool y Parque Marino de Bahía Shark.

Extrañas formas de vida

Los estromatolitos son el resultado de la sedimentación inducida por comunidades de microorganismos dispuestas en finas láminas sobre el lecho de lagos, ríos, zonas costeras y humedales.

Estas comunidades secretan una especie de gelatina conocida como EPS en jerga técnica (acrónimo de extracellular polymeric substances), compuesta principalmente por azúcares y proteínas que aglomeran el conjunto de partículas de sedimento sobre el que viven. Con el tiempo las células van formando un fino tapete que se va extendiendo para maximizar la superficie expuesta al agua, los nutrientes y la luz.

Etapas en la formación de un estromatolito: los microorganismos se adhieren a una superficie, normalmente sedimento (1). Con el tiempo colonizan la superficie y se multiplican (2). Conforme van creciendo forman colonias complejas (3). Según su forma las colonias se pueden clasificar en tres tipos: trombolito (A), estromatolito (B) y dendrolito (C). Adaptado de Rodríguez-Martínez, M. et al. (2010).
Etapas en la formación de un estromatolito: los microorganismos se adhieren a una superficie, normalmente sedimento (1). Con el tiempo colonizan la superficie y se multiplican (2). Conforme van creciendo forman colonias complejas (3). Según su forma las colonias se pueden clasificar en tres tipos: trombolito (A), estromatolito (B) y dendrolito (C). Adaptado de Rodríguez-Martínez, M. et al. (2010).

La mayoría de los estromatolitos actuales están formados por cianobacterias, es decir, células sin núcleo (procariotas) ni orgánulos membranosos que realizan la fotosíntesis.

Este proceso consume parte del CO2 que está disuelto en el agua, lo que modifica la acidez del medio y permite la formación de carbonato cálcico (CaCO3).

Lentamente el tapete de bacterias va quedando cubierto por sedimento que se va consolidando.

Las mareas e inundaciones estacionales favorecen que una nueva etapa de crecimiento bacteriano repita el proceso, formando una nueva lámina que se superpone a la anterior como las capas de una cebolla.

La forma definitiva de los estromatolitos depende de la profundidad y de las dos variables que de ella se derivan: (1) la cantidad de luz que reciben y (2) la exposición a las corrientes y el oleaje. En zonas más profundas, por debajo de la influencia de las mareas y con poca luz, las formas suelen ser cónicas; por el contrario, en lugares tranquilos y luminosos predomina la forma plana. Esquema de Gabriel Castilla.

Aunque más escasos, también existen estromatolitos de microorganismos que viven en ambientes extremos, como pueden ser lagos hipersalinos y fumarolas volcánicas.

En estos casos los microorganismos que los forman suelen ser arqueobacterias extremófilas, o sea, organismos muy primitivos que están adaptados a multitud de ambientes que podemos calificar de hostiles.

¿SABÍAS QUE en la cueva de El Soplao, en Cantabria (España), se han encontrado los primeros ejemplares de estromatolitos formados en el interior de una caverna y están compuestos por óxido de manganeso? ¿Cómo han podido prosperar en un ambiente de oscuridad perpetua, escasez de nutrientes y aporte limitado de materia orgánica desde el exterior?

Sección de un estromatolito de manganeso procedente del interior de la cueva de El Soplao, Cantabria (España). Este ejemplar forma parte de la colección permanente del Museo Geominero de Madrid (Instituto Geológico y Minero de España). Fotografía de Gabriel Castilla.
Sección de un estromatolito de manganeso procedente del interior de la cueva de El Soplao, Cantabria (España). Este ejemplar forma parte de la colección permanente del Museo Geominero de Madrid (Instituto Geológico y Minero de España). Fotografía de Gabriel Castilla.

¿Estromatolitos marcianos?

El robot de exploración Perseverance fue diseñado para buscar marcadores biológicos en Marte. Nuestro planeta vecino es hoy un lugar inhóspito, pero diversas evidencias geológicas apuntan a que hace entre 4.000 y 3.500 millones de años las condiciones ambientales pudieron no ser tan hostiles.

Precisamente una de las primeras evidencias macroscópicas de vida en nuestro planeta son los estromatolitos fósiles encontrados en Warrawoona (Australia), cuya edad se estima en 3.500 millones de años, o sea, justo en el límite óptimo [hipotético] de habitabilidad marciana.

Si Marte albergó vida alguna vez, tal vez podamos encontrar evidencias en forma de estromatolitos fósiles en el lecho de algún lago y este delta que una vez albergó el interior del cráter Jezero (de 35 km de diámetro), situado en el hemisferio norte del planeta rojo. NASA/JPL-CALTECH/MSSS/JHU-APL/ESA.
Si Marte albergó vida alguna vez, tal vez podamos encontrar evidencias en forma de estromatolitos fósiles en el lecho de algún lago y este delta que una vez albergó el interior del cráter Jezero (de 35 km de diámetro), situado en el hemisferio norte del planeta rojo. NASA/JPL-CALTECH/MSSS/JHU-APL/ESA.

Esta sugerente relación entre potencial habitabilidad planetaria y la evidencia fósil en el eón Arcaico, cuando las condiciones ambientales en ambos planetas pudieron ser similares, es la razón por la que el equipo de la NASA encargado de explorar el interior del cráter Jezero se ha entrenado durante años analizando estromatolitos, tanto fósiles como actuales. Una apasionante búsqueda que comenzó sobre el terreno en febrero de 2021 y que a día de hoy continúa.

El inesperado papel de los virus

Una de las grandes incógnitas en el estudio de los estromatolitos es entender cómo llega el tapete microbiano a litificarse, es decir, a transformarse en una roca. 

Estudios recientes proponen que los virus pueden influir directa o indirectamente en el metabolismo microbiano que controla la transición del tapete microbiano blando al estromatolito.

En el escenario de impacto directo, los virus infiltran su genoma en las cianobacterias, alterando con ello el metabolismo celular. Este cambio puede suponer una adaptación biológica al medio que selecciona genes que potencialmente influyen en la precipitación de carbonato entre otros compuestos, lo que facilita el proceso de litificación.

En el escenario de impacto indirecto sería decisiva la llamada lisis viral, donde los virus invaden las células vivas y desencadenan la desintegración de sus membranas. Esto provoca la muerte de la célula y la liberación al medio de moléculas que promueven el metabolismo y la precipitación química. 

En ambos escenarios los virus facilitarían la litificación de las capas microbianas y el crecimiento del estromatolito.

Bibliografía

  • Alcalde, S. (2023). El cráter Jezero, un lugar idóneo para encontrar vida en Marte. National Geographic España (versión online).
  • Allen White III, R.; Visscher, P.T. y Burns, B. B. (2021). Between a Rock and a Soft Place: The Role of Viruses in Lithification of Modern Microbial Mats. Trends in Microbiology Vol. 29 (3), pp. 204-213.
  • Allwood, A.C., et. al. (2006). Stromatolite reef from the early Archaean era of Australia. Nature 441 (7094): 714–718.
  • Knoll, A. (2004). La vida en un joven planeta. Los primeros tres mil millones de años de la Tierra. Ed. Crítica.
  • Logan, B. W. (1961). Cryptozoon and Associate Stromatolites from the Recent, Shark Bay, Western Australia. The Journal of Geology Vol. 69, nº 5, Sept. 1961.
  • Margulis, L. y Sagan, D. (1995). Microcosmos. Cuatro mil millones de años de evolución desde nuestros ancestros microbianos. Ed. Tusquets.
  • Mangold, N. et al. (2021). Perseverance rover reveals an ancient delta-lake system and flood deposit al Jezero crater, Mars. Science, 10.1126/science.abl4051.
  • Rodriguez-Martínez, M. et al. (2010). Estromatolitos: las rocas construidas por microorganismos. Reduca (Geología). Serie Paleontología, 2 (5) pp. 1-25.
  • Rossi, C., Lozano, R.P. y Isanta, N. (2011). Los estromatolitos de manganeso de El Soplao. En: El Soplao, una ventana a la ciencia subterránea. Gobierno de Cantabria. Consejería de Cultura, Turismo y Deporte, pp. 106-109.
  • Schopf, J. W. (2000). La cuna de la vida. El descubrimiento de los primeros fósiles de la Tierra. Ed. Crítica.

GEOLODÍA 23. Hotel de insectos

Autoría: María González Martín y Thibauld M. Béjard

La concienciación ambiental y el aumento del interés social por el cambio climático propicia la aparición de técnicas alternativas para mantener la biodiversidad. Una de ellas es la aparición de hoteles de insectos en diferentes puntos de la península, como en Arévalo (provincia de Ávila, Castilla y León). Un hotel de insectos es una estructura con diferentes secciones, tamaños y huecos que sirven de refugio a numerosos organismos, como abejas, saltamontes y diversos insectos polinizadores. Hoy en día se utilizan tanto para incrementar la biodiversidad local, tanto como forma ecológica de controlar plagas e invasiones en plantaciones y huertos. Actualmente, se considera que los insectos son unos de los grupos con mayor diversidad y éxito evolutivo, por lo que su impacto en los ecosistemas es muy importante. Pero, ¿ha sido siempre así? ¿Cuándo aparecieron por primera vez estos organismos? ¿En qué momento de la historia de la Tierra han un tenido su mayor éxito evolutivo?

Aparición de los insectos y características principales

El género Insecta apareció casi simultáneamente con las plantas terrestres, hace alrededor de 480 millones de años (Ma), durante el periodo Ordovícico. Estudios recientes muestran que los primeros insectos (por ejemplo, abejas y hormigas actuales) evolucionaron a partir de un grupo de crustáceos (como cangrejos y gambas). Hoy en día, hay alrededor de 1 millón de especies descritas, y se estima que podría haber entre 1.5-1.8 millones de especies en total, lo que representa el 90% de los organismos del planeta

Figura 1. Repartición de las especies del reino animal en función de si son vertebrados o invertebrados.

El cuerpo de los insectos se puede separar de manera sencilla en 3 partes: cabeza, tórax y abdomen. Una de sus características principales son sus 6 patas repartidas en 3 pares. De un punto de vista de su anatomía interna, destaca su sistema respiratorio: el aire entra a través de aperturas externas llamadas espiráculos, y se reparte a través del cuerpo por una red de tubos llamados tráqueas. En este sistema, el oxígeno se transporta directamente a las células del organismo, pero el aparato respiratorio no transporta los gases ni participa en la respiración de los tejidos, por lo que cualquier cambio en la concentración de oxígeno atmosférico tiene un impacto importante para lo insectos.

A lo largo de la historia de la Tierra, la diversidad y morfología de los insectos ha variado considerablemente en función de factores como la temperatura, la concentración de oxígeno en la atmósfera, la disponibilidad de alimento y la presencia de depredadores.

El Carbonífero y el Pérmico, los periodos de los insectos gigantes

El Carbonífero se desarrolló hace 358 a 298 Ma aproximadamente. Se caracteriza por unas temperaturas relativamente elevadas y una gran humedad. Estas condiciones favorecieron la aparición de los famosos bosques y pantanos del Carbonífero, un entorno favorable al desarrollo de la fauna y flora.

Durante este periodo, los insectos lograron una gran diversidad y tamaños gigantes. Entre otros, aparecieron los primeros insectos alados, como las cucarachas y las libélulas. En particular, dos especies: Meganeura monyi y americana (parecidas a las libélulas actuales) alcanzaron envergaduras de hasta 70cm, lo que las convierte en los mayores insectos voladores de la historia de la Tierra.

Comparativa del tamaño de insectos.
Figura 2. Comparación de la mayor libélula actual (Anax junius) con el mayor insecto volador de la historia (Meganeura monyi) y con una persona de estatura media.

Estos organismos llegaron a desarrollar tamaños tan grandes debido a la concentración en oxígeno en la atmósfera: 35%, en lugar de un 20% actual, la mayor concentración registrada hasta la actualidad; pero también debido a la ausencia de depredadores.

Durante el Pérmico, desde hace 298 a 250 Ma, aparecieron los primeros escarabajos, moscas y mariquitas. Este periodo representa el de mayor abundancia de insectos, donde su éxito evolutivo fue mayor, especialmente los blatoideos (cucarachas).

Al final del Pérmico, sucedió la mayor extinción registrada en la Tierra, la crisis del Pérmico-Triásico, donde casi 90% de todas las especies se extinguieron, sin embargo, “sólo” 30% de las especies de insectos desaparecieron.

El Jurásico y el Cretácico, aparición de las aves y disminución del tamaño

En el Jurásico (200 a 150 Ma), al igual que en el Carbonífero, el clima era cálido y húmedo. En este periodo, las aves comienzan a desarrollarse, siendo el fósil de Archaeopteryx la primera evidencia de la aparición de estos organismos. Los insectos voladores se ven ahora sometidos a la presión de los depredadores y en el registro fósil se observa un gran incremento de especies de insectos no voladores como escarabajos y cucarachas.

Figura 3. Fósil de archeopteryx, la primera ave descrita, en el museo de historia natural de Berlín. Fuente: https://www.museumfuernaturkunde.berlin

En el Cretácico (150 a 66 Ma), cuyo clima seguía siendo cálido y húmedo, las aves han desarrollado técnicas de vuelo especializadas, haciendo de ellas depredadores más eficaces. Estudios recientes muestran que el registro fósil presenta especies e individuos cada vez más pequeños y hasta extinciones localizadas de insectos voladores durante este periodo, aunque la concentración de oxígeno atmosférico haya aumentado. 

A partir de este periodo, la concentración en oxígeno o la temperatura ya no van a ser los factores principales que van a controlar la distribución de los insectos, ahora tienen depredadores.

Al terminar el Cretácico, vuelve a suceder… una extinción: la extinción del Cretácico-Terciario. Aunque haya sido menos extrema, es más conocida, pues es la responsable de la desaparición de los dinosaurios. 

Figura 4. Comparación de los mayores insectos voladores y no voladores actuales.

El Paleógeno, aparición de los géneros modernos

El Paleógeno (66 a 23 Ma) se conoce principalmente por su clima tropical y por la diversificación de los mamíferos. La aparición de las plantas con flores modernas propició la expansión de insectos polinizadores. La mayoría de insectos que conocemos actualmente, así como su distribución y abundancia, tienen su origen en este periodo.

Los insectos, a pesar de aparecer hace más de 400 millones de años, sobrevivir a dos extinciones masivas (y un sinfín de pequeños eventos extintivos) y aguantar la aparición de aves depredadoras, siguen siendo la clase con mayor biodiversidad del planeta. Su rápido ciclo reproductivo, así como su capacidad evolutiva hace pensar que va a seguir siendo así en el futuro. Desde libélulas de 70 cm de envergadura, a escarabajos peloteros, pasando por abejas y mosquitos, un hotel de insectos siempre encontrará huéspedes, ¡en cualquier periodo geológico, año, mes, o día de la semana!

Bibliografía

  • Barrientos, J.A., Abelló, P., 2004. Curso práctico de entomología. Universitat Autònoma de Barcelona ; CIBIO, Centro Iberoamericano de la Biodiversidad ; Asociación Española de Entomología, Bellaterra, Alicante, [S.l.]. ISBN: 978-84-490-2383-5.
  • Grimaldi, D.A., Engel, M.S., 2005. Evolution of the insects. Cambridge University Press, Cambridge [U.K.] ; New York. ISBN: 978-0-521-82149-0.
  • Kjer, K.M., Simon, C., Yavorskaya, M., Beutel, R.G., 2016. Progress, pitfalls and parallel universes: a history of insect phylogenetics. J. R. Soc. Interface. 13, 20160363. https://doi.org/10.1098/rsif.2016.0363
  • Wipfler, B., Letsch, H., Frandsen, P.B., Kapli, P., Mayer, C., Bartel, D., Buckley, T.R., Donath, A., Edgerly-Rooks, J.S., Fujita, M., Liu, S., Machida, R., Mashimo, Y., Misof, B., Niehuis, O., Peters, R.S., Petersen, M., Podsiadlowski, L., Schütte, K., Shimizu, S., Uchifune, T., Wilbrandt, J., Yan, E., Zhou, X., Simon, S., 2019. Evolutionary history of Polyneoptera and its implications for our understanding of early winged insects. Proc. Natl. Acad. Sci. U.S.A. 116, 3024–3029. https://doi.org/10.1073/pnas.1817794116

Este contenido forma parte del Geolodía 2023 de Ávila en Arévalo, Ávila (España).

El proceso de fosilización

Los fósiles son los restos de seres vivos del pasado que quedan preservados en el tiempo transformados en roca.

La sustitución mineral átomo a átomo es lenta y permite conservar la estructura de los restos originales. Los detalles en los fósiles facilitan el estudio de una especie concreta, pero también del conjunto de especies que vivían en un tiempo determinado, lo que nos acerca al concepto de ecosistema del pasado. También a conocer la evolución de las especies a lo largo del tiempo.

Capa donde encontramos fósiles de pequeños vertebrados del Mioceno (hace unos 14 millones de años). Imagen de Gabriel Castilla.
Capa donde encontramos fósiles de pequeños vertebrados del Mioceno (hace unos 14 millones de años). Imagen de Gabriel Castilla.

¿Cuáles son las condiciones que han de darse para que un resto de vertebrado se conserve? En esta parada encontrarás y tocarás fósiles de vertebrados continentales del Mioceno que hablan de la vida en el pasado geológico de Ávila.

En esta parada geológica del Geolodía 22 de Ávila explicamos cómo se forma un fósil y qué información aportan los fósiles.

Este fue uno de los contenidos del Geolodía 2022 de Ávila, que tuvo lugar el domingo 8 de mayo de 2022 en Villaflor, Ávila, España.

¿Qué son los fósiles guía?

En el pequeño pueblo Sant Mateu (Baix Maestrat, Castellón) nos podemos permitir el placer de visitar un Museo Paleontológico muy familiar. El fundador y responsable es un maestro de pueblo jubilado llamado Juan Cano Forner que tiene el honor de haber descubierto en la comarca un dinosaurio al que bautizaron con su nombre: Vallibonavenatrix cani. Este maestro convirtió su afición en una pasión y acompañado de sus hijos inició una colección museística reconocida hoy en día por la Comunidad Valenciana.

La chispa de esta pasión se encendió al escuchar los nombres de los fósiles que buscaban unos paleontólogos de la universidad que llegaron a su población preguntando por algunos lugares en la montaña y a los que ayudó como guía.

Pues bien, al igual que Juan hizo de guía de fósiles una vez, los geólogos tenemos una herramienta paleontológica llamada fósil guía que nos ayuda a hacer dataciones.

Qué es un fósil guía

Para empezar, la palabra fósil deriva del verbo fodere en latín, que significa excavar.

Denominamos como fósiles guía a aquellos que son muy característicos de un intervalo temporal concreto de la historia de nuestro querido planeta Tierra.

Los fósiles guía también se llaman ‘directores’, ‘característicos’, ‘tipo’ o ‘índice’ y no pueden ser fósiles cualquiera. El estatus de guía requiere de una serie de condiciones:

  • Ser abundantes.
  • Ser fáciles de identificar.
  • Tener una existencia corta en la escala temporal geológica.
  • Y presentar una amplia distribución geográfica y en distintos tipos de roca.
Ilustración de @anabelgeoraman.

Gracias a la identificación de estos fósiles se pueden hacer de forma fácil dataciones muy precisas de formaciones rocosas muy distantes en la geografía de nuestro planeta.

Algunos de los más célebres son, por ejemplo, los rudistas (edad Cretácico), los ammonites (edad Devónico-Cretácico) y belemnites (edad Jurásico-Cretácico) como los que descubría Mary Anning en Lyme Regis, cuyas aportaciones puedes re-descubrir en este Abecevidas si no lo has hecho ya.

Para conocer qué tipo de restos podemos encontrar fosilizados, lee la entrada «¿Pueden vivir los fósiles? Un «fósil viviente» en Ávila sobre fósiles «vivientes«.

Cómo encontrar un fósil guía

Si alguna vez queremos buscar fósiles guía, debemos tener en cuenta qué rocas pueden contener fósiles de cualquier tipo, y esto ocurre solo en dos tipos de rocas que son:

  • Rocas sedimentarias, depositadas al mismo tiempo que los seres vivos fosilizados.
  • Rocas metamórficas, con un grado bajo de metamorfismo (como pizarras y cuarcitas), que permita la conservación de la impronta de los restos orgánicos que contenía la roca sedimentaria original.

Pues bien, este segundo caso es el más extraño, pero es donde se encuentra uno de los fósiles guía más conocidos: el trilobites.

Trilobites y cruzianas

A modo de presentación, se puede decir que este artrópodo marino existió en el Paleozoico y ocupaba ecosistemas en aguas tanto profundas como someras. Debe su nombre a los tres lóbulos que componen su cuerpo -uno central y dos laterales- y se han registrado más de 4.000 especies de trilobites.

Las características de los trilobites son muy curiosas. Sólo por encima, diré que su anatomía recuerda a las cochinillas -o a los insectos bola de aquellos experimentos de curiosidad infantil- con unas placas articuladas en las que se distinguen tres zonas: el cefalón (cabeza), tórax y pigidio (área terminal del cuerpo).

Su alimentación podía ser de lo más variada, desde la carroñera a la filtradora, entre otras. Y el hallazgo de ciertas bolsas incubadoras en el área frontal del cefalón (cabeza en el cuerpo de los artrópodos) ha hecho pensar que su reproducción era ovípara.

Anatomía de un trilobites. Ilustración de @anabelgeoraman.

Sin embargo, los restos de trilobites que se pueden encontrar en Ávila no son partes de su cuerpo sino del resultado de su actividad. Son las huellas de sus desplazamientos, es decir, lo que los geólogos llamamos icnofósiles. En concreto, éstas de los trilobites reciben el nombre de cruzianas, descubiertas en Sudamérica por d’Orbigny, un naturalista francés que realizó un periplo científico y explorador promovido por la Sociedad Geográfica de Francia entre los años 1826-34.

En esta expedición decimonónica se encontraron numerosos fósiles de este tipo, pero inicialmente no se conocía el origen. Se dudaba entre la procedencia vegetal o animal y se denominaron también bilobites, ya que presentan dos lóbulos.

En Europa también empezaron a encontrarse restos de este extraño fósil bilobites. Así fue como a finales del s. XIX y principios del s. XX comenzó un entretenido debate internacional sobre el origen de esta forma fosilizada.

Ilustración de cruzianas, de @anabelgeoraman.

¿SABÍAS QUE…? El origen de la palabra cruziana es un homenaje al presidente de Bolivia Andrés de Santa Cruz y Calahumana (La Paz, 1792-Beauvoir, 1865), también militar y estadista, en reconocimiento a su labor frente a la Confederación Perú-Boliviana durante el período 1836-39. Esta es la causa de su grafía con la anómala «z».

¿Dónde encontrarlos en Ávila?

Pues bien, el Sistema Central no es un lugar donde se puedan encontrar fácilmente fósiles ya que predominan las rocas magmáticas, que tienen un origen endógeno (de procesos que suceden dentro de la corteza terrestre).

Pero, he aquí la sorpresa: en los dominios hercínicos del centro de la península, la provincia de Ávila, podemos encontrar restos de cruzianas. Este rinconcito está en las inmediaciones del Embalse de Los Serones, en la cuarcita armoricana del Cámbrico Inferior. Es el llamado afloramiento de Ojos Albos.

Localización del Embalse de los Serones en el río Voltoya, en la provincia de Ávila (Castilla y León, España).

Esto quiere decir que estas rocas se formaron en ambientes marinos donde los trilobites disponían de alimento y dejaban las huellas de su desplazamiento y además que se sedimentaron durante el Paleozoico, ya que las cruzianas tambien son fósiles guía.

Y ahora es el momento de volver a la pregunta que da título a este post y que ya puedes responder: ¿Hay fósiles guía en Ávila? 😉 


CRUZIANAS EN LAS CALLES. Si quieres ver cómo eran los medios que habitaban los trilobites, puedes visitar el Museo de los Mares Antiguos en la localidad de Monsagro (Salamanca). Además, este pueblo es muy pintoresco por el modo en que utilizan las rocas que contienen cruzianas para decorar las fachadas de las viviendas.

En la Ruta de las huellas fósiles se pueden ver las cruzianas expuestas en las fachadas de las casas de Monsagro, Salamanca. Imágenes: Fina Muñoz.

ACTIVIDAD DIDÁCTICA RELACIONADA en practicasgeologia.com: Características de los fósiles guía

Bibliografía

Ostrácodos, los señores del agua

Texto e imágenes: Blanca Martínez

Los lectores habituales de este blog ya conocéis algunas de las herramientas o proxys más utilizadas para poder reconstruir los climas del pasado, como los isótopos de oxígeno, los foraminíferos o el polen. Pues aquí os voy a presentar una nueva, los ostrácodos.

RECUERDA QUE. Un dato «proxy» es un dato indirecto. Como no es posible medir directamente la temperatura o la precipitación del pasado, se utilizan registros de otras variables a partir de las cuales se pueden deducir las primeras. La interpretación de estos datos «proxy» está basada siempre en principios físicos, químicos o biológicos.

Qué son los ostrácodos

Los ostrácodos son un grupo de microcrustáceos, primo-hermanos de los cangrejos, con un tamaño generalmente inferior a 1 mm, que viven en cualquier ambiente acuático.

Balsa construida en Bardenas Reales de Navarra para recoger el agua de lluvia para su aprovechamiento en el regadío y como abrevadero. Entre la fauna acuática que la ha convertido en su hogar se encuentran los ostrácodos.

Aunque cuando ves su aspecto no te acuerdas precisamente de los cangrejos, ya que tienen dos valvas carbonatadas que recubren el cuerpo blando y que son las que quedan preservadas en el sedimento.

Pequeño vídeo de lupa binocular de varios ejemplares de una misma especie presentes en una muestra de agua de una balsa de Bardenas Reales de Navarra. Fijaos lo activos que son, no paran de moverse. Vídeo: Blanca Martínez.

Como el resto de los crustáceos, los ostrácodos crecen por mudas. Segregan valvas cada vez más grandes para adecuarse al crecimiento de su cuerpo, desprendiéndose de las valvas previas más pequeñas. Y aunque tienen un ciclo de vida corto, ya que generalmente viven sólo un año, de media sufren hasta 8 mudas.

Parecen unos animalitos muy simplones, pero si prestamos atención a su biología, nos damos cuenta de que son apasionantes.

¿SABÍAS QUE…? La mayoría tienen un único ojo con forma de prisma rectangular situado en la parte superior frontal del caparazón. Algunas especies marinas son bioluminscentes; otras resisten vivas el paso por el tracto digestivo de los peces; y otras, incluso, son capaces de atacar en manada a organismos más grandes.

Fotografías de lupa binocular de tres especies de ostrácodos vivos presentes en una balsa construida en Bardenas Reales de Navarra. Si os fijáis con detalle en la parte superior derecha de los dos últimos ejemplares, veréis una manchita negra brillante. Eso es el ojo. Y para que os hagáis una idea del tamaño de estos ostrácodos, el rectángulo negro representa una escala gráfica de 0,1 mm.

Curiosidades de su ciclo reproductivo

Pero las curiosidades más llamativas las encontramos en su ciclo reproductivo:

  • Algunos ostrácodos tienen el tamaño del pene vez y media el tamaño de su cuerpo.
  • Otros producen espermatozoides con una longitud hasta ocho veces el tamaño de su cuerpo.
  • Y el primer macho de la historia del registro fósil es un ostrácodo de hace más de 400 millones de años.
  • Aunque también tienen una parte más «feminista», ya que hay especies que tienen una reproducción asexual en la que las hembras ponen huevos de los que nacen nuevas hembras fértiles, sin necesidad de machos.

Indicadores paleoambientales

Aunque mejor dejo de hablar de las intimidades de los ostrácodos y vuelvo al tema que nos ocupa, su utilidad como herramientas paleoambientales.

Detalle de un muestreo en rocas del Mioceno de Bardenas Reales de Navarra. Una vez en el laboratorio, hay que lavar y tamizar ese material para separar el tamaño de grano que nos interesa (más de 0,125 mm) y armarse de paciencia frente a una lupa binocular, con la que separamos y clasificamos las valvas de los ostrácodos una a una.

Y es que ya he comentado que viven en cualquier ambiente acuático, desde un charco de lluvia en la alta montaña hasta los fondos oceánicos más profundos. Pero cada especie únicamente soporta unos rangos muy concretos de ciertos parámetros ecológicos, como son la temperatura, salinidad o energía del agua, el tipo de sedimento o la cantidad de vegetación acuática. De tal manera que la más mínima variación en esos parámetros ecológicos provoca cambios en la asociación de especies de ostrácodos presente en el medio acuático.

Vamos, que sólo hay dos posibilidades de respuesta para nuestros amigos ante los más pequeños cambios ambientales: o se mueren, o se van a otra parte, dejando vía libre para nuevas especies mejor adaptadas a esas nuevas condiciones ecológicas.

Así que, estudiando cómo han cambiado las asociaciones de especies de ostrácodos a lo largo del registro geológico, podemos hacer reconstrucciones paleoambientales de antiguos medios acuáticos. De esta manera, podemos identificar diversos ciclos climáticos “árido-húmedo” consecutivos durante el Mioceno en toda la Península Ibérica, con avances y retrocesos de extensos lagos poco profundos.

Fotografía de Microscopio Electrónico de Barrido de tres especies de ostrácodos continentales del Mioceno presentes en las rocas de Bardenas Reales de Navarra. Su presencia nos indica que hace más de 15 millones de años había ríos que desembocaban en lagos poco profundos pero muy extensos en lo que hoy es una zona semidesértica. El rectángulo blanco representa una escala de 0,1 mm.

O la llegada al Mar Cantábrico de masas de agua procedentes del norte de Escandinavia durante los momentos más fríos de la última glaciación, que se retiraron de nuevo a latitudes altas con la llegada del clima actual más cálido.

Fotografía de Microscopio Electrónico de Barrido de tres especies de ostrácodos recientes encontrados en el sedimento del fondo del Mar Cantábrico. Las especies marinas pueden tener valvas muy ornamentadas, como los ejemplares fotografiados. Así pueden defenderse de sus depredadores y soportar la energía de las corrientes marinas. El rectángulo blanco equivale a 0,1 mm.

Incluso, nos permiten detectar cualquier influencia humana en épocas históricas en estos ambientes acuáticos, ya sea contaminación, desecación o construcción de barreras que alteraron el ciclo natural de los mismos. Vamos, que los ostrácodos son unos chivatos medioambientales excelentes.

Detalle de la marisma vegetada del estuario de Oriñón, en Cantabria. Los ostrácodos permiten detectar rápidamente cualquier influencia del ser humano en estos ambientes tan sensibles.

Por eso son uno de los grupos faunísticos más empleados no sólo para hacer reconstrucciones paleoambientales, sino también para monitorizar y regenerar humedales degradados o para determinar el límite del dominio marítimo-terrestre en zonas litorales.

Panorámica del estuario de Oyambre, en Cantabria. Para que cualquier construcción pueda cumplir con la Ley de Costas, es básico delimitar correctamente la zona de influencia marina. Y para eso también sirven los ostrácodos.

Sobre todo, son de lo más útiles en medios en los que otros grupos no pueden sobrevivir, pero en los que los ostrácodos campan a sus anchas, como las aguas estancadas de las cuevas o los medios con una elevada salinidad. Los ostrácodos son unos auténticos supervivientes, mejores que Bear Grylls.

Creo que con esto ya conocéis un poquito mejor a estos animalitos, aunque no os lo he contado todo. Seguro que la próxima vez que os crucéis con una charca cubierta de vegetación no la veréis de la misma manera, porque os la imaginaréis plagada de ostrácodos. Y tendréis razón ;)

Para saber más

¿SABÍAS QUE…? Los humedales de La Moraña, como la laguna de El Oso, son medios ideales para la proliferación de ostrácodos. Y estos sirven de alimento a otras especies, como el famoso «fósil viviente» triops cancriformis. Aunque lo más curioso es que los ostrácodos pueden «pegarse» a las patas y las plumas de las aves y las utilizan como vehículo para conquistar otros cuerpos de agua.

Laguna de El Oso, Ávila.

Abecevidas | Mary Anning

Participamos con este retrato alfabético en la iniciativa de escritura creativa del mes de mayo 2020 de Café Hypatia #PVgeología #Polivulgadores

Acantilados exploraba cada día.

Blue Lias se llamaba la formación geológica donde trabajaba.

Formación Blue Lias en Lyme Regis, Dorset, Reino Unido. Imagen de Michael MaggsCC BY-SA 2.5.

Calizas y pizarras las rocas que pisaba.

Diseccionaba peces y sepias para aprender anatomía.

Esqueletos de piedras lo que ver sabía.

Fósiles de ammonites, belemnites y demás criaturas marinas siempre en su cesta.

Geólogos y coleccionistas iban a visitarla.

Hija de Molly y Richard, ebanistas humildes.

Ictiosaurio, el reptil marino que le dio la fama.

Dibujo de un artículo de 1814 de Everard Home para la Royal Society mostrando el cráneo de un ictiosauro encontrado por los Anning. Everard Home (1756 – 1832) – Philosophical Transactions of the Royal Society 1814. Dominio público.

Jurásico, la edad de los materiales que estudiaba.

Lyme Regis, costa jurásica en Reino Unido. Imagen de Johnnie Shannon en Pixabay.

Kilómetros de costa lo que sumaba cada día a sus zapatos.

Ilustración de Mary Anning buscando fósiles, por Henry De la Beche. Dominio público.

Lyme Regis, la ciudad donde nació, vivió y murió.

Mujer pobre y sin estudios que fascinó a los científicos con sus descubrimientos.

No fue reconocida como se merecía.

Placa situada en el lugar donde Mary Anning nació: «MARY ANNING. 1799-1847. Hoy es el Museo de Lyme Regis. La casa fue su hogar y tienda de fósiles hasta 1826. Imagen de Gaius Cornelius. Dominio público.

Ocupación diaria la de buscar fósiles, hiciera el tiempo que hiciera.

Pionera de la paleontología moderna.

Quiso leer la historia en las rocas.

Resucitó los lechos marinos jurásicos.

Su perro Tray la acompañaba cada día.

Retrato de Mary Anning. Imagen: ‘Mr. Grey’ in Crispin Tickell’s book ‘Mary Anning of Lyme Regis’ (1996) – Two versions side by side, Sedgwick Museum. Dominio público.

Thomas Birch fue quien se fijó primero en sus hallazgos.

Utilizada por los científicos de la época.

Vendió hasta los muebles de su casa para poder sobrevivir.

William Buckland, geólogo de Oxford, acudía cada Navidad a buscar fósiles con ella.

William Buckland (1784-1856)

Xilografió la vida pasada de Lyme Regis.

Yace en una austera tumba, junto a su hermano.

Tumba de Mary y Joseph Anning en St Michael’s parish church, Lyme Regis, Inglaterra. Imagen: Ballista de la Wikipedia en inglés.

Zarandeó la ciencia y contribuyó a las bases de la teoría de la evolución.

En resumen

Abecevidas | Mary Anning

¿Pueden vivir los fósiles? Un «fósil viviente» en Ávila

Texto Fina Muñoz

Imagen destacada TheUjulala en Pixabay

Unos meses después de celebrar el Geolodía 2019 en Ávila, nos sorprendió la noticia del descubrimiento de un organismo en las lagunas de El Oso que existe desde hace 250 millones de años (Pérmico).

Es un animal conocido comúnmente como «tortuguilla colilarga» (Triops cancriformes), una especie de crustáceo al que le gusta habitar los humedales de agua dulce. Su nombre científico se debe a que tiene tres ojos, dos compuestos y uno de tipo ciclópeo.

Este curioso animalito ya era conocido en otros lugares del norte de Europa. Sin embargo, el hallazgo en las lagunas de El Oso tiene gran importancia por ser la población más occidental en la que se ha hallado. Se cree que las aves migratorias han podido dispersar sus huevos trasladándolos en el interior de su sistema digestivo.

Laguna de El Oso, en la comarca de La Moraña, Ávila, España. Foto de Gabriel Castilla.

Qué es un fósil viviente

La expresión «fósil viviente» se usa a menudo cuando se habla de una especie dentro de los seres vivos que:

  • No se ha extinguido.
  • No ha sufrido cambios genéticos significativos en los últimos milenios.
  • Y no ha dado lugar a especies nuevas.

En consecuencia, una especie fósil viviente será considerablemente parecida a una que ha sido identificada también a través de fósiles.

Esta podría ser la definición no oficial de un término que no es rigurosamente científico, ya que carece de precisión. En concreto, en la dimensión tiempo y cambio genético. Todo lo contrario del concepto de fósil guía que desarrollaremos en otra entrada de este blog.

Pero, ¿qué es un fósil?

Un fósil es cualquier resto o señal de actividad de los seres vivos que ha quedado grabada en las rocas, siendo lo mas habitual encontrarlos en las rocas sedimentarias .

En este concepto se incluyen los restos de cualquier parte de los cuerpos de animales, plantas u otros seres vivos, hasta sus huellas de desplazamiento (bioturbación, icnitas), sus huevos o incluso sus excrementos (coprolitos).

La Paleontología es la rama de la ciencia que estudia los fósiles y que encontramos integrada tanto en la Geología como en la Biología, puesto que a partir de esos restos se puede extraer información del medio en el que habitaban (Paleogeografía) y de las relaciones con el entorno (Paleoecología) de los seres vivos que las produjeron.

SABÍAS QUE… Los fósiles son piedras, resultado de la transformación del resto del ser vivo original mediante una serie de complicados procesos físicos y químicos durante el enterramiento en el sedimento.

Fósil viviente y Paleontología

Los fósiles vivientes nos informan por tanto de las condiciones geográficas y ecológicas del medio donde se originaron esos seres vivos que han logrado perdurar tanto tiempo sin alterarse.

La relación entre fósil viviente y Paleontología es directa, ya que los «fósiles vivientes» dan muchísima información sobre el proceso de la evolución biológica y el medio sedimentario donde habitaban en el pasado.

No te pierdas el programa ¡Qué animal! de La2 dedicado a los fósiles vivientes.

Veamos sólo algunos ejemplos de estos animales que han formado parte de la historia de la Tierra desde hace miles o millones de años en algunos casos. Existen muchos más y muy interesantes. ¡Quizá tienes un fósil viviente de mascota y no te has enterado!

Algunos ejemplos de «fósiles vivientes»

Explora la infografía y sus elementos interactivos para ver la información de cada ejemplo de fósil viviente relacionado con el período geológico en el que aparecieron.

undefined SABÍAS QUE… El ginkgo es uno de los árboles más longevos. Puede alcanzar los 1500 años de edad. Capaz de resistir las extinciones atravesadas en sus 270 Ma de existencia, se empeñó en darnos pruebas de ello siendo una de las primeras especies en colonizar Hiroshima tan sólo un año después de las detonaciones de la bomba nuclear en 1945.

Fuentes de consulta