Archivo de la categoría: Riesgos

Riesgos geológicos y desastres naturales.

Cráteres de impacto: Las cicatrices que dejan los meteoritos en nuestro planeta y cómo encontrarlas

En nuestro planeta existen cerca de 200 estructuras confirmadas como cráteres de impacto, es decir, cráteres producidos por el impacto de un meteorito. Parecen pocos comparados con los miles que plagan la superficie lunar. Sin embargo la Tierra ha recibido muchos más impactos que su satélite por su mayor gravedad y tamaño.

La mayor parte han sido borrados por los efectos de la meteorización y la tectónica de placas, otros han quedado sepultados por rocas sedimentarias y algunos siguen expuestos en superficie conservando su estructura original, o no.

Pero… ¿Cómo saber que un cráter ha sido producido por un meteorito y no por una erupción volcánica u otro proceso?

A la izquierda, el cráter de impacto Barringer, también conocido como «Meteor Crater», fue la primera estructura de impacto confirmada en nuestro planeta. A la derecha la caldera volcánica del Tambora. Fuente: NASA Image Gallery.

El impacto y sus consecuencias

Un impacto meteorítico se produce a una gran velocidad, entre 20 y 60 km/s aproximadamente. La naturaleza explosiva de un contacto a más de 100.000 Km/h hace que la forma de los cráteres sea casi perfectamente circular, a pesar de que los impactos pueden producirse con ángulos bajos y no siempre perpendiculares a la superficie terrestre.

Este contacto genera una gran explosión y una gran compresión de la roca impactada (basamento). Se estima que el impacto que acabó con los dinosaurios ( Chicxulub), producido por un meteorito de 10-15 Km, generó momentáneamente una cavidad de 40 Km de profundidad en la corteza terrestre, suponiendo una energía igual a 7.000 millones de bombas de Hiroshima.

Inmediatamente después se produce la descompresión, un rebote elástico del terreno que es el que genera la mayor parte de la eyecta (material impulsado violentamente a la atmósfera) en los grandes impactos, lo que sería la metralla de estas explosiones cósmicas. La eyecta está compuesta por:

  • Roca fundida (tectitas), ya que se alcanzan más de 2000 ºC durante el impacto.
  • Aerosoles producto de la vaporización total de las rocas que han alcanzado una presión de más de 100 Gpa (1.000.000 atm) durante el impacto.
  • Fragmentos de la roca impactada (depositada en forma de brecha).
  • Y en menor medida fragmentos del propio meteorito.

Evidencias del impacto

Fue en 1960 cuando se produjo la primera confirmación de una estructura de impacto en nuestro planeta, la del Cráter Barringer por parte del geólogo Eugene Shoemaker, quien revolucionó las ciencias planetarias. Hasta entonces se asumía un origen volcánico de la mayoría de cráteres, incluso se planteaba para los de la Luna.

Una de las evidencias principales del impacto suele ser la eyecta, que puede encontrarse en la zona del cráter o incluso a miles de kilómetros de distancia en los grandes impactos. Ésta puede estar formada por pequeños fragmentos de roca alterada por el calor y la presión del impacto: fundidos vítreos (tectitas), esférulas de carbono, agregados de restos minerales pulverizados y otras partículas como cuarzo chocado o nanodiamantes .

Por otra parte existen unas estructuras muy comunes en el basamento llamadas conos astillados (shatter cones) que son también habituales evidencias de impacto.

A) Esférula de Carbono microscópica (Wittke et al. 2013); B) Conos astillados en muestra de mano (Johannes Baier); C) Cuarzo chocado visto en lámina delgada al microscopio óptico (Martin Schmieder); D) Tectitas en muestra de mano (BrokenInAGlory).

La geoquímica también puede ser clave para identificar un impacto meteorítico. Así, concentraciones anómalas de elementos raros en zonas de la superficie terrestre o en las rocas sedimentarias como Platino, Iridio u Oro han servido para constatar impactos meteoríticos, incluso cuando su estructura original ha desaparecido por completo.

No todos los cráteres son iguales

A grandes rasgos, existen dos tipos principales de cráteres de impacto:

  • Cráteres simples: Es el primero que nos imaginamos, con forma de cuenco y con los bordes elevados sobre el terreno circundante. De este tipo son los cráteres de pequeño tamaño, pueden tener desde metros hasta pocos kilómetros. El famoso «Meteor Crater» o Cráter Barringer de Arizona es de este tipo.
  • Cráteres complejos: En los cráteres complejos existe, al menos, una elevación central producida por la descompresión y rebote elástico posteriores al impacto, lo que en los cráteres lunares se bautizó como «central peak«. De este tipo son los grandes cráteres del planeta y los más vistosos de la Luna (Tycho y Copernicus). Su estructura puede ser mucho más compleja y a veces presentan varios anillos de elevaciones además de la elevación central, sistemas de fallas y otras estructuras de deformación frágil y dúctil.
Ilustración: Javier Pérez Tarruella

¡Explora nuestro mapa de cráteres de impacto en la Tierra!

En este mapa puedes encontrar más de 80 estructuras de impacto confirmadas. Haciendo clic en ellas encontrarás curiosidades sobre su formación, su descubrimiento o las consecuencias que tuvieron. Algunos cambiaron por completo la vida en nuestro planeta. Los marcados en azul son los que consideramos más interesantes, ¡pero merece la pena explorarlos todos!

Sabías qué… Las cenizas de Eugene Shoemaker, geólogo pionero de las Ciencias Planetarias, descansan en un cráter cerca del polo Sur de la Luna llamado cráter Shoemaker. Son los únicos restos humanos que hay en nuestro satélite. Existe otro gran cráter en Australia llamado Shoemaker en su honor. Eugene no sólo demostró y destacó la importancia de los impactos meteoríticos en la historia de nuestro planeta, también estudió asteroides y cometas, siendo el descubridor principal del cometa Shoemaker-Levy 9, que en julio de 1994 impactó contra Júpiter, un suceso que es considerado el evento astronómico más importante del siglo XX.

Si quieres saber mucho más sobre Cráteres de impacto

En esta charla en directo te cuento muchas más curiosidades!

Referencias

  • French B.M. (1998). Traces of Catastrophe: A Handbook of Shock-Metamorphic Effects in Terrestrial Meteorite Impact Structures. 119pp. Lunar and Planetary Institute. Houston.
  • Grieve R.A.; Shoemaker, E.M. (1994). The Record of Past Impacts on Earth in Hazards due to Comets and Asteroids, T. Gehrels, Ed.; University of Arizona Press, Tucson, AZ, pp. 417–464.
  • Wittke, J. H., Weaver, J. C., Bunch, T. E., Kennett, J. P., Kennett, D. J., Moore, A. M. T., … Firestone, R. B. (2013). Evidence for deposition of 10 million tonnes of impact spherules across four continents 12,800 y ago. Proceedings of the National Academy of Sciences, 110(23)
  • NASA Image Gallery

Younger Dryas: cambios climáticos que condicionaron el paisaje abulense y la vida humana

Autor (texto y gráficos) – Javier Pérez Tarruella

Hace 18.000 años nuestro planeta se encontraba inmerso en el último máximo glacial. La nieve caída sobre los continentes no llegaba a fundirse en verano, formándose grandes acumulaciones de hielo. Y como el agua de precipitación no retornaba al océano el nivel del mar descendió hasta 125 metros por debajo del actual.

18.000 años es un parpadeo en términos geológicos. Y es que el periodo en el que le ha tocado vivir a nuestra especie (el Cuaternario) se caracteriza por un clima que cambia rápidamente (fig. 1).

Figura 1. Variación climática en los últimos 500.000 años. A grandes rasgos se diferencian 5 glaciaciones y 5 periodos interglaciales, en el último de los cuales nos encontramos ahora. En este artículo nos centraremos en la transición de la última glaciación al presente Interglacial (la ¨Última Terminación»). Datos de Lisiecki & Raymo (2005).

Estos cambios climáticos, que a grandes rasgos dan lugar a una glaciación y un periodo interglacial cada 100.000 años aproximadamente, son debidos a:

Estos factores astronómicos siempre han existido, pero el hecho de que hayamos llegado a tener casquetes de hielo en ambos polos (algo rarísimo en la Historia de la Tierra) ha hecho mucho más vulnerable y cambiante al sistema climático.

El enfriamiento súbito del Younger Dryas

Estos cambios no siempre son graduales. Si estudiamos en detalle la última glaciación vemos que hay decenas de cambios bruscos en las temperaturas. Cuando parecía que la glaciación se retiraba definitivamente en el hemisferio Norte, dio un último coletazo hace unos 12.800 años con el llamado Younger Dryas (también conocido como Dryas Reciente o Joven Dryas).

Este enfriamiento súbito del clima fue el responsable de la aparición del mar de dunas de La Moraña, y es que la precipitación en Ávila disminuyó, al reducirse la evaporación del Atlántico Norte por las bajas temperaturas. Seguramente este sistema dunar estuvo también activo en varios momentos de la última glaciación, coincidiendo con los eventos Heinrich (hace 16.000, 24.000, 30.000, 39.000, 48.000 y 62.000 años)

Para saber más sobre el mar de dunas de La Moraña.

La hipótesis más aceptada durante mucho tiempo sobre el origen de este cambio climático fue la del vaciado del Lago Agassiz. Este lago se formó por el deshielo del casquete glaciar de Norteamérica, cerca de los Grandes Lagos, alcanzando un tamaño similar al de la Península Ibérica (figura 2). En un determinado momento este lago vertió sus aguas al Atlántico, deteniendo las corrientes oceánicas y enfriando especialmente el Atlántico Norte.

Figura 2. El Lago Agassiz y las posibles vías de vertido de sus aguas al océano.

¿Sabías que…? La película Ice Age 2 está basada en la hipótesis del Lago Agassiz. Los protagonistas viven junto a una presa de hielo que retiene el agua del deshielo acumulada en el Lago Agassiz y deben escapar antes de que se rompa y el lago se vacíe de golpe, es decir: ¡antes de que comience el Younger Dryas!

El final del Younger Dryas y el inicio de la agricultura

Como se observa en la figura 3, a pesar de que los factores astronómicos aumentaban la insolación de verano sobre el hemisferio norte, la temperatura disminuyó, y con ella la precipitación.

Sin embargo, más destacable que el enfriamiento del Younger Dyas fue su final. Y es que ese calentamiento y deshielo que se habían visto frustrados remontaron rápidamente, con una subida del nivel del mar de más de 40 mm/año durante unos siglos y un calentamiento de más de 7ºC en Groenlandia para ese periodo.

Figura 3. Gráfica que muestra 5.000 años de evolución climática, incluyendo el Younger Dryas. La temperatura y la precipitación en el Atlántico Norte disminuyeron en este periodo, a pesar del aumento de la insolación. El enfriamiento finalizó de golpe, provocando la fusión masiva de glaciares y un aumento brusco del nivel del mar.

Los registros arqueológicos muestran que el inicio de la agricultura y las civilizaciones complejas (el Neolítico) coincide con el final del Younger Dryas, el calentamiento que dio paso al presente Interglacial. Ahora, gracias a unos sondeos en el Mar Muerto, en el entorno de Mesopotamia o “Cuna de la Civilización” sabemos que esta coincidencia es exacta. Estos sondeos indican que el espesor de las capas de sedimento en la cuenca del Mar Muerto se incrementa a partir del fin del Younger Dryas. La incipiente actividad agrícola y el pastoreo provocarían un aumento de la erosión y por tanto el incremento de la sedimentación observado en la zona.

Por una parte, parece que un cambio ambiental tan brusco obligó a modificar el modo en que obteníamos el alimento; y por otra parte, la relativa estabilidad climática del presente periodo Interglacial (Holoceno) nos permitió perfeccionar la técnica hasta llegar a los tractores que hoy aran La Moraña.

Quizá sin el Younger Dryas no habría surgido este nuevo paradigma de vida de nuestra especie, o quizá hubiese aparecido 2.000 años antes. En cualquier caso, fue un evento que nos invita a preguntarnos cuánto han condicionado los cambios climáticos la historia de la Humanidad.

¿Sabías que…? Otra de las hipótesis utilizadas para explicar el cambio climático del Younger Dryas es el impacto de un meteorito en Groenlandia. Esta hipótesis se lanzó en 2007 y en 2018 se descubrió bajo el casquete glaciar de Groenlandia un enorme cráter de impacto de 30 km de diámetro. Los cálculos sugieren que un meteorito de 1 km impactó contra la Tierra hace entre 10.000 y 2 millones de años, de momento es el único sospechoso que tenemos como culpable cósmico del Younger Dryas. Además, se han encontrado evidencias de impacto en más de 60 yacimientos de todo el planeta. Sin embargo, estos cambios tan abruptos son habituales en el transcurso de los periodos glaciales, y en su mayoría son explicados por la propia dinámica del sistema climático sometido a la vulnerabilidad de los glaciares y del hielo de la banquisa.

Referencias

Reconciliando la tradición oral de las «vejigas» con la geología y el estudio de los riesgos naturales I

Autor – Javier Élez

Muchos habréis escuchado el relato de nuestros mayores cuando contaban que había «vejigas» llenas de agua en el interior de la montaña que «explotaban» y movían enormes cantidades de agua y piedras, en ocasiones causando daños a poblaciones y propiedades.

Sin embargo, y tal como apunta Alberto Martín en el comentario que nos hizo llegar en Facebook, la montaña -el Sistema Central en la zona de Ávila- está constituida fundamentalmente por granito. El granito es un material muy poco dado a generar grandes cavidades en su interior, en las condiciones atmosféricas actuales se disuelve muy despacio. Es difícil entender cómo en una roca fundamentalmente impermeable se puede acumular agua en grandes cantidades y que por algún tipo de sobrepresión termine explotando y provocando una inundación.

Desde la geología podemos contaros algunos de los fenómenos naturales que suceden en las zonas de alta montaña desde un punto de vista científico y que esperamos que reconcilie esta tradición oral de las «vejigas» con la ciencia moderna.

Este intento de reconciliación viene de lejos. Los naturalistas trataron de explicar ya hace años estos fenómenos.

Nicolás de la Fuente Arrimadas escribe en 1926 en su “Fisiografía e historia del Barco de Ávila”:

“Obsérvase también en estas sierras otro importante fenómeno de destrucción: las vejigas o vejigones. Aparecen después de grandes nevadas y lluvias, las cuales se infiltran entre las rocas que tienen cubiertas sus hoquedades sólo por terrenos modernos; se depositan allí, van lentamente socavando el bloque granítico más inferior a estas aguas infiltradas, y por su gran peso, y haciendo mucha presión, rompen, lanzan a lo mejor en un día claro, todo el bloque, produciendo un estampido que las gentes del país distinguen bien del trueno; precipitanse las aguas desde la cima o sitios de la vejiga y todo lo destruyen, arrancando peñascos, árboles y prados, y dejando barrancadas como la que se observa al N. E. del Tormal o Cabeza del Muladar. Resulta una gran hoquedad en el sitio en que se rompe la vejiga, socavada desigualmente en el granito, hasta de 90 metros de profundidad, por acumularse en algunas, como en el vejigon de Amar de la Torre (Escorial) sus 300 000 quintales de agua, y arrastrando peñas de más de 400 quintales de peso”.

Para dimensionar bien lo que describe Nicolás de la Fuente hay que saber que:

  • Un quintal español equivale a prácticamente 46 kg. Por tanto, 300.000 quintales de agua equivalen a 13.802 toneladas de agua.
  • Además, una peña de 400 quintales equivale a 18,4 toneladas y esto son unos 7 m3 de granito más o menos.

Poca broma…

Las «vejigas» de las que nos habla la tradición oral no son cavidades de agua en el interior de la montaña que explotan. Sin embargo, tienen una explicación relativamente sencilla y como veréis bastante lógica desde el punto de vista de la Geología y en el contexto de dinámicas de alta montaña.

Cómo se desencadena

Una sucesión de acontecimientos tipo (inspirada en los trabajos de Bodoque y colaboradores de 2007 y Villanueva y colaboradores de 2011), sería:

1.Llueve de forma muy importante y rápida (o nieva) sobre las partes más altas de la montaña. Se produce lo que se denomina un evento torrencial de elevada magnitud.

2. En las zonas de mayor pendiente y donde el granito no está descarnado, la ladera de la montaña todavía puede tener una cubierta compuesta por una cierta vegetación sobre un manto de alteración de bastante espesor y que suele incorporar bloques grandes de granito, a veces con un canchal encima. Es una zona muy porosa y aquí es donde el agua se infiltra y se acumula.

3. La alta pendiente y el peso adicional del agua hacen que una parte de la ladera de la montaña se desequilibre gravitacionalmente y se deslice cuesta abajo. La masa deslizada está compuesta fundamentalmente por el manto de alteración junto con un volumen importante de agua infiltrada.

4. La masa de material que se desliza es por tanto una amalgama de agua y rocas. Además, el agua que contiene hace de lubricante para que el manto de alteración deslice sobre el granito menos alterado que se encuentra por debajo. Como la pendiente es muy alta, el material deslizado incrementa mucho su velocidad y se comporta como un flujo hiperconcentrado (flujo no newtoniano en términos físicos), una pasta de barro, agua y rocas en la que la mayor parte son los sólidos.

5. El material cae cuesta abajo de forma muy rápida, encauzándose en alguno de los regueros existentes y arrasando todo a su paso.

6. Cuando la pendiente disminuye ladera abajo, el flujo pierde velocidad y termina parándose. Los bloques mayores se quedan aquí, lo que incluye a los de «400 quintales de peso». Es en ese momento cuando el agua empieza a escapar de la masa deslizada. La cantidad de agua es muy importante y aunque se ha frenado por la pérdida de pendiente sigue teniendo bastante velocidad con lo que arrastra la arena y el barro (los materiales más ligeros) y continúa avanzando cuesta abajo arrasando de nuevo todo a su paso, como los árboles que va encontrando.

7. Este volumen de agua enorme termina inundando las zonas más bajas, arrastrando troncos de árboles y moviéndose hasta encontrar un cauce mayor aguas abajo en donde encauzarse.

Animación simplificada del funcionamiento de una «vejiga» o flujo hiperconcentrado en relación con deslizamientos gravitacionales.

Para saber más sobre cómo se produce la alteración del granito: Las formas del granito: el berrocal

La tradición y la explicación

Al final un deslizamiento en la zona alta provoca una inundación en las zonas más bajas de la montaña.

Comparando con la tradición oral de las «vejigas», podemos explicar la cantidad de rocas que se mueven y su gran tamaño, ya que caen cuesta abajo por zonas de mucha pendiente. También la marca clara del lugar donde «revienta» la «vejiga», que es donde queda la cicatriz del deslizamiento gravitacional inicial. El estampido sería el ruido de los bloques de granito de gran tamaño golpeándose entre ellos y contra el suelo mientras caen cuesta abajo a toda velocidad.

Este proceso también explica una característica observada por los habitantes de la Sierra y es que el fenómeno de las «vejigas» a veces se produce incluso un par de días después de las lluvias fuertes. El agua acumulada durante la lluvia desequilibra una zona en la ladera pero ésta, según el caso, puede llegar a tardar un tiempo en caerse.

Para te hagas una idea, hay deslizamientos gravitacionales de ladera disparados por un terremoto que tardan semanas y hasta meses en moverse después de que hayan sido desequilibrados por la energía sísmica liberada.

¿Conoces casos de «vejigas»?

Para que todos podamos conocer un poco más sobre este fenómeno os invitamos a que nos contéis esas tradiciones orales de las que hablamos en este artículo.

SEGUNDA PARTE. Continúa leyendo la segunda parte de este artículo, donde se explica el caso de Venero Claro, en Navaluenga, y otros casos documentados: Reconciliando la tradición oral de las «vejigas» con la geología y el estudio de los riesgos naturales II: el caso de Venero Claro

Recursos utilizados

Reconciliando la tradición oral de las «vejigas» II: Venero Claro y otros casos

Autor – Javier Elez

Para contextualizar estos casos es necesario leer la primera parte de esteartículo sobre qué son las «vejigas» y su explicación científica: Reconciliando la tradición oral de las «vejigas» con la geología y el estudio de los riesgos naturales I (PRIMERA PARTE)

El caso de Venero Claro en Navaluenga

De todo el proceso geológico sucedido en Venero Claro tenemos registro fotográfico y evaluación científica moderna gracias a Andrés Díez Herrero, geólogo e investigador del área de Riesgos Geológicos del Instituto Geológico y Minero que junto con un equipo multidisciplinar de colaboradores han caracterizado y estudiado uno de estos flujos hiperconcentrados en relación con movimientos de ladera a los que la tradición oral denomina «vejigas».

Este caso sucedió en 1997 en el arroyo Cabrera, junto a la localidad abulense de Navaluenga y a día de hoy los trabajos publicados sobre este evento son considerados de referencia a nivel internacional en el estudio de los Riesgos Naturales relacionados con inundaciones súbitas.

Secuencia de fotografías de 1997 tomadas por Andrés Díez justo después de la avenida

Vista general de la cuenca fluvial del arroyo Cabrera en la Sierra del Valle (Sierra de Gredos oriental). La parte más alta está a 1923 m de altura y la parte más baja, donde desemboca el arroyo Cabrera en el río Alberche, a 735 m. La línea en color claro evidencia el lugar por el que se encauzó el flujo hiperconcentrado. El deslizamiento inicial se produjo en la parte más alta. Andrés Díez Herrero.

Fotografía 1: Vista general de la cuenca fluvial del arroyo Cabrera en la Sierra del Valle (Sierra de Gredos oriental). La parte más alta está a 1923 m de altura y la parte más baja, donde desemboca el arroyo Cabrera en el río Alberche, a 735 m. La línea en color claro evidencia el lugar por el que se encauzó el flujo hiperconcentrado. El deslizamiento inicial se produjo en la parte más alta.

Cicatriz del deslizamiento en primer plano. El lugar donde se inicia el deslizamiento inicial y perspectiva hacia abajo en la que se ve también en colores claros el lugar por el que se encauzó el flujo hiperconcentrado. Imagen de Andrés Díez Herrero.

Fotografía 2: Cicatriz del deslizamiento en primer plano. El lugar donde se inicia el deslizamiento inicial y perspectiva hacia abajo en la que se ve también en colores claros el lugar por el que se encauzó el flujo hiperconcentrado.

Aspecto de la zona arrasada por la avenida. Prácticamente toda la vegetación de la rivera, en un ancho muy reducido, ha sido completamente desmantelada.  Imagen de Andrés Díez Herrero.

Fotografía 3: Aspecto de la zona arrasada por la avenida. Prácticamente toda la vegetación de la rivera, en un ancho muy reducido, ha sido completamente desmantelada.

Fotografías de los depósito con los bloques mayores en una zona con menos pendiente. Atención a la persona que hace de escala en las fotos, que da una idea del diámetro de varios metros de algunos bloques. Imagen de Andrés Díez Herrero.

Fotografía 4: Fotografías de los depósito con los bloques mayores en una zona con menos pendiente. Atención a la persona que hace de escala en las fotos, que da una idea del diámetro de varios metros de algunos bloques.

Panorámica, arriba a la izquierda la zona en donde se depositaron los bloques mayores, abajo y a la derecha el lugar por donde se inició la inundación. Imagen de Andrés Díez Herrero.

Fotografía 5: Panorámica, arriba a la izquierda la zona en donde se depositaron los bloques mayores, abajo y a la derecha el lugar por donde se inició la inundación.

Aspecto del puente de Trampalones tras la riada, un poco aguas abajo del punto de la fotografía 4. Los troncos son de árboles de tamaño considerable. Y el puente es lo que está debajo y detrás del montón de árboles…  Imagen de Andrés Díez Herrero.

Fotografía 6: Aspecto del puente de Trampalones tras la riada, un poco aguas abajo del punto de la fotografía 4. Los troncos son de árboles de tamaño considerable. Y el puente es lo que está debajo y detrás del montón de árboles…

Depósito de árboles arrastrados por la riada en el puente de la Colonia de Venero Claro, ya cerca de la desembocadura con el río Alberche. Imagen de Andrés Díez Herrero

Fotografía 7: Depósito de árboles arrastrados por la riada en el puente de la Colonia de Venero Claro, ya cerca de la desembocadura con el río Alberche.

Para comprender bien el fenómeno hay que hacer un esfuerzo por visualizar que hay más de un kilómetro de desnivel desde el punto en el que se inicia el desprendimiento y la desembocadura del arroyo en el río Alberche. Todo ese diferencial de cota (energía potencial) hace que la masa deslizada tenga un nivel de energía enorme.

Además, al encauzarse cuesta abajo por uno de los valles existentes concentra su actividad en una extensión espacial muy limitada a lo ancho del valle. La zona denudada (erosionada) es muy larga como se aprecia en la fotografía 1, pero tiene pocas decenas de metros de ancho: el Venero Claro.

Otros casos históricos

Además del evento de arroyo Cabrera en Navaluenga, en la literatura específica sobre el tema hay otras de estas “vejigas” estudiadas.

Una de ellas sucedió en el arroyo de Jubaguerra en enero de 1996 (en el valle del Jerte en Cáceres; publicado por Pedraza y colaboradores en 2004).

Por tanto, hasta el momento tendríamos identificados cuatro de estos fenómenos en el Sistema Central sumando los dos que describe Nicolás de la Fuente Arrimadas en su “Fisiografía e historia del Barco de Ávila” (ver primera parte de este artículo):

  • NE del Tormal o Cabeza del Muladar, muy cerca de Bohoyo (Ávila), previo a 1926.
  • Amar de la Torre, en El Escorial (Mádrid), previo a 1926.
  • En el Arroyo Jubaguerra, ya en el valle del Jerte (Cáceres), en 1996.
  • Arroyo Cabrera, en Navaluenga (Ávila), en 1997.

Estos cuatro no pueden ser los únicos. Este fenómeno se debe haber producido a lo largo de todo el Sistema Central  de forma relativamente habitual.

Por ejemplo, muy cerca del pueblo de El Raso, en Ávila, encontramos un Arroyo de la Vejiga. También en la localidad de Miraflores de la Sierra, ya en la provincia de Madrid pero igualmente en una zona de montaña con fuerte desnivel, se encuentra el Arroyo de la Vejiga, que justo desemboca en el pueblo. Estos topónimos no pueden ser casuales aunque es posible que sean tan antiguos que ya nadie recuerde por qué se les puso ese nombre.

¿Conoces casos de «vejigas»?

Para que todos podamos conocer un poco más sobre este fenómeno os invitamos a que nos contéis esas tradiciones orales de las que hablamos en la primera parte de este artículo.

Os pedimos que nos hagáis participes a todos de las historias sobre las vejigas que cuentan vuestros mayores o que oísteis de pequeños para poder recopilarlas y que no se pierdan y pueda quedar un pequeño registro escrito sobre ellas.

Riada de Navalmoral de la Sierra 1929

Carlos del Peso nos envía la noticia publicada de una vejiga que causó cuatro muertos hacia 1929 en Navalmoral de la Sierra.

Recursos utilizados

Organismos que colonizan los granitos: la liquenometría

Autor – Javier Elez

¿Te has fijado alguna vez en la gran cantidad de seres vivos que colonizan las rocas que ves en tus paseos por el campo? Es habitual encontrar, por ejemplo, una gran variedad de musgos y líquenes tapizando los granitos.

Los musgos son plantas no vasculares, mientras que los líquenes son organismos simbiontes complejos en los que colaboran hongos, algas y levaduras, según publicó la revista Science hace un par de años.

img-20171228-wa0001460469250.jpg

Estos últimos, los líquenes, se estudian en varios campos e incluso existe una rama de la Botánica denominada Liquenología. Pero, ¿para qué se utilizan los líquenes en Geología?

Los líquenes y la geología

En geología se emplea una técnica de datación denominada liquenometría.

Algunas especies de líquenes nos permiten estimar con bastante precisión el tiempo que ha pasado desde que una superficie queda expuesta y los líquenes comienzan a colonizarla hasta la fecha en la que se realiza la datación. Según pasa el tiempo, la colonia va creciendo en diámetro y este crecimiento se puede medir.

Esta técnica se puede utilizar con éxito para datar superficies de hasta 5.000 años. Evidentemente, cuanto más atrás en el tiempo, mayor puede ser el margen de error.

¿En qué situaciones pueden quedar expuestas nuevas superficies para ser colonizadas por líquenes? En riadas, en caídas de bloques y de construcciones por terremotos, en movimiento de masas rocosas por glaciares, deslizamientos de ladera, etc.

cantera
En esta cantera de granito abandonada los líquenes comenzaron a proliferar sobre las superficies expuestas con el cese de la actividad de extracción.

Esta técnica de datación se emplea en el estudio de los procesos geológicos activos en campos como la geología del Cuaternario, estudios relativos a la variación del clima a lo largo de los últimos miles de años y los riesgos geológicos.

Algunas de las aplicaciones prácticas de la liquenometría son:

  • El estudio de la evolución temporal del retroceso de un glaciar. Y por tanto, las variaciones climáticas que se dieron en el pasado.
  • La datación y estudio de los efectos de grandes terremotos del pasado, de los que en muchas ocasiones no queda un registro documental.
  • Evolución de grandes deslizamientos o de zonas con importantes desprendimientos de roca por inestabilidad gravitacional.
  • Estudio de grandes riadas y sus periodos de retorno.
  • Como te puedes imaginar, también se utiliza con éxito en otras ramas del conocimiento como la Arqueología.

Cómo se realiza la datación liquenométrica

Simplificando mucho, la obtención de una edad se realiza estimando una curva de crecimiento climático en función de la localización geográfica en la que se encuentran y relacionando esta curva con el diámetro de la colonia.

Estos cálculos son relativamente complejos y se tienen en cuenta parámetros tales como la especie en concreto de liquen, la cantidad de insolación que le llega a la colonia en función de su localización (solana-umbría), la elevación a la que se encuentra, si se halla en una superficie plana o inclinada, etc.

¿SABÍAS QUE…?

Para calibrar la curva de crecimiento de las colonias de líquenes también se miden de forma sistemática en los cementerios cercanos a la localidad de estudio.

Las lápidas son superficies de piedra expuestas en las que está marcada la fecha de primera exposición y por tanto se sabe cuándo comienza la colonización por líquenes.

© Textos de Javier Elez.

© Fotografías de Gabriel Castilla y Javier Elez.

¿Quieres saber más sobre métodos de datación?