Los tsunamis son unas manifestaciones fuertemente energéticas de la dinámica de nuestro planeta, espectaculares, pero también responsables de algunas de las catástrofes naturales recientes más tristes.
Los tsunamis de Japón en 2011 y del sudeste asiático en 2004 y su difusión a nivel global por redes cambiaron por completo nuestro imaginario colectivo al respecto de estos fenómenos (Fig. 1). Las estimaciones de víctimas mortales para ambos eventos son terroríficas, en Japón murieron cerca de 16.000 personas (hay todavía más de 2.500 desaparecidos) y en Indonesia fallecieron más de 280.000 personas.
Sus efectos nos resultan inquietantes. Un ejemplo claro es la película Lo imposible (2012), dirigida por J. A. Bayona, que narra la historia real de una familia que sobrevivió al devastador tsunami de 2004. Otro ejemplo es la preocupación por que se pueda repetir una catástrofe como la sucedida en la central nuclear de Fukushima, dañada por el tsunami de 2011, y que continúa generando contaminación y riesgo debido a los problemas aún no resueltos en su control.
La mayor parte de los tsunamis se generan como un efecto colateral de un gran terremoto.
¿Qué necesitamos para que se produzca un tsunami? Dos cosas:
Un terremoto tan grande como para modificar la superficie del planeta
Que el terremoto ocurra bajo el mar.
Cuando se genera un terremoto de gran magnitud (Fig. 2), si se produce cerca de la superficie de nuestro planeta pasan dos cosas, por un lado una rotura y desplazamiento de la superficie del planeta y por otro las conocidas ondas sísmicas que se propagan desde la zona de rotura y hacen vibrar el terreno.
Figura 2. Esquema temporal del proceso de generación de un Tsunami. Necesitamos un terremoto que deforme la superficie del fondo del mar, de forma que desplace hacia arriba el agua del mar. Esta agua desplazada, al buscar su equilibrio gravitacional genera una onda que se propaga por el océano hasta llegar a la costa. Al llegar al litoral el tren de ondas se frena con el fondo marino más superficial y construye el tsunami. A mayor masa de agua desplazada por el terremoto, mayor velocidad de las ondas y mayor el tsunami resultante. Grafico: Javier Elez.
En geología llamamos falla a la fractura por la que se produce el desplazamiento del terreno. Para que os hagáis una idea el terremoto de Japón de 2011 desplazo hasta 2,4 metros la isla de Honshu, la mayor del archipiélago Japonés.
Si el desplazamiento de la corteza terrestre durante un terremoto ocurre bajo una gran masa de agua, como en el fondo del océano, el movimiento del suelo marino empuja la columna de agua que tiene encima. Si esto sucede a una profundidad de unos 4.000 metros, implica que se están moviendo cuatro kilómetros de columna de agua.
Cuanto mayor sea la magnitud del terremoto, más extensa será la zona afectada y mayor la cantidad de agua desplazada.
En ese momento el agua sube sobre su nivel habitualy luego por gravedad baja, oscilando de forma similar a cuando tiramos una piedrita a un lago y se forman las típicas ondas. La consecuencia de este movimiento oscilatorio es una onda estacionaria en el mar (Fig. 3).
Figura 3. Ondas en el agua que se propagan de forma concéntrica al origen, igual que un tsunami. Fuente Wikipedia.
Estas ondas se mueven por los océanos a velocidades de cientos de km/h. En el océano abierto no son peligrosas, los barcos en muchas ocasiones ni siquiera las notan porque tienen longitudes de onda muy largas (de hasta 300 km) y amplitudes muy pequeñas (menores a un metro). Pueden cruzar el Océano Pacífico de Japón a California en unas 9 horas.
Pero cuando llegan a la costa la cosa cambia, al disminuir la profundidad la onda roza con el fondo, se frena, crece en la vertical y acumula agua y presión. Como el tren de ondas es continuo llega un momento en el que el agua amontonada en la zona litoral crece tanto que se cae hacia el continente inundando las zonas costeras en muchas ocasiones de forma violenta y generando los daños que tenemos todos en la retina.
En japonés, tsunami significa “Ola de Puerto” haciendo referencia a la dinámica del fenómeno, pues en mar abierto no se aprecia y solo cuando llega a la costa es cuando vemos las grandes olas.
En España tenemos registro geológico de Tsunamis, siendo los más recientes en la costa atlántica de Andalucía. El más conocido fue causado por el terremoto de Lisboa en 1755, con más de mil víctimas mortales solo en Andalucía. Este terremoto provocó en las costas andaluzas un tsunami con olas de 10 a 12 m de altura (equivalente a un edificio de cuatro plantas), con tiempos de inundación máximos superiores a los 8 minutos, llegando a inundar zonas situadas a más de 5 km hacia el interior de la costa.
Pero no ha sido el único. En la costa atlántica de Andalucía tenemos registro de siete grandes tsunamis en los últimos 7.000 años, de ellos cuatro se consideran que responden a terremotos de magnitudes muy importantes (mayores a 8)
¿Qué hacer en caso de tsunami? En caso de riesgo de tsunami, debes seguir únicamente las indicaciones oficiales y acudir a fuentes fiables como la Instituto Geográfico Nacional (IGN) o la Dirección General de Protección Civil y Emergencias. Ve a un lugar seguro: aléjate de la costa, desembocaduras y ríos, y sube a una zona alta o planta elevada si ya estás en el agua. Evacúa inmediatamente si escuchas una alerta oficial, sientes un terremoto intenso o prolongado, observas una retirada rápida del mar o escuchas un rugido fuerte como de tren. Mantén la calma, no regreses hasta que las autoridades lo indiquen y conserva una radio a pilas, linterna y suministros básicos.
El pasado fin de semana, del 24 al 25 de mayo, Geología desde Ávila participamos en la GeoQuedada 2025, organizada por el colectivo GeoDa Divulga en el espectacular entorno de las Arribes del Duero, en la provincia de Salamanca. Aunque no pudimos asistir a las actividades del viernes (nos quedamos con las ganas de conocer la Sala de las Tortugas de la USAL, y el seguro maravilloso Taller de Estrellas de Nahúm Méndez (@UnGeólgoEnApuros), sí estuvimos durante todo el sábado y el domingo, compartiendo experiencias, aprendiendo de otros proyectos y disfrutando de la geología y del entorno.
Nuestra intervención tuvo lugar el sábado por la mañana, en el espacio cultural La Panera de Aldeadávila de la Ribera. Allí, Anabel Casado presentó la comunicación «Geología desde Ávila, un proyecto colectivo y horizontal hecho por geólogas y geólogos multidisciplinares», donde explicamos cómo surge y se desarrolla nuestro proyecto desde una perspectiva colaborativa, inclusiva y comprometida, y siempre disfrutando.
Imagen 1: Cartel de presentación creado por GEODA para anunciar la participación de Anabel en el encuentro.
A través de esta charla mostramos algunas de nuestras iniciativas más representativas, como el Geolodía de Ávila, las GeoCharlas en centros educativos, las musealización geológica del Centro de Interpretación de las Lagunas de El Oso y, por supuesto, este blog que tantas alegrías nos da; destacando el uso de metodologías participativas, el enfoque intergeneracional y la apuesta por la accesibilidad como señas de identidad.
Imagen 2: Anabel Casado, integrante del proyecto Geología desde Ávila, durante una charla divulgativa donde presentó su trayectoria como geóloga y divulgadora, así como las claves del enfoque colectivo y multidisciplinar del grupo. Fotografía de Geoda.
El programa del sábado incluyó también las intervenciones de Jabito Jablonski (@MuseodelaFalla), con su experiencia en el Museo de la Falla de Juzbado; Marisa Castiñeira (@mcastigarcia), que compartió estrategias para enseñar geología en secundaria; Marta Rincón (@Falladamente) con su propuesta para modelizar en secundaria procesos volcánicos de manera sencilla; y Rafael Fort (@IGEO), quien nos habló sobre la puesta en valor del patrimonio geológico.
La tarde continuó con un crucero fluvial por el Duero, saliendo del embarcadero de Aldeadávila. Gracias a las explicaciones de Elvira (https://www.corazondelasarribes.com/) conocimos cómo el Duero fue y sigue siendo una frontera natural entre España y Portugal con una historia compartida. Este valle fue lugar de contrabando en una y otra orilla en época de dictadura. Nos contó cómo era la realidad de las familias que vivían de las cabras y que se encontraron en este lugar hasta casi los años 60 del siglo pasado, utilizando todos los recursos disponibles y agudizando al máximo su ingenio; y también conocimos las singularidades de este lugar que permite la presencia de gran cantidad de especies de fauna y flora, destacando las aves como el buitre leonado, el alimoche o el águila real.
Imagen 3: Vistas desde el crucero fluvial por el río Duero, en el Parque Natural Arribes del Duero. La imagen muestra el encajamiento fluvial característico de la zona, con laderas abruptas cubiertas de vegetación, mientras se ve la estela del barco por estas aguas fronterizas entre España y Portugal. Fotografía de Anabel Casado
Después del crucero, hicimos una ruta geológica al Picón de Felipe, uno de los miradores más emblemáticos del Parque Natural Arribes del Duero que debe su nombre a una leyenda sobre el amor imposible entre un español y una portuguesa. Desde este impresionante balcón natural, se pueden admirar las vistas del cañón del río Duero, que en esta zona alcanza profundidades de hasta 500 metros, creando un paisaje de paredes graníticas casi verticales. Al fondo, en la zona más estrecha del cañón, podemos ver La Presa de Aldeadávila, una joya de la ingeniería hidroeléctrica construida entre 1956 y 1963 que alberga dos centrales hidroeléctricas que juntas son las más productivas de España. Esta presa puede resultarte familiar ya que ha sido escenario de varias producciones cinematográficas como «Terminator: Dark Fate» y «Fast and Furious 10».
Imagen 4: Anabel observando el impresionante cañón del Duero desde un mirador en el Parque Natural Arribes del Duero. Al fondo se distingue la presa de Aldeadávila, una de las más emblemáticas infraestructuras hidroeléctricas de España, encajada entre las escarpadas paredes rocosas del valle. Fotografía de Eduardo Cuadra.
El domingo por la mañana, para cerrar esta edición de la Geoquedada 2025, visitamos el Pozo de los Humos. Con ese nombre se conoce al conjunto de saltos de agua de más de 50 metros de desnivel controlado por el sistema de fallas y diaclasas en el contacto de rocas graníticas con rocas metamórficas. Una visión impresionante aún teniendo menos agua en esta época del año.
Imagen 5: Vista panorámica del Pozo de los Humos, una espectacular cascada en el Parque Natural Arribes del Duero. El agua cae desde una gran pared rocosa hasta una poza profunda rodeada de vegetación, creando uno de los paisajes más emblemáticos de la zona.
De esta reunión nos quedamos con poder desvirtualizar a compañeras y compañeros de la divulgación que conocíamos a través de redes y con quienes compartimos inquietudes y admiración mutua desde hace tiempo. Vernos cara a cara, intercambiar ideas, y reconocer en cada proyecto una parte del entusiasmo colectivo por divulgar la geología fue, sin duda, uno de los grandes regalos de la GeoQuedada.
Queremos agradecer a la organización de Geoda, y en especial a Daniel H. Barreña (HombreGeológico), por la cálida acogida, la impecable coordinación y por haber creado un espacio donde la geología se vive, se siente y se comparte. Y a todas las entidades y personas que han apoyado este encuentro, y han participado en él (GeoCastAway, Ekobideak, ViajandoConCiencia…) Volvemos con nuevas ideas, la mochila llena de inspiración y muchas ganas de seguir construyendo comunidad geodivulgadora.
Imagen 6: Foto de grupo de participantes en la Geoquedada 2025, celebrada en el Parque Natural Arribes del Duero. Fotografía de Geoda.
Autores – Gabriel Castilla Cañamero, María Isabel Reguera e Iván Martín-Méndez
Alrededor de dos polos gira la existencia humana.
El polo de las ilusiones. Y el polo de las realidades.
José Echegaray. Ciencia popular, 1905.
Los astronautas de la misión Apolo 8 tomaron la primera fotografía de la Tierra vista desde la órbita de la Luna. Esta icónica imagen nos mostró por primera vez el contraste entre la yerma superficie lunar, la vasta negrura del espacio y el brillo de un planeta azul (Figura 1).
Figura 1. El amanecer de la Tierra, fotografía tomada el 24 de diciembre de 1968 por el astronauta Bill Anders del Apolo 8. Crédito: NASA/Bill Anders.
Los océanos ocupan el 71% de la superficie terrestre, lo que equivale a un volumen de unos mil quinientos millones de kilómetros cúbicos de agua, el medio donde probablemente surgió y evolucionó la vida durante miles de millones de años. Desde nuestra perspectiva, esta cantidad de agua puede parecer inmensa (especialmente considerando que alrededor del 60% del cuerpo humano está compuesto por agua); sin embargo, si comparamos la masa de los océanos, mares, ríos, lagos, aguas subterráneas y glaciares (1,4 x 1021 kg), con la masa de la Tierra (6 x 1024 kg), descubrimos que la hidrosfera representa apenas un 0,02% del total.
Para comprender lo que esto significa, pensemos en un contexto que nos resulte más familiar: si la Tierra fuese un avión Boeing 747completamente cargado, el agua de la hidrosfera equivaldría a la masa de un solo pasajero (Figura 2). Por otro lado, la razón por la que la Tierra se ve de color azul desde el espacio no se debe a la presencia océanos, sino a que las moléculas de nitrógeno y oxígeno de la atmósfera esparcen la luz solar mediante un fenómeno óptico conocido como dispersión Rayleigh.
Figura 2. Representación gráfica de la masa de la hidrosfera (rectángulo azul) en relación a la masa del planeta Tierra (marrón). Fuente: elaboración propia.
Esta comparativa demuestra que tenemos una visión algo distorsionada de la cantidad de agua que hay en la Tierra: el pozo de lasilusiones al que se refería Echegaray. Entonces, y siguiendo con la cita de nuestro primer Premio Nobel: ¿cuál es el pozo de las realidades? El relato científico, sin duda. Repasemos las pruebas que nos ofrece la Geología para responder a tres preguntas fundamentales en esta historia:
1.- ¿Cuánta agua hay en la Tierra?
2.- ¿Cómo llegó hasta aquí?
3.- ¿Cuándo se formó el primer océano?
1. ¿Cuánta agua hay en la Tierra? La paradoja de los océanos invisibles
La mayor parte del agua de la Tierra se encuentra almacenada en el manto, un lugar inaccesible que representa el 84% de la masa total del planeta (Figura 3). Está formado por silicatos (minerales ricos en silicio y oxígeno) que se encuentran sometidos a altísimas presiones (un millón y medio de veces superior a la presión atmosférica) y temperaturas que varían entre los 600 y los 3.500 º C. En este ambiente los materiales se encuentren en un estado físico entre sólido y líquido-viscoso, condiciones que solo podemos reproducir en laboratorios de muy alta presión empleando yunques de diamante.
Figura 3. El interior terrestre está dividido en tres partes: corteza, manto y núcleo. El manto se divide a su vez en dos: el manto superior, que comienza a unos 70 km; y el manto inferior, que se extiende entre los 670 km y los 2.900 km de profundidad. Entre ambas regiones se localiza una zona de transición (con línea de puntos). Adaptado de Anguita (2002).
En la parte superior del manto encontramos principalmente olivino (Mg,Fe)2SiO4,pero, conforme aumenta la profundidad, aumentan también la presión y la temperatura, lo que provoca una reconfiguración de su red cristalina. Los experimentos de laboratorio demuestran que bajo las condiciones de presión y temperatura reinantes a unos 515 kilómetros de profundidad se forma un mineral llamado ringwoodita (Mg2SiO4), que se comporta como una especie de esponja capaz de atraer hidrógeno y atrapar en su estructura cristalina los elementos que componen la molécula de agua. Dicho de otra forma: el agua presente en el manto no se encuentra en estado sólido, líquido o gaseoso, sino como hidróxido (moléculas de oxígeno e hidrógeno unidas entre sí) atrapado en este mineral (Figura 4).
Figura 4. Ringwoodita vista al microscopio. Fuente: Steve D. Jacobsen/Schmandt, B. et al. (2014).
La importancia de la ringwoodita no se limita al laboratorio. De hecho, en 2014 y 2022, el hallazgo de fragmentos inalterados de este mineral en el interior de diamantes naturales (Figura 5) proporcionó pruebas directas de su existencia en el manto. Los diamantes, formados por carbono puro cristalizado bajo condiciones extremas de presión, pueden contener impurezas que, si bien reducen su valor para la joyería, resultan de enorme interés científico. Estos diamantes, que ascendieron desde unos 700 kilómetros de profundidad impulsados por violentas erupciones volcánicas, actuaron como auténticas sondas naturales, atrapando materiales de la base del manto superior. Los análisis químicos realizados sobre ringwoodita natural indican que contiene algo más de un 1% de agua en su estructura cristalina, lo que, en términos prácticos, sugiere que el manto podría albergar una cantidad de agua equivalente a dos veces la de toda la hidrosfera.
Pero, ¿cómo llegó todo este agua hasta allí? Caben dos posibilidades: o fue arrastrada desde el exterior por la subducción de la corteza continental; o siempre estuvo allí presente.
Figura 5. Diamante encontrado en la República Centroafricana, con presencia de inclusiones minerales (manchas oscuras) de ringwoodita y circón. En Lorenzon et al. (2022).
2. ¿Cómo llegó el agua a la Tierra? Atravesando la línea de nieve.
Las estrellas nacen dentro de nebulosas constituidas por moléculas de gas y partículas de polvo. A medida que la nube primordial se contrae y colapsa por la gravedad de la estrella en formación, el momento angular aplana la distribución del material, formando un disco rotatorio que recibe el descriptivo nombre de disco protoplanetario (Figura 6). El hidrógeno es el elemento químico más abundante del universo, de lo cual se infiere que estaba presente en el disco protoplanetario solar hace unos 4.600 millones de años. Sin embargo, el oxígeno, que es necesario para formar el agua y los silicatos, apenas representa el 1% de los elementos químicos del universo.
Figura 6. Imagen del disco protoplanetario HL-Tauri, una estrella naciente situada a unos 450 años luz de la Tierra. Los surcos oscuros señalan las potenciales órbitas de futuros planetas. Es una de las imágenes más nítidas tomadas por ALMA (Atacama Large Millimeter/submillimeter Array). Fuente: Observatorio Europeo Austral (ESO).
En la región del disco próxima al recién formado Sol, el calor generado por el choque entre partículas provocó la sublimación del hidrógeno y otros elementos ligeros. Parte del oxígeno se unió a átomos de otros elementos, como el carbono, el magnesio, el hierro y el silicio para formar los silicatos que darían lugar a los planetas rocosos. Se cree que la génesis de estos mundos telúricos siguió un proceso gradual y jerárquico: primero se formaron pequeños cóndrulos del tamaño de un grano de arroz, los cuales crecieron hasta convertirse en guijarros y bloques. Estos acrecionaron hasta alcanzar las dimensiones kilométricas de los asteroides y los planetesimales. Los modelos señalan que en este contexto un planeta del tamaño de la Tierra tardaría en formarse menos de 30 millones de años.
Lejos del Sol, las bajas temperaturas permitieron que las sustancias volátiles como el agua, quedaran atrapadas en forma de hielo. La frontera entre ambos dominios recibe el nombre de línea de nieve (Figura 7). Según las teorías tradicionales, el agua debió llegar a la Tierra desde allí, viajando a bordo de asteroides y cometas.
Figura 7. La línea de nieve es la frontera que separa dos ambientes en el disco protoplanetario: un interior caliente y seco, poblado por planetesimales rocosos; y un exterior frío con abundantes planetesimales de hielo. En 2023 el Telescopio James Web detectó la presencia de moléculas de agua en el interior de 4 discos protoplanetarios de estrellas similares al Sol. Estas observaciones no encajan con el modelo clásico de línea de nieve, actualmente en revisión. Fuente: elaboración propia.
¿Cómo sabemos que la primitiva Tierra era en origen un mundo seco que se hidrató con el agua procedente del Sistema Solar exterior? La clave reside en la firma isotópica del hidrógeno.
La huella dactilar del agua
El término isótopo significa en griego “mismo lugar” y hace referencia a aquellos elementos químicos que aunque ocupan una “misma posición” en la Tabla Periódica (poseen un mismo número atómico), pero tienen distinta masa atómica debido a la presencia de neutrones. Para el caso de la molécula de agua (H2O) debemos tener en cuenta que tanto el hidrógeno como el oxígeno cuentan con isótopos estables. Para el caso que nos ocupa nos interesa centrarnos solo en los dos isótopos del hidrógeno: el protio y el deuterio (Tabla I).
Se llama relación isotópica de una muestra de agua al cociente que se obtiene al dividir la cantidad del isótopo más escaso entre la cantidad del isótopo más abundante. Para el hidrógeno del agua correspondería la relación del deuterio (D) respecto del protio (H), también conocida como relación D/H. El resultado numérico que se obtiene se compara con una muestra de referencia conocida como VSMOW (siglas de Viena Standard Mean Ocean Water –agua oceánica media estándar de Viena). Dicha muestra es agua marina destilada que se conserva en la Agencia Internacional de Energía Atómica con sede en Viena, y que, en términos prácticos, es equivalente a la huella dactilar del agua de la Tierra.
La relación D/H nos permite comparar la química del agua de la Tierra con muestras procedentes de otros cuerpos del Sistema Solar. Estos análisis comparativos nos enseñan dos cosas:
1. Durante mucho tiempo los cometas fueron los mejores candidatos a “aguadores” debido, precisamente, a que contienen gran cantidad de agua. No obstante, en el año 2015 la misión Rosetta de la Agencia Espacial Europea zanjó definitivamente el debate al analizar in situ la superficie del cometa 67P/Churyumov-Gerasimenco. Los datos mostraron que su relación D/H es tres veces mayor que la de nuestros océanos.
2. El análisis de los meteoritos de tipo condrita, que tienen su origen en los asteroides de la parte exterior del cinturón principal, tienen una relación D/H similar los océanos terrestres (Figura 8).
Figura 8. Comparativa entre las Relaciones D/H del agua de los océanos terrestres (155,7 x 10-6), con muestras de condritas carbonáneas hidratadas (149 x 10-6), micrometeoritos recogidos en la Antártida (154 x 10-6) y cometas (290-320 x 10-6). Aunque los cometas son buenos candidatos para ejercer de “aguadores”, los datos isotópicos descartan esta posibilidad. Fuente: adaptado de Pinti (2005).
Un inesperado regalo del cinturón de asteroides
Las condritas son un tipo de meteoritos que debe su nombre a las diminutas esferas o cóndrulos de silicato que contienen. Como ya hemos visto, fueron los primeros que se formaron por acreción, y su datación radiométrica ha permitido establecer la edad canónica del Sistema Solar en 4.569 millones de años (Figura 9).
Figura 9. Cóndrulos en un fragmento del meteorito de Allende. Fotografía de James St. John- Wikimedia Commons.
De los varios tipos de condrita que existen, las de tipocarbonáceo presentan minerales hidratados y compuestos orgánicos ricos en nitrógeno y carbono. Por lo general proceden de asteroides primitivos (el choque entre ellos libera escombros que alcanzan la Tierra en forma de meteoritos), que son aquellos cuya composición química se estableció en el disco protoplanetario y conservan las huellas de los procesos que ocurrieron durante los primeros instantes de la formación y evolución del Sistema Solar (Figura 10). Este tipo de asteroides fueron muy numerosos en el pasado, pero los modelos señalan que el crecimiento y posterior migración de Júpiter y Saturno hasta su posición actual, provocó que miles de ellos fueran lanzados hacia el Sistema Solar interior, llevando agua y otros elementos volátiles hasta las órbitas de los planetas terrestres.
Figura 10. Dos asteroides primitivos: Bennu (izquierda) y Ryugu (derecha). Bennu (de 490 m de diámetro) fue visitado en octubre de 2020 por la misión Osiris-Rex de la NASA, que perforó su superficie y recogió 122 gramos de polvo y rocas que llegaron a la Tierra en septiembre de 2023. El asteroide Ryugu (de 896 m de diámetro) fue visitado en 2019 por la sonda Hayabusa 2, de la Agencia Japonesa de Exploración Aeroespacial (JAXA). Las muestras llegaron a la Tierra en 2020. Fuente: NASA/JAXA.
En la noche del 28 de febrero de 2021, varias cámaras especiales para la detección de bólidos, captaron una gran bola de fuego sobre Reino Unido. Su fulgor llamó la atención de más de mil testigos y la trayectoria de caída fue registrada por decenas de cámaras de timbres y salpicaderos. La masa principal (319,5 g) del meteorito se descubrió por la mañana en la localidad de Winchcombe, en la puerta de una vivienda (Figura 11).
Figura 11. Meteorito Winchcombe durante los análisis que se realizaron para establecer su contenido en agua. Gracias a la colaboración ciudadana se pudieron recoger varios fragmentos en pocas horas, un detalle importante si tenemos en cuenta que las condritas carbonáceas son muy susceptibles a la alteración por el entorno terrestre y que las firmas isotópicas pueden modificarse en cuestión de días. Fuente: Museo de Historia Natural, Londres.
De todos los análisis químicos a los que fue sometido el meteorito Winchcombe, nos interesan especialmente tres resultados: (1) se trata de una condrita carbonácea, (2) presenta un alto contenido en agua (un 10% de su peso), y (3) este agua tiene una firma isotópica idéntica a la hidrosfera terrestre.
Impactos a hipervelocidad
La transferencia de agua mediante impactos es el mecanismo de hidratación planetaria que mejor se ha estudiado experimentalmente. En las instalaciones del campo de tiro vertical de la NASA, se hicieron colisionar a hipervelocidad (unos 18.000 kilómetros por hora -catorce veces la velocidad del sonido-), proyectiles de antigorita, un mineral análogo a las condritas carbonáceas, contra objetivos de piedra pómez anhidra. Después de cada experimento se recuperaron los productos de impacto, que básicamente consistían en vidrios generados por la enorme presión, algunos restos de antigorita y brechas ricas en material fundido (Figura 12).
Figura 12. Fogonazo de impacto a hipervelocidad. Fuente: NASA/ Ames Research Center, Mountain View, California.
Sorprendentemente, los impactos liberaron mucha más agua de la esperada. Estos experimentos han demostrado que los objetos similares a las condritas carbonáceas pudieron entregar hasta un 30% de su agua indígena a cuerpos de silicato como la Tierra, bajo las velocidades y los ángulos de impacto que prevalecieron durante las fases tempranas de la formación de los planetas terrestres. Estos resultados plantean, además, la posibilidad de que estos planetas en crecimiento atraparan agua en sus interiores a medida que crecían.
3. ¿Cuándo se formó el primer océano?
En enero de 2001 se hizo pública la primera evidencia científica de la existencia de un océano en la joven Tierra. La prueba llegó de la mano de circones detríticos (como los granos de arena de un río o una playa) encontrados en el interior de rocas cuarcíticas en el Distrito Murchison de Australia Occidental. La edad de los circones se determinó mediante dataciones radiométricas de Uranio-Plomo, y las condiciones ambientales se establecieron con ayuda del análisis de isótopos de oxígeno. Las pruebas señalan que estos circones se formaron hace unos 4.300 millones de años a partir de magmas que contenían un aporte significativo de corteza continental retrabajada, y que se formaron en presencia de agua cerca de la superficie de la Tierra. En definitiva: la Tierra contaba con una hidrosfera estable que interactuaba con la corteza 250 millones de años después de su formación.
Las teorías de cómo este primer océano se pudo formar y permanecer estable en la superficie terrestre se basan en la especulación y la modelización geofísica. A pesar de ello, hay determinadas ideas clave que nos permiten inferir algunas pinceladas de esta historia (Figura 14):
Figura 14. Secuencia evolutiva de la joven Tierra y los principales acontecimientos que llevaron a la formación del primer océano. Fuente: adaptado de Pinti (2005).
La Tierra primigenia recibió numerosos impactos de asteroides y planetesimales. El gran impacto que formó la Luna (Theia), hace unos 4.530 millones de años, liberó tanta energía que fundió por completo al menos el 70% la superficie terrestre.
La joven Tierra era un cuerpo muy caliente, con un elevado flujo térmico que provocaría unaintensa actividad volcánica. La intensa desgasificación provocada por el vulcanismo masivo, acumuló en la atmósfera dióxido de carbono (CO2) y vapor de agua, lo que provocaría un intenso efecto invernadero que mantendría caliente la superficie terrestre.
Para que una masa de agua líquida sea estable en la superficie de un planeta, esta debe encontrarse por debajo del llamado punto crítico del agua, es decir,bajo condiciones de presión y temperatura que permitan distinguir el estado líquido del estado gaseoso. La presión crítica es de 221 bar (aproximadamente 221 veces la presión atmosférica normal), y la temperatura crítica es de 374 ºC. Una fuerte presión atmósfera de CO2 permitiría la existencia de agua líquida, aunque la temperatura de la superficie terrestre fuese superior a los 200 ºC por el efecto invernadero.
Dos son los factores que permiten que un planeta pueda retener una atmósfera con elementos volátiles como el agua: un fuerte campo gravitatorio (que depende de la masa) y la presencia de un campo magnético que pueda protegerla del viento solar.
Conforme la concentración de CO2 disminuía y la superficie terrestre se iba enfriando, se condensaba el vapor de agua presente en la atmósfera y aumentaban las precipitaciones.
La lenta disolución del CO2 atmosférico debió acidificar aquel primer océano estable.
El estudio de la superficie lunar sugiere que entre 4.100 y 3.900 millones de años pudo tener lugar un episodio conocido como Bombardeo Tardío Intenso . Considerando que la superficie terrestre es catorce veces más grande que la de la Luna, y que la gravedad de la Tierra es seis veces mayor (lo que implica mayor capacidad de atracción), se ha calculado que sobre la Tierra debieron caer un número de asteroides unas 20 veces mayor que sobre la Luna. En este escenario, la colisión de un asteroide de 200 kilómetros de diámetro harían hervir los 200 primeros metros de un océano en todo el planeta; y el impacto de un objeto de 500 kilómetros pondría en ebullición la hidrosfera terrestre en su totalidad.
Con estos ingredientes la comunidad científica se ha aventurado a recrear artísticamente cómo pudo ser aquel primer océano hacia el final del eón Hádico (Figura 15). Pero, como suele ser común en ciencia, el pozo de las realidades a veces solo es una ilusión provisional.
Figura 15. Recreación artística de cómo pudo ser la Tierra hace 4.200-3.900 millones de años. Fuente: Stephen Mojzis/University of Colorado/NASA Lunar Science Institute/William Bottke/Southwest Research Intitute.
Anguita, F. y Castilla, G. (2010). Planetas. Una guía para exploradores de la frontera espacial. Editorial Rueda.
Daly, R. T. y Schultz, P.H. (2018). The delivery of water by impacts from planetary accretion to present. Science Advances, Vol 4, nº 4.
Glavin, D.P. et al. (2025). Abundant ammonia and nitrogen-rich soluble organic matter in samples from asteroid (101955) Bennu. Nature Astronomy, Vol.9 pp. 199-210.
Hallis, L.J. (2017). D/H ratios of the inner Solar System. Philosophical Transactions of the Royal Cosiety A. Vol. 375, nº 2094.
Hernández-Bernal, M.S. y Solé, J. (2010). Single chondrule K-Ar and Pb-Pb ages of Mexican ordinary chondrites as tracers of extended impact events. Revista Mexicana de Ciencias Geológicas, Vol. 27, 1. Pp. 123-133.
Jewitt, D.J. y Young, E.D. (2015) El origen del agua en la Tierra. Investigación y Ciencia, 464 (mayo), pp. 54-61.
Quentin Kral, P.H. et al. (2024). An impact-free mechanism to deliver water to terrestrial planets and exoplanets. Astronomy and Astrophysics, Vol. 692, A70.
King, A.J. et al. (2022). The Winchcombe meteorite, a unique and pristine witness from the outer solar system. Science Advances, Vol. 8, nº 46.
Lorenzon, S. (2022) et al. Ringwoodite and zirconia inclusions indicate downward travel of super-deep diamonds. Geology, Vol. 50 (9), 996-1000.
Mojzsis, S.J.; Harrison, T.M. y Paloma, R.T. (2001). Oxygen-isotope evidence from ancient zircons for liquid water at the Earth’s surface 4,300 Myr ago. Nature, Vol. 409 (6817), pp.178–18.
Pearson, D. et al. (2014). Hydrous mantle transition zone indicated by ringwoodite included within diamond. Nature507, 221–224.
Pinti, D.L. (2005). The Origin and Evolution of the Oceans. En Advances in Astrobiology and Biogeophysics, pp. 83–112.
Rubin, A. (2013) Meteoritos primitivos. Investigación y Ciencia, 439 (abril), pp. 24-29.
Schmandt, B. et al. (2014) Dehydration melting at the top of the lower mantle. Science, Vol. 344. Pp. 1265-1268.
Trigo-Rodríguez, J.M. et al. (2019). Accretion of water in carbonaceous chondrites: current evidence and implications for the delivery of water to early Earth. Space Science Riews, Vol. 215, 18.
Autores – Gabriel Castilla Cañamero, Iván Martín-Méndez y Enrique Merino Martínez
Allí donde se manifiesta el mineral, la eternidad habla.
Michel Onfray. Estética del Polo Norte, 2015
A finales de febrero de 1896, el químico Henri Becquerel realizó un experimento curioso: colocó un paquete de sales de uranio junto a una placa fotográfica envuelta en papel negro y las guardó en el cajón de un escritorio. Días después, descubrió que las sales habían dejado unas manchas borrosas en la placa, como si algún tipo de rayo invisible capaz de atravesar los objetos hubiera dejado su huella (Figura 1). Intrigado por la naturaleza de este fenómeno, compartió el hallazgo con una investigadora de doctorado de origen polaco llamada Marie. En junio de 1903, Marie defendió su tesis doctoral titulada: Investigaciones sobre sustancias radiactivas, en la que demostraba que ciertos elementos, como el uranio, emiten energía de forma constante. Pocos meses después, Bequerel, Marie y su esposo Pierre Curie fueron galardonados con el Premio Nobel de Física por el descubrimiento de la radiactividad espontánea.
Figura 1. Plancha fotográfica de Henri Becquerel que fue expuesta a la radiación emitida por el uranio a finales de febrero de 1896. Este tipo de descubrimiento, totalmente casual pero de gran valor científico, se conoce como serendipia. En la imagen se aprecia la forma de una cruz de Malta que se encontraba guardada en el mismo cajón, entre la placa fotográfica y las sales de uranio. Fuente: Archivo Becquerel/Wikipedia Commons.
Apenas un año después, el físico Ernest Rutherford descubrió que los elementos químicos radiactivos se transforman en otros a lo largo del tiempo: el uranio (U), por ejemplo, se convierte lentamente en plomo (Pb). Esta transformación, denominada desintegración radiactiva, ocurre a velocidad constante y predecible (Figura 2). Rutherford sugirió al químico Bertram Boltwood una idea revolucionaria: la posibilidad de usar esta descomposición radiactiva para calcular la edad de una roca midiendo la proporción de los dos elementos presentes en ella. En 1907, Boltwood aplicó por primera vez este principio al binomio uranio-plomo en una serie de muestras de rocas y estimó que algunas de ellas podían tener hasta 2.200 millones de años de antigüedad. Así, en apenas una década, el estudio de la radiactividad dio origen al método de datación radiométrica y permitió cuantificar el tiempo geológico con precisión numérica.
Figura 2. Como se puede apreciar en la gráfica, la descomposición radiactiva es un proceso de tipo exponencial. En rojo tenemos la cantidad de elemento radiactivo presente en cada momento: primero disminuye muy rápido y luego más lentamente hasta llegar a cero. La vida media o período de semidesintegración es el tiempo que tarda un conjunto de átomos en quedar reducido a la mitad. Como podemos ver en la Tabla I, algunas desintegraciones son tan lentas que tienen vidas medias más largas que la vida del Universo. Adaptado de Anguita (1988).
La idea era prometedora, pero…
Pese a la promesa del método, los pioneros de la datación tuvieron que salvar tres grandes obstáculos:
1º. Falta de conocimiento sobre los isótopos: Rutherford y Boltwood desconocían la existencia de los neutrones en el núcleo de los átomos y por tanto el papel que juegan los isótopos en el proceso de desintegración.
2º. Dudas sobre lo que se databa exactamente: Existían serias dudas sobre si las dataciones obtenidas señalaban la edad de cristalización de los minerales, la edad de formación de las rocas, o simplemente la antigüedad de los elementos químicos que los forman. Tampoco estaba claro si se podía aplicar este método a rocas ígneas, metamórficas y sedimentarias por igual.
3º. Limitaciones técnicas: A los problemas de índole teórico, había que sumarle las dificultades técnicas; aislar y medir con suficiente precisión pequeñas cantidades de elementos en las rocas requería de instrumentos que aún no existían.
El papel de los isótopos.
Los elementos químicos están formados por átomos, los cuales, a su vez, están compuestos por electrones, protones y neutrones. Sin embargo, estos últimos no fueron descubiertos hasta 1932, cuando el físico James Chadwick los identificó. En los elementos químicos, el número de protones define su identidad; el número de neutrones, en cambio, puede variar. Hoy sabemos que muchos elementos químicos poseen isótopos, es decir: variantes de un mismo elemento que difieren en el número de neutrones presentes en el núcleo. En la naturaleza existen dos tipos de isótopos: los estables y los inestables (o radiactivos), y son estos últimos los que se pueden emplear en las dataciones.
En el caso del uranio, la Tabla Periódica de los Elementos indica que su número atómico es 92, lo que significa que en estado natural posee 92 electrones y 92 protones, además de un número variable de neutrones que define sus tres isótopos:
1.- El Uranio-234 (234U) con 92 protones y 142 neutrones.
2.- El Uranio-235 (235U), que tiene 92 protones y 143 neutrones.
3.- El Uranio-238 (238U), que posee 92 protones y 146 neutrones.
En términos prácticos, esto quiere decir que en 1 gramo de uranio están presentes los tres isótopos en distinta proporción. El más abundante en la naturaleza es el 238U que representa el 99,2 % de la masa de cualquier muestra que tomemos al azar, y le siguen el 235U con un 0,7 % y el 234U con menos de un 0,1 %.
Los tres isótopos de Uranio (U) son radiactivos, pero los dos primeros se usan comúnmente en geocronología porque se desintegran a isótopos estables de plomo (Pb): el 238U se transmuta por descomposición radiactiva en 206Pb, un proceso cuya vida media es de 4.470 millones de años (Figura 3), mientras que el 235U se transforma en 207Pb en un tiempo medio de 700 millones de años.
Figura 3. Secuencia de trasmutaciones que llevan del uranio-238 al plomo-210. El polonio-214 (que debe su nombre a la tierra natal de Marie Curie) es el isótopo más inestable de la serie, con una vida media de menos de un segundo. Adaptado de Anguita (1988).
El triunfo de la datación mediante uranio-plomo
El binomio uranio-plomo es ideal para datar rocas antiguas debido a su larga vida media. De hecho fue empleado por el geólogo norteamericano Clair Patterson para alcanzar uno de los hitos más importantes en geología: establecer por primera vez la edad absoluta de la Tierra.
¿Cómo lo hizo?
A su director de tesis, el geoquímico Harrison Brown, se le ocurrió la idea de que, en lugar de centrarse en medir la cantidad de uranio presente en una roca antigua, sería más sencillo detectar la presencia de isótopos de plomo acumulado como producto de su desintegración. Esta técnica, conocida hoy como método de acumulación o datación plomo-plomo, permitió abordar el problema desde una nueva perspectiva, evitando errores debido a la pérdida o ganancia de uranio. Pero, ¿dónde encontrar muestras de roca a priori tan antiguas como la propia Tierra? Patterson asumió acertadamente que los planetas se formaron como resultado de un proceso de acreción de partículas a partir de una nebulosa de gas y de polvo, y que los meteoritos que en la actualidad impactan contra la Tierra son los escombros supervivientes de aquel proceso. O sea: se propuso datar estos “ladrillos sobrantes” para estimar cuándo comenzó a formarse la edad del “edificio planetario”.
Aislar una suficiente cantidad de minerales presentes en meteoritos (rocas de origen extraterrestre y, por tanto, ya de por sí escasas), que contuvieran algo de uranio, pero sobre todo plomo, fue una tarea ardua. Además, debía asegurarse que estas muestras no estuvieran contaminadas por agentes externos, como el plomo procedente de la combustión de gasolina. Este desafío requirió siete años de meticuloso trabajo y llevó al diseño y a la creación del primer laboratorio de geoquímica esterilizado del mundo (hoy en día denominados “Salas Blancas” – Figura 4-).
Figura 4. Clair Patterson limpiando su laboratorio para evitar la contaminación. Fuente: Archivos y Colecciones Especiales del Instituto Tecnológico de California (Caltech ArchivesCCP145.5-7).
Finalmente, en 1953, las muestras fueron analizadas con la ayuda de un (entonces novedoso) espectrómetro de masas, un instrumento que permite separar con mucha precisión los elementos que constituyen un mineral. ¿El resultado? Patterson calculó la edad de la Tierra en 4.550 millones de años, con un margen de error de más o menos unos 70 millones de años, (¡menor del 2% a pesar de los medios disponibles en ese momento!). En líneas generales este valor continúa siendo válido en la actualidad.
El circón: una trampa para el uranio
A medida que avanzaba el conocimiento sobre la vida media de las transmutaciones radiactivas de los isótopos y mejoraba la precisión de la espectrometría de masas, surgieron nuevos métodos de datación radiométrica, útiles para datar diferentes tipos de rocas y minerales (Tabla I). A pesar de ello, el método uranio-plomo sigue siendo el más fiable para calcular la edad de rocas muy antiguas, y la principal razón es que hoy disponemos de una técnica mucho más depurada gracias al papel que desempeña un mineral con propiedades extraordinarias: el circón.
El circón (silicato de zirconio: ZrSiO4) es un mineral accesorio de pequeño tamaño que cristaliza a partir de magmas procedentes del manto superior o de la base de la corteza terrestre, por lo que es un mineral muy común en rocas ígneas, como el granito (Figura 5). Durante su formación tiende a incorporar diversos elementos que reemplazan parcialmente el circonio (Zr) en su estructura cristalina, tales como uranio, torio, titanio y elementos de las tierras raras; pero rechaza fuertemente el plomo durante su crecimiento. Una vez cristalizado, retiene estos elementos, principalmente el uranio, del que puede llegar a tener entre 100 y 1000 ppm (partes por millón). Y puesto que rechazó el plomo durante la cristalización, cualquier plomo que aparezca posteriormente dentro de su estructura se debe exclusivamente a la desintegración radiactiva. Es decir, se puede asumir que todo el 206Pb y 207Pb presentes cuando se analiza una muestra tiene su origen en la descomposición radiogénica del uranio.
Figura 5. Circones centimétricos (flechas) cristalizados en un granito procedente de Paquistán (izquierda) y aspecto de un ejemplar de tamaño submilimétrico visto con una lupa (derecha). Fuente: colección Gabriel Castilla y Wikipedia Commons.
Además, el circón es durísimo y resiste altas temperaturas, presiones y procesos geológicos como el metamorfismo o la erosión, lo que le permite conservar su firma isotópica incluso después de miles de millones de años. Puede crecer (recristalizar) en rocas metamórficas en condiciones de alta presión y hasta 900 ºC de temperatura, permitiendo datar el evento (o los eventos) en el que volvió a integrar uranio en su estructura (que posteriormente volverá a transformarse en plomo). Igualmente, su gran dureza le permite sobrevivir intacto a ciclos de erosión, transporte y sedimentación, manteniéndose “químicamente estable” en forma de grano detrítico en el interior de rocas sedimentarias, y permitiendo datar la edad máxima de deposición de esas rocas.
Receta para analizar un circón
1º. Se realiza un estudio de campo y se recolectan las muestras de roca de interés.
2º. Las rocas son molidas y tamizadas. El polvo grueso de roca obtenido es lavado y separado por gravedad para concentrar los minerales más pesados.
3º. Los concentrados de minerales pesados se seleccionan y extraen con un separador magnético.
4º. La purificación final se logra separando a mano cada circón. Como no miden más de 1mm esta tarea se realiza con ayuda de una lupa binocular y pinzas finas.
5º. Los circones se pegan en cinta de doble cara y se montan en moldes, que son rellenados con una resina.
6º Cuando la resina ya está consolidada, se pule para que la parte central de los minerales quede expuesta y se pueda analizar.
En la actualidad los circones se analizan química e isotópicamente mediante varias técnicas derivadas de la espectrometría de masas, principalmente dos:
(1) La microsonda iónica de alta resolución (Super High-Resolution Ion Micro-Probe, también conocida como SHRIMP).
(2) El espectrómetro de masas de plasma acoplado inductivamente y ablación láser (LA-ICP-MS, siglas de Laser Ablation Inductively Coupled Plasma Mass Spectrometer).
Estas técnicas permiten estudiar con gran precisión partes muy concretas de un cristal, vaporizan los átomos de uranio y plomo que surgen de un punto seleccionado (Figura 7). Los datos que se obtienen se procesan y se corrigen para ser usados en los cálculos de relaciones isotópicas de U-Pb (y Th) y estimación final de edades.
Figura 7. Circón procedente del gneis de Acasta (Canadá). Los pequeños círculos que se observan fueron producidos por haces de iones que vaporizaron partes del cristal para establecer la relación de uranio y plomo en esos puntos concretos. Ha sido datado en unos 4.000 millones de años. Adaptado de York (1993).
Una gráfica para datarlos a todos
Cuando se forma un circón (cristaliza por debajo de los 900 º C), el sistema uranio-plomo se reinicia. A medida que pasa el tiempo los isótopos de plomo creados por la descomposición radiactiva del uranio quedan atrapados y se concentran. Si nada lo perturba, datarlo es muy sencillo: solo habrá que situar las concentraciones de plomo respecto al uranio inicial sobre una gráfica, la llamada curva de concordia, que se construye relacionando las cantidades de isótopos de plomo que se forman a partir de los dos principales isótopos de uranio (Figura 8a).
Figura 8a. Curva de concordia para el sistema uranio-plomo. El hecho de conocer con precisión las vidas medias de los dos principales isótopos del uranio nos permite construir una gráfica con proporciones plomo/uranio muy concretas para los 4.550 millones de años de historia de la Tierra. En una roca de 704 millones de años, el 235U está en su vida media por lo que habrá una relación Pb/U = 1. En una roca de 1.408 millones de años solo quedará un átomo de 235U por cada tres átomos de 207Pb, por lo que la relación Pb/U = 3, y así sucesivamente. En el caso del 238U la descomposición es más lenta, por eso en ese eje de la gráfica las relaciones adoptan valores menores que 1. Los puntos negros sobre la curva señalan las edades para esas proporciones en giga años (Ga), es decir miles de millones de años (1Ga = 1000.000.000 años).
Es muy raro que a lo largo de los miles de millones de años de la historia de la Tierra un circón no se vea alterado por cambios de presión y temperatura en su entorno. Cuando esto sucede, pueden escapar isótopos de plomo, por lo que las dataciones ya no caerán exactamente sobre la curva de concordia. Es decir, se abre y distorsiona el sistema isotópico. Es aquí cuando toma sentido datar muchos circones con el fin de establecer diversos niveles de pérdida de plomo y con ellos establecer una recta de discordia, recta que cortará la curva de concordia en dos puntos, lo que proporcionará información sobre la edad del circón y sobre el supuesto momento en que se produjo el episodio de metamorfismo que alteró la química del mineral (Figura 8b).
Figura 8b. Diagrama de concordia para tres muestras de circones (M1, M2 y M3) de una roca antigua que ha experimentado una alteración por metamorfismo (cambio de presión y temperatura pero sin llegar a fundir). La recta de discordia intersecta la curva “por arriba” en 3.2 Ga, revelando la edad de la roca que contiene las tres muestras, y “por abajo” en 2 Ga, señalando el momento en que se produjo el episodio de alteración metamórfica que desencadenó la pérdida de plomo. Adaptado de York (1993) y elaboración propia.
Nuevos avances en datación U-Pb
El circón sigue siendo el mineral insignia para la datación geocronológica, por su resistencia y fiabilidad. Sin embargo, los nuevos avances en la precisión de los métodos instrumentales y analíticos han permitido que, además del circón, actualmente se pueden datar otros minerales mediante el método uranio-plomo. Algunos de los más utilizados son:
Monacita (CePO4): rica en uranio y torio, y común en rocas metamórficas y graníticas. Es menos resistente al metamorfismo que el circón, pero muy útil en geología regional para datar procesos metamórficos.
Xenotima (YPO4): similar a la monacita pero con itrio en lugar de cerio. También incorpora uranio y se encuentra en rocas ígneas y metamórficas.
Titanita (o esfena, CaTiSiO5): contiene uranio en cantidades moderadas, siendo más susceptible a pérdidas de Pb que el circón. Se emplea en rocas ígneas y metamórficas, siendo importantes en rocas pobres en circón.
Baddeleyita (ZrO2): se encuentra en basaltos y gabros antiguos, y rocas mantélicas donde el circón es raro o ausente.
Bibliografía consultada.
Allégre, C.J.; Manhès, G. y Göpel, C. (1995). The age of the Earth. Geochimica et Cosmochimica Acta, Vol. 59 (8), pp.1445-1456.
Anguita, F. (1988). Origen e Historia de la Tierra. Editorial Rueda.
Bellucci, J.J. et al. (2019). Terrestrial-like zircon in a clast from an Apollo 14 breccia. Earth and Planetary Science Letters 510, pp. 173-185.
Bryson, B. (2003). Una breve historia de casi todo. Edición especial ilustrada. RBA Editores.
Casado, M. J. (2006). Las damas del laboratorio. Editorial Debate.
Greshko, M. (2019). La posible roca más antigua de la Tierra se recogió en la Luna. National Geographic. Versión on-line.
Guo, J-L. et al. (2000). Significant Zr isotope variations in single zircon grains recording magma evolution history. Proceedings of the National Academy of Sciences, Vol. 117 (35), pp. 21125-21131.
Harley, L. y Kelly, N.M. (2007). Zircon- Tyny but Timely. Elements, 3 (1).
Mennekem, M. et al. (2007). Hadean diamonds in zircon from Jack Hills, Western Australia. Nature 448 (7156), pp. 917-920.
Naipauer, M. (2021). Circones, los relojes de la Tierra. Ciencia Hoy, Vol. 30, n. 176, pp. 51-57.
Patterson, C. (1956). Age of meteorites and the Earth. Geochimica et Cosmochimica Acta, Vol. 10, pp.230-237.
Valley. J. W. et al. (2014). Hadean age for a post-magma-ocean zircon confirmed by atom-probe tomography. Nature Geoscience 7, pp. 219-223.
Wilde, S.A.; Valley, J.W.; Peck, W.H. y Graham, C.M. (2001). Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago. Nature, 409 (6817), pp.175-178.
York, D. (1993). Protohistoria de la Tierra. Investigación y Ciencia, 198 (marzo), pp.40-47.
Un año más, desde Geología desde Ávila tenemos el placer de anunciar que vuelve el Geolodía. En esta edición 2025, os proponemos un emocionante recorrido geológico por uno de los grandes iconos de nuestra provincia: la muralla de Ávila.
El Geolodía Ávila 2025 se celebrará el domingo 11 de mayo y, como siempre, será una actividad gratuita y abierta a todos los públicos, sin necesidad de inscripción previa. Solo será necesario registrarse en el punto de salida, situado en la Puerta del Carmen (frente al Centro de Congresos Lienzo Norte), entre las 9:30 y las 12:30 h.
Durante el recorrido, invitamos a peques y mayores a descubrir cómo ha cambiado la Tierra a lo largo del tiempo. Para ello, contaremos con cuatro carpas temáticas dedicadas a los distintos eones geológicos, donde nuestro equipo de voluntarias y voluntarios —geólogas, geólogos y amantes de la divulgación— explicarán la evolución del planeta desde sus orígenes hasta hoy.
Además, se entregará una guía de campo impresa, con actividades y pasatiempos que irás completando con los sellos de cada eón, sin dejar de visitar la carpa inicial y la final para hacerte con los 6 sellos. ¡Complétalos todos y consigue el premio final!
El Geolodía es una iniciativa de ámbito estatal que se celebra simultáneamente en todas las provincias españolas, con el objetivo de acercar la geología a la sociedad a través de itinerarios guiados, accesibles y gratuitos. En Ávila, volvemos a apostar por una propuesta inclusiva, participativa y educativa, pensada para todos los públicos, desde personas curiosas hasta auténticos fans de la Tierra.
Os esperamos el 11 de mayo para disfrutar de una jornada de geología histórica al aire libre y redescubrir nuestro planeta con otros ojos: los ojos de la geología.
Este año no llegamos a tiempo de participar con este retrato alfabético en la iniciativa de escritura creativa del mes de febrero 2025 de Café Hypatia: mujer y ciencia. #PVmujerciencia25 #11F #Polivulgadoras, pero aprovechamos el 8M Día Internacional de la Mujer Trabajadora para compartir este relato alfabético de la vida de Marie Tharp.
Analizó por primera vez, de manera detallada, los datos de batimetría del mar, pudiendo descubrir «montañas» en el fondo marino.
Primeros seis perfiles batimétricos del océano Atlántico representados por Marie Tharp. Créditos: Documento Especial #65 de la Sociedad Geológica de América – Los suelos de los océanos: I. Atlántico Norte
Batimetría, la ciencia utilizada por Tharp para estudia la topografía de fondo de lagos y mares en función del espesor de la columna de agua.
Marie Tharp dibujando el diagrama fisiográfico del océano Atlántico Norte. A la izquierda se ven los registros de sondeos, un prototipo del globo terráqueo con las dorsales representadas se encuentra en el medio, y una versión ampliada de sus seis perfiles del Atlántico Norte se ve en el esquina superior derecha de la foto. Finales de la década de 1950. Créditos: Lamont-Doherty Earth Observatory.
Contratada para redactar y hacer cálculos para los estudiantes de la Universidad de Columbia, conoció a Maurice Ewing y Bruce Heezen trabajando para sus investigaciones.
Dió a conocer los fondos marinos con la publicación del primer mapa fisiográfico del Atlántico Norte en 1957. No pudo ser un mapa topográfico en detalle porque el gobierno norteamericano clasificó estos datos al considerar que podían resultar beneficiosos para la Unión Soviética en plena Guerra Fría.
En 2016, Google Earth lanzó una extensión descargable con el mapa histórico de Maire Tharps.
Imagen de Google Earth con el mapa histórico de Marie Tharp. Fuente: Google Earth.
Fue una de las Petroleum Geology Girls cuando se permitió a las mujeres entrar en el mundo de la Geología del Petróleo ante la necesidad de encontrar nuevos yacimientos de combustible para continuar en la guerra; siendo Standard Oil and Gas su primer lugar de trabajo.
Geología, una disciplina considerada masculina como muchas otras en esa época. Con la II Guerra Mundial los hombres se fueron al frente y la falta de geólogos posibilitó a las mujeres estudiar esta ciencia.
Hija única de Bertha Louise Tharp, maestra de alemán y latín , y William Edgar Tharp, topógrafo del Departamento de Agricultura de los Estados Unidos . Nació en Ypsilanti (Michigan) en 1920, y menudo acompañaba a su padre en su trabajo de campo, lo que le dio una temprana introducción a la cartografía.
Marie Tharp ayudando a su padre en la cartografía de suelos. Créditos: colección personal Marie Tharp
Identificó la dorsal en el centro del océano Atlántico (1953), prueba de la expansión de los océanos, pero su compañero Heezen tardó más de un año en aceptar que pudiera tener razón ya que él era partidario de la teoría de la tierra en expansión.
En primer plano, Marie Thurp dibujando sus mapas a mano con lápiz y tinta tras procesar los datos de ecosonda. Bruce Heezen de pie al fondo Créditos: Joe Covello, National Geographic.
Juntó disciplinas como la geología, las matemáticas, la física y el dibujo en su trabajo diario, siendo hoy en día una referente de enfoque multidisciplinar de educación STEAM.
Kilómetros de líneas de datos les sirvieron a Maire Tharp y Bruce Heeze para cartografiar los distintos océanos del planeta y conocer así la realidad del fondo marino, hasta entonces interpretado como cubetas rellenas de fango.
Los mapas publicados entre 1959 y 1963 no contaban con el nombre de Marie Tharp, ni tampoco se le reconoció el mérito de ser la descubridora del rift de la dorsal mesoatlántica.
Marie Tharp trabajando con cientos de perfiles de ecosondeos para cartografiar la topografía del fondo oceánico. (Columbia, 1964). Créditos: Lamont-Doherty Earth Observatory.
Maurice Ewing fue un importante geofísico que estudiaba el comportamiento de las ondas sísmicas en la superficie de los continentes y que desarrolló varios instrumentos para el análisis topográfico de los mares, todo con respaldo del Gobierno Norteamericano por la importancia estratégica de los fondos marinos. Sería el jefe del laboratorio donde trabajó Marie, y ante sus logros junto a Bruce entorpeció sus trabajos negándoles las subvenciones para los viajes en barco y no renovando sus contratos en 1968.
No fue hasta 1977 que empezó a reconocerse su trabajo con el Premio Nacional de Ciencias de los Estados Unidos. Posteriormente llegaron otros reconocimientos: premio Hubbard de la National Geographic Society (1978), premio por sus logros de la Sociedad de Mujeres Geógrafas (1996), nombrada una de las Cartógrafas Más Destacadas del Siglo XX por la Sociedad Phillips de la Biblioteca (1997), Premio a la Mujer Pionera en Oceanografía de la Institución Oceanográfica Woods Hole (1999), y el primer Premio Honorífico Lamont-Doherty de la Universidad de Columbia (2001).
Organizado el primer congreso oceanográfico internacional en Nueva York, el famoso oficial naval Jacques Cousteau acudió en su buque Calypso desde Europa arrastrando por el lecho marino un trineo con cámaras convencido de poder desmentir la existencia de la dorsal que proponían Tharp y Heezen, sin embargo, lo que obtuvo fueron imágenes que confirmaban su existencia.
Prohido para las mujeres de EE.UU. trabajar en barcos, Tharp se encargaba de interpretar y representar en gabinete los datos que su compañero Bruce Heezen le mandaba desde el buque de investigación. No le permitieron embarcar hasta 1965, cuando Tharp tenía 45 años.
Quiso estudiar literatura como primera opción en St. John´s College (Annapolis) pero no admitían mujeres porque en ese tiempo las mujeres solo podían trabajar fuera de casa como maestras de escuela, enfermeras o secretarias.
Revolucionó la geología, la ciencia y la concepción del mundo. En sus propias palabras: “Yo tenía un lienzo blanco para llenar con extraordinarias posibilidades, un rompecabezas fascinante para armar. Eso era una vez en la vida –una vez en la historia del mundo–. Fue una oportunidad para cualquier persona, pero especialmente para una mujer de la década de 1940.”
Marie Tharp posa con su mapa, coloreado por Heinrich C. Berann, producido por National Geographic en 1968. Créditos: Lamont-Doherty Earth Observatory.
Se graduó en Inglés y Música en la Universidad de Ohio (1943), en Geología del Petróleo en la Universidad de Michigan (1944) y en Matemáticas en la Universidad de Tulsa (1948).
Tharp es el nombre puesto a un pequeño cráter de impacto situado en el hemisferio sur de la cara oculta de la Luna como homenaje por parte de la Unión Astronómica Internacional.
Parte del mapa de la cara oculta de la Luna del USGS donde se ve el cráter nombrado como Tharp. Fuente: Wikipedia
Un joven graduado en Bellas Artes, Howard Foster, fue contratado por Heezen para dibujar sobre el mapa del océano Atlántico los epicentros de los terremotos marinos registrados. Coincidían con la dorsal descubierta por Tharp y reforzaba su propuesta del movimiento de los continentes.
Vema era el nombre del barco que adquirió el Instituto Lamont en 1953, y con el que Bruce pudo recopilar todos los datos que Tharp cartografió a mano, representando cada detalle submarino.
World Ocean Floor Map (Mapa Mundial de los Fondos Oceánicos) fue su gran obra final, publicada en 1977 junto con Heezen y el pintor Heinrich Berann. Heezen no llegó a verlo publicado ya que murió por un infarto cuando se encontraba en un submarino en las costas de Islandia ese mismo año.
Tharp y Heezen repasando el mapa de los fondos marinos en elaboración por el pintor Heinrich Berann. Créditos: Lamont-Doherty Earth Observatory
Xerografía es elproceso con el que se reprodujeron muchos de sus mapas. En 1995 donó más de 40.000 artículos a la biblioteca del congreso norteamericano: información geológica y sísmica, datos de gravedad, mapas de referencia, revistas técnicas, informes, diagramas fisiográficos e incluso sus mapas del fondo oceánico.
Marie Tharp con los bibliotecarios del congreso Winston Tabb y James H. Billington visionando algunos de los articulos que Tharp donó a dicha biblioteca. Créditos: Rachel Evans.
Ya son muchos los reconocimientos a su figura, pero aún se sigue sin estudiar su nombre ni la importancia de sus descubrimientos para asentar los pilares fundamentales de la geología moderna.
Zambullida en un mundo de hombres, muchos fueron los obstáculos que le pusieron sus colegas masculinos y a los que tuvo que sobreponerse para hacer su trabajo.
Fotografía de Marie Trarp en 2001, junto al prototipo del globo terráqueo que hizo con Heezen en la década de los años 50, donde se representan las dorsales oceáncias. Marie falleció en 2006. Créditos: Lamont-Doherty Earth Observatory.
Autoras: Thais de Siqueira Canesin y Ana Isabel Casado
Según la Unión Internacional de Conservación de la Naturaleza (UICN): “Esencialmente, la geoconservación es la práctica de conservar, mejorar y promover el conocimiento de la geodiversidad y del patrimonio geológico. Por lo tanto, la geoconservación se ocupa principalmente de la conservación de características y/o elementos que tienen una importancia geológica o geomorfológica especial. La geoconservación puede ayudar a mantener la biodiversidady el funcionamiento de ecosistemas sanos”.
La geoconservación ha tomado relevancia en los últimos 30 años, siendo un pilar clave para la conservación de la naturaleza.
Otros conceptos necesarios para hablar de Geoconservación: geodiversidad y patrimonio geológico
La geodiversidad se refiere a la variedad de procesos y elementos geológicos (rocas, minerales, fósiles), geomorfológicos (geoformas) y pedológicos (suelos) que forman parte los ecosistemas (figura 1).
Figura 1: La geodiversidad se compone de los elementos geológicos, geomorfológicos, pedológicos y los procesos asociados que se encuentran en ese ecosistema, y que forman parte de él.
En 2004, el geocientífico Murray Gray publicó el primer libro dedicado a la geodiversidad, “Geodiversity: valuing and conserving abiotic nature”, donde describe cómo estas diversas características de la Tierra son esenciales para comprender tanto la historia geológica como el equilibrio de los ecosistemas.
Para determinar la importancia de la geodiversidad de un lugar hay que evaluar sus elementos geológicos en relación a su valor: 1- Intrínseco 2- Cultural 3- Estético 4- Económico 5- Funcional 6- Científico 7- Educativo
Un mismo lugar puede tener uno o varios de estos valores.
El patrimonio geológico es definido por la UICN como “los elementos de la geodiversidad de la Tierra que tienen un valor significativo científico, educativo, cultural o estético”.
La geoconservación son las acciones y medidas para preservar y/o conservar la geodiversidad y el patrimonio geológico para el futuro.
Las rocas, las cuevas, los valles, los fósiles, los volcanes… son esenciales para que la ciencia pueda entender y explicar cómo han evolucionado la Tierra y la vida a lo largo del tiempo.
Geoconservación y ecosistemas
Los ecosistemas naturales, como son los bosques, las barreras de coral, los desiertos… son esenciales para la correcta regulación del clima, el agua y la biodiversidad. La conservación de estos ecosistemas es fundamental para garantizar la sostenibilidad del planeta.
La geoconservación desde la perspectiva de la sostenibilidad y la diversidad de la vida en la Tierra, adquiere un significado aún más profundo. No se limita solo a la conservación de la geodiversidad y el patrimonio geológico, sino que también asegura que los ecosistemas y la biodiversidad puedan seguir existiendo.
La geoconservación es esencial para la sostenibilidad del planeta y para la conservación de todas las formas de vida.
Cuidar de la Tierra significa cuidar de la naturaleza tanto de su parte viva (biótica) como la parte no viva (abiótica), es decir, tanto de los seres vivos como del sustrato, la base y la geodiversidad que la componen, que están interconectadas para poder ser posibles.
Los elementos de la geodiversidad, los recursos naturales geológicos, están directamente conectados con el equilibrio ecológico. Por ejemplo, los bosques, los corales o los desiertos no solo son importantes por albergan distintas especies de flora y fauna, sino que también juegan un papel esencial en la regulación de los ciclos climáticos y la conservación del suelo. La destrucción de estas áreas puede poner en riesgo tanto los procesos naturales como la vida en el planeta.
Ejemplos muy claros son los ecosistemas de las regiones desérticas (figura 2), de los glaciares y de los ambientes acuáticos que tienen su biodiversidad específica, la cual ha evolucionado y se ha establecido en estos entornos concretos condicionada por el sustrato rocoso. A lo largo de los millones de años de edad del planeta, los ambientes, las rocas y los procesos han ido cambiando y la biodiversidad lo ha hecho con ellos adaptándose a las nuevas condiciones.
Figura 2: En un ecosistema de desierto se pueden distinguir sus elementos abióticos (arena, temperatura, humedad, geomorfología, rocas, suelos…) y sus elementos bióticos (fauna, vegetales, comunidades humanas…). Los elementos bióticos se adaptan a los abióticos.
¿La amenaza a la geodiversidad es también una amenaza para las comunidades humanas?
Comprendiendo los factores que vinculan a los pueblos, las culturas y los distintos grupos humanos con la geodiversidad nos encontramos con un nuevo concepto, la geología social.
En el caso de la humanidad, las distintas poblaciones también se han adaptado al lugar que habitan condicionadas por la geodiversidad. Las comunidades inuit, ribereña, pescadora o los pueblos nómadas del desierto son claros ejemplos de estas adaptaciones.
La vida, las culturas y las sociedades se han ido adaptando a los distintos ambientes, controladas por la geodiversidad.
Cuidar de la naturaleza es, sobre todo, conservar la parte que la sustenta: la geodiversidad y el patrimonio geológico.
Por todo esto, la geoconservación es fundamental para mantener la resiliencia de la Tierra, permitiendo que los ciclos naturales continúen funcionando y que el planeta siga proporcionando recursos esenciales para la vida, como agua potable, aire limpio y suelos fértiles; al mismo tiempo que conserva la biodiversidad necesaria para la salud del ecosistema global.
La Organización de las Naciones Unidas para la Educación, la Ciencia y la Cultura (UNESCO) proclama el Día Internacional de la Geodiversidad para crear conciencia sobre el vínculo entre geodiversidad y vida, y para destacar como la educación en geociencias crea soluciones sostenibles ante el cambio climático, la necesidad de recursos, la reducción de riesgos naturales y la pérdida de biodiversidad.
Figura 3. Los 17 Objetivos de Desarrollo Sostenible (ODS) adoptados por la ONU en 2015. Referencia ONU
Geodiversidad y biodiversidad
Estos dos términos, que tanto se parecen, hacen referencia a la variedad de elementos que se encuentran en la naturaleza, permitiendo diferenciar entre los elementos vivos (parte biótica) y los no vivos (parte abiótica). La BIODIVERSIDAD se encarga de la parte biótica de los ecosistemas (flora y fauna) y la GEODIVERSIDAD de la parte abiótica (elementos y procesos geológicos, geomorfológicos y pedológicos)
Referencias
Brilha, J. (2005). Património geológico e geoconservação: a conservação da natureza na sua vertente geológica. Braga: Palimage Editores. 190 p.
Brilha, J. (2016). Inventory and Quantitative Assessment of Geosites and Geodiversity Sites: a Review. Geoheritage, 8(2), 119–134.
Carcavilla, L. U. (2012) Geoconservación. Instituto Geológico y Minero de España. Madrid, España.
Gray, M. (2004). Geodiversity: valuing and conserving abiotic nature. John Wiley and Sons, Chichester, England, 434 p.
Gordon, J. E., Crofts, R., Díaz-Martínez, E., & Woo, K. S. (2018). Enhancing the Role of Geoconservation in Protected Area Management and Nature Conservation. Geoheritage, 10(2), 191–203. https://doi.org/10.1007/s12371-017-0240-5
Figura 1: nuestra compañera @anabelgeoraman durante la exposición del trabajo en la Sesión de Divulgación y Enseñanza de las Ciencias de la Tierra, del Congreso Geológico de España el pasado 3 de julio.
La Evolución del Geolodía de Ávila
Desde 2016, el actual equipo organizador del Geolodía de Ávila ha trabajado en mejorar la experiencia de esta actividad. Tradicionalmente, este evento consistía en rutas autoguiadas con paradas en puntos geológicos significativos, donde geólogas y geólogos ofrecían explicaciones detalladas. Sin embargo, a pesar del éxito de este formato, las encuestas de participantes revelaban la necesidad de una aproximación más inclusiva y lúdica, especialmente para asistentes más jóvenes y familias.
Introducción a la Gamificación
En la edición de 2022, desarrollada en Villaflor (Ávila), se tomó la decisión de gamificar el Geolodía. La gamificación, una metodología que introduce elementos de juego en contextos no lúdicos; y busca aumentar la participación y el compromiso de quienes participan. La idea era sencilla pero poderosa: transformar el recorrido geológico en un juego de aventura, donde cada parada ofreciera no solo información científica, sino también retos y recompensas.
Elementos de la Gamificación en el Geolodía
La gamificación del Geolodía de Ávila se basó en los elementos que estructuran este tipo de actividades: dinámicos, mecánicos y componentes de juegos. Estos elementos se organizan de manera jerárquica en tres niveles (figura 2):
Elementos Dinámicos: Aspectos generales que mantenían el funcionamiento de la actividad, como la historia subyacente y el flujo de la narrativa.
Elementos Mecánicos: Reglas y procesos que guiaban el desarrollo del juego, incluyendo el uso de mapas y la búsqueda de paradas.
Elementos componentes: Herramientas y objetos físicos utilizados, como pegatinas y mapas interactivos.
Figura 2. Pirámide propuesta por Werbach y Hunter (2012) para jerarquizar e interrelacionar los distintos elementos de la gamificación.
La historia central involucraba a quienes se acercaron al Geolodía en una misión para resolver un desafío geológico final, explorando diferentes paradas que representaban puntos de interés geológico en Villaflor. Cada parada proporcionaba una insignia y una pista para resolver el enigma final, promoviendo tanto la colaboración como la competencia amistosa.
Impacto y Resultados
La respuesta a la gamificación fue abrumadoramente positiva. Las encuestas post-evento reflejaron comentarios entusiastas como «super divertido el laberinto» y «muy interesante, una actividad para repetir». Los datos recogidos mostraron que la gamificación no solo aumentó la satisfacción de quienes participaban, sino que también redujo el abandono y mejoró el aprendizaje.
La adaptación de la actividad para espacios cerrados, como aulas, fue igualmente exitosa. En el concurso internacional «Ciencia en Acción» en Viladecans, Barcelona, la versión gamificada del Geolodía de Ávila ganó el primer premio en la categoría de Laboratorio de Geología. Este reconocimiento destacó la capacidad de la gamificación para comunicar contenidos científicos de manera efectiva y atractiva.
Conclusión
La experiencia de gamificar el Geolodía de Ávila representa un avance significativo en la divulgación científica. Al integrar elementos lúdicos en actividades educativas, se logra captar la atención de un público amplio y diverso, desde jóvenes estudiantes hasta docentes y familias. Este enfoque innovador no solo mejora la experiencia de aprendizaje, sino que también demuestra el potencial de la gamificación para revitalizar la educación y la divulgación científica.
Puedes leer el trabajo completo en la web de reseachgate
Un glaciar (del francés glacier) es una gran masa de hielo comprimido, formada por acumulación, compactación y recristalización de nieve hasta crear hielo glaciar (figura 1); y que necesita de miles de años para que esto suceda.
Figura 1. Cambios en la morfología y en la porosidad del agua sólida con la profundidad, desde nieve granular hasta hielo glaciar
Con esta compactación, el hielo se reorganiza perdiendo el aire que se encuentra entre las partículas sólidas hasta que solo queda el aire del interior de burbujas. El resultado es la formación de hielo glaciar, con su característico color azul.
Los glaciares son dinámicos (se mueven) y generan procesos de erosión, transporte y sedimentación, al igual que sucede con el agua líquida.
Clasificación de los glaciares
La clasificación morfológica de los glaciares se basa en tres factores: su tamaño, su forma y la posición de la masa de hielo (figura 2).
Glaciares de casquete: son de gran escala. Ocupan casi el 10% de la superficie terrestre. Su forma es masiva y fluye en todas direcciones.
Glaciares de meseta: son de mediana escala. Su forma también es masiva. Fluyen en todas direcciones y se encuentran cubriendo zonas elevadas y mesetas.
Glaciares de montaña (o alpinos): son de pequeña escala. Consisten en corrientes de hielo más largas que anchas y se encuentran entre zonas montañosas elevadas, formando valles en U.
GLACIARES DE CASQUETE
GLACIARES DE MESETA
GLACIARES DE MONTAÑA
TAMAÑO
Grande
Mediano
Pequeño
FORMA
Masiva
Masiva
Corriente de hielo más larga que ancha
POSICIÓN
Grandes superficies (>10% de la Tierra)
Zonas elevadas y mesetas
Entre montañas elevadas, con valles en U
Figura 2. Tabla con las características de tamaño, forma y posición de los glaciares. Con estas características se pueden definir tres tipos de glaciares claramente distintos: de casquete, de meseta y de montaña.
Como ya has visto en la entrada del Paleograciar de la Serradilla (Cepeda la Mora, Ávila), en el Sistema Central existieron glaciares activos en el Último Máximo Glaciar (20.000-30.000 años). Estos glaciares eran del tipo Glaciar de Montaña.
Partes de un glaciar de montaña
Los glaciares de montaña son masas de hielo que fluyen pendiente abajo y que existen porque la acumulación de nieve a gran altura compensa la fusión de hielo a baja altura y la descarga por deshielo.
Esta masa de hielo en movimiento va incorporando fragmentos rocosos de todo tipo de tamaños, y genera morfologías propias que persistirás aún cuando el glaciar haya desaparecido, como ha pasado en La Serradilla.
Las dos zonas de un glaciar de montaña (acumulación vs. ablación)
En un glaciar de montaña se pueden diferenciar dos partes principales (figura 3):
ZONA DE ACUMULACIÓN (ganancia de masa): parte más alta donde más nieva y se alimenta el glaciar. Las bajas temperaturas se encargan de mantener este agua sólida.
ZONA DE ABLACIÓN O DE FUSIÓN (pérdida de masa): zona baja donde el agua sólida se derrite por el aumento de la temperatura. Se forman pequeños drenajes y escorrentías superficiales que alimentan los ríos ladera abajo. En ocasiones, el glaciar puede desembocar en un lago o mar y fragmentarse en grandes bloques de hielo llamados icebergs.
Figura 3. Los glaciares de montaña tienen dos zonas claramente diferenciadas, la zona de acumulación, donde hay una ganancia de masa por la precipitación de nieve, y la zona de ablación, donde se pierde masa por sublimación y deshielo. Donde no hay ni pérdida ni ganancia de masa se llama línea de equilibrio. Morfológicamente, existen estructuras propias de estos sistemas glaciares que permanecen una vez el hielo se ha retirado, como el circo, las morrenas o los bloques erráticos.
Estas dos zonas (acumulación y ablación) se encuentran separadas por la línea de equilibrio, lugar donde el conjunto de las ganancias y las pérdidas es igual a cero.
El dinamismo y la capacidad de cambio son las características más importantes de los sistemas glaciares de montaña. Estos modifican su forma, se mueven, crecen, decrecen…
Algunas definiciones
CIRCO
Los circos glaciares son depresiones con forma semicircular y paredes muy inclinadas, que se desarrollan en la zona de acumulación (figura 3). Su forma se debe a la suma de la erosión basal, el arrastre de fondo y la gelifracción de las rocas de las paredes.
Cuando el hielo ya no existe, quedan los circos en las zonas altas de las montañas, en los cuales es habitual que se formen lagos.
LENGUA GLACIAR
La lengua glaciar (figura 3) es la masa de hielo que se desborda del circo y se desplaza pendiente abajo.
MORRENAS
La masa de hielo va incorporando fragmentos rocosos de todo tipo de tamaños mientras se desplaza, acumulándolos principalmente en sus bordes. A estas acumulaciones se les llama morrenas (figura 3). Estas morrenas se conservan una vez desaparecido el glaciar, y se diferencian como crestas formadas por detritos de tamaños variados que nos permiten conocer las dimensiones de las masas glaciares, ya que las limitan.
Dos tipos de morrenas principales:
Morrena lateral: se desarrolla a los lados del glaciar y se alimenta principalmente de las rocas que caen desde las paredes laterales del valle glaciar.
Morrena final o terminal: se desarrolla en el borde principal del glaciar y marca un periodo de estancamiento. Las más modernas se sitúan a mayor altitud que las más antiguas.
BLOQUES ERRÁTICOS
Los bloques erráticos son también seña de identidad de los glaciares de montaña. Son grandes bloques anguloso de roca que son transportados por el glaciar a grandes distancias. Cuando son transportados dentro de un iceberg , y se desprenden de él al derretirse el hielo, se llaman ice-rafting.
La suma de dos de estos factores, latitud y altitud, generan la denominada línea de nieve (figura 4). Ésta es una línea imaginaria global que marca el límite irregular entre la superficie cubierta de nieve y la superficie libre de nieve. Esta línea no es estática ya que, en general, los glaciares se encuentran en retroceso.
Figura 4. La línea de nieve se mide de manera directa por satélite o fotografías aéreas, o se calcula en base a la isoterma de 0ºC. Es un factor importante en los modelos hidrológicos para estimar caudales y modelos de escorrentía y precipitación.
¿CÓMO SE DICE… …GLACIAR O GLACIAL?
Estas dos palabras se confunden con frecuencia, incluso hay quien las utiliza como sinónimos aunque se trata de dos conceptos diferentes. Glaciarhace referencia a lo relacionado con las masas de hielo. Puede ser un sustantivo, como cuando se habla del glaciar Perito Moreno; o ser un adjetivo como se ha utilizado ampliamente en este post ,circo glaciar, morrena glaciar… Glaciales un adjetivo que se refiere a algo extremadamente frío o helado. Por ejemplo, se usa para hablar del periodo glacial, momento de muy bajas temperaturas.
Al norte del pueblo de Cepeda la Mora, dentro de La Serrota, y en un paraje que se llama Alto de las Serradillas, queda una morfología singular, muy bien preservada y sin embargo muy habitual en el Parque Regional Sierra de Gredos y en todo el Sistema Central. Se trata de un paleoglaciar (Figura 1).
Figura 1. Fotografía del paleoglaciar de la Serradilla. Conserva todas las formas del antiguo glaciar, pero ya no hay hielo. El relieve no está en equilibrio con el clima actual. Fotografía de Javier Elez.
Un paleoglaciar son los restos de formas y sedimentos de lo que un día fue un glaciar y que ahora ya no tiene hielo. Esto no nos impide ver sus formas típicas (circos y morrenas) y nos invita a pensar que el clima de nuestro planeta ha cambiado de forma habitual a lo largo de su historia.
El paleoglaciar de la Serradilla
Hemos elegido este paleoglaciar específicamente, y no otro de los muchos que hay en Gredos y la Sierra de Béjar, por tener unas dimensiones modestas y ser de fácil acceso desde Cepeda La Mora (Figura 2).
Figura 2. Localización del Paleoglaciar de la Serradilla, en el recuadro en rojo.
Estas condiciones, junto con el buen grado de preservación que tiene, hacen que se pueda abarcar en su conjunto con la mirada desde el campo y se puedan entender de forma fácil sus formas más destacadas, depósitos de sedimentos y evolución.
En concreto, este paleoglaciar de la Serradilla está muy bien conservado (aunque le falte el hielo) y presenta varios niveles de morrenas y algunos circos como elementos más característicos (Figura 3).
Figura 3. Esquema geomorfológico del paleoglaciar de la Serradilla. En colores azules las distintas morrenas, cuanto más oscuro más altas topográficamente. Las líneas en azul oscuro indican el límite de los distintos circos (cresta) asociados a las morrenas. Las zonas verdes son antiguos lagos postglaciares tipo la laguna grande de Gredos, que ahora están llenos de sedimento y vegetación y por tanto no son lagos ya. Mapa: Javier Elez.
Recuerda que las morrenas son esos acúmulos de sedimentos que el hielo del glaciar arrastra, en su zona central o en los laterales, en su movimiento cuesta abajo (Figura 4).
Literalmente, el hielo se desborda del circo (que es la zona en donde se acumula la nieve y se compacta para formar hielo) y se cae en función de la pendiente existente.
Figura 4. Fotografía de primer plano de las morrenas del glaciar de las Serradillas, se observa su estructura caótica compuesta por bloques de todos los tamaños. Fotografía: Gabriel Castilla.
¿Cuándo estuvo activo el glaciar?
Si pensamos en el pasado, este paleoglaciar estuvo activo, incluyendo su lengua de hielo, probablemente al mismo tiempo que los grandes conjuntos de Gredos tan conocidos por las personas aficionadas a las montañas.
No hay dataciones geológicas concretas de la actividad de este paleoglaciar, pero si lo comparamos con los datos de edad que sí existen en otras zonas cercanas, podríamos interpretar que estuvo activo durante el Último Máximo Glaciar (hace unos 20.000 o 30.000 años) y que probablemente el hielo desaparecería definitivamente hace solo unos 13.000 años.
Todo esto es muy tentativo, ya que comparamos con datos de otros paleoglaciares más estudiados en el Sistema Central (Carrasco et al. 2020; Oliva et al., 2019), pero es una interpretación razonable, sujeta a cambiar cuando tengamos datos más precisos.
Figura 5. Vistas 3D desde el NE del paleoglaciar de la Serradilla. A) modelo sombreado con elementos geomorfológicos. B) modelo sombreado únicamente en donde se aprecia el relieve. C) foto de satélite. Mapa: Javier Elez.
El final de la glaciación
Las morrenas están pintadas en colores azules en los mapas de las Figuras 3 y 5, los escarpes de los distintos circos (la zona más alta erosionada por el hielo en el circo) en azul oscuro.
El hielo ocupaba desde los escarpes hasta las morrenas. En muchos glaciares de nuestro planeta, las morrenas más bajas topográficamente son más antiguas y corresponden a los episodios de máxima extensión de los hielos, mientras que las más altas topográficamente son más recientes.
Al incrementarse poco a poco la temperatura al final de la glaciación, el hielo se refugia en zonas cada vez más altas, moviendo los sedimentos y generando las morrenas en esas zonas, hasta que finalmente la temperatura sube lo suficiente como para que desaparezcan definitivamente los hielos.
En el paleoglaciar de la Serradilla vemos al menos 4 o 5 conjuntos de morrenas escalonadas en la vertical (Figura 5), marcando claramente esa retirada de los hielos que acompaña a un ciclo de calentamiento del planeta, en el cual, como sabes, estamos inmersos a día de hoy. Es una evidencia más de los cambios de clima del planeta en el que vivimos, siempre extremadamente dinámico.
Las zonas pintadas en verde son lagos de origen glaciar. Al desaparecer el hielo por el progresivo calentamiento del planeta, éste se transformó en agua, que fue retenida por las morrenas y dio origen a esos lagos. Estos, como el de la Laguna Grande de Gredos o la Laguna de la Nava o tantas otras, son muy efímeros en tiempo geológico y se rellenan rápidamente de sedimentos, dejando esas praderas planas con mucha vegetación que se ven en el interior del paleoglaciar de la Serradilla.
Carrasco, R.M. et al. (2020). Glacial geomorphology of the High Gredos Massif: Gredos and Pinar valleys (Iberian Central System, Spain). Journal of Maps, 16:2. Pp. 790-804.
Oliva, M. et al. (2019). Late Quaternary glacial phases in the Iberian Peninsula. Earth-Science Reviews 192. Pp. 564-600.