Archivo de la etiqueta: featured

¿Qué es un Tsunami?

Los tsunamis son unas manifestaciones fuertemente energéticas de la dinámica de nuestro planeta, espectaculares, pero también responsables de algunas de las catástrofes naturales recientes más tristes.

Los tsunamis de Japón en 2011 y del sudeste asiático en 2004 y su difusión a nivel global por redes cambiaron por completo nuestro imaginario colectivo al respecto de estos fenómenos (Fig. 1). Las estimaciones de víctimas mortales para ambos eventos son terroríficas, en Japón murieron cerca de 16.000 personas (hay todavía más de 2.500 desaparecidos) y en Indonesia fallecieron más de 280.000 personas.

Descripción accesible de la imagen:

A la izquierda, sobre un fondo azul, aparece el texto:
“5 de noviembre. Día Mundial de Concienciación sobre los Tsunamis. Empoderando a la próxima generación con las lecciones del Tsunami del Océano Índico de 200_” (el último número está incompleto).

A la derecha, ocupa la mayor parte de la imagen la fotografía de un gran barco oxidado y volcado de lado, parcialmente hundido en el mar. La estructura muestra tuberías, pasarelas metálicas y una cabina de color rojizo deteriorada. La imagen transmite la magnitud de la destrucción asociada a los tsunamis.
Figura 1. El 5 de noviembre es el día mundial de concienciación sobre los tsunamis. UNDRR, https://tsunamiday.undrr.org/es

Sus efectos nos resultan inquietantes. Un ejemplo claro es la película Lo imposible (2012), dirigida por J. A. Bayona, que narra la historia real de una familia que sobrevivió al devastador tsunami de 2004. Otro ejemplo es la preocupación por que se pueda repetir una catástrofe como la sucedida en la central nuclear de Fukushima, dañada por el tsunami de 2011, y que continúa generando contaminación y riesgo debido a los problemas aún no resueltos en su control.

La mayor parte de los tsunamis se generan como un efecto colateral de un gran terremoto.

¿Qué necesitamos para que se produzca un tsunami? Dos cosas:

  1. Un terremoto tan grande como para modificar la superficie del planeta
  2. Que el terremoto ocurra bajo el mar.

Cuando se genera un terremoto de gran magnitud (Fig. 2), si se produce cerca de la superficie de nuestro planeta pasan dos cosas, por un lado una rotura y desplazamiento de la superficie del planeta y por otro las conocidas ondas sísmicas que se propagan desde la zona de rotura y hacen vibrar el terreno.

Descripción accesible de la imagen:

La imagen es un esquema dividido en tres secciones horizontales que explican cómo se forma un tsunami debido a un terremoto submarino.

Primera sección: “Antes del terremoto”
Se muestra el fondo marino con una pendiente suave hacia la costa. A la izquierda, el océano tiene unos 4.000 metros de profundidad. La línea azul representa el “nivel del mar original”. En la orilla, sobre una pequeña loma, hay una palmera. Bajo el fondo marino se ve una línea roja que simboliza una falla geológica aún sin movimiento.

Segunda sección: “En el terremoto”
La falla se desplaza y genera un levantamiento del fondo marino. Aparecen flechas que indican el movimiento ascendente de la superficie y el desplazamiento del agua. El texto señala “Desplazamiento del mar” y “Desplazamiento de la superficie”. Una estrella roja marca el epicentro del “Terremoto”. El nivel del mar se modifica temporalmente, elevándose en una zona y descendiendo en otra.

Tercera sección: “Tsunami después del terremoto”
El fondo marino queda deformado de forma permanente. El agua se mueve en ondas que avanzan hacia la costa. En mar abierto, las olas son largas y bajas (menos de 1 metro de altura, velocidad de 150 a 300 km/h). Cerca de la costa, las olas se hacen mucho más altas (varias decenas de metros, velocidad de hasta 50 km/h). El texto “Tsunami en la costa” aparece en rojo, junto al dibujo de grandes olas que se acercan a la playa donde sigue en pie la palmera.

En conjunto, el esquema ilustra el proceso completo: desde la calma inicial, pasando por el sismo submarino, hasta la llegada del tsunami a la costa.
Figura 2. Esquema temporal del proceso de generación de un Tsunami. Necesitamos un terremoto que deforme la superficie del fondo del mar, de forma que desplace hacia arriba el agua del mar. Esta agua desplazada, al buscar su equilibrio gravitacional genera una onda que se propaga por el océano hasta llegar a la costa. Al llegar al litoral el tren de ondas se frena con el fondo marino más superficial y construye el tsunami. A mayor masa de agua desplazada por el terremoto, mayor velocidad de las ondas y mayor el tsunami resultante. Grafico: Javier Elez.

En geología llamamos falla a la fractura por la que se produce el desplazamiento del terreno. Para que os hagáis una idea el terremoto de Japón de 2011 desplazo hasta 2,4 metros la isla de Honshu, la mayor del archipiélago Japonés.

Si el desplazamiento de la corteza terrestre durante un terremoto ocurre bajo una gran masa de agua, como en el fondo del océano, el movimiento del suelo marino empuja la columna de agua que tiene encima. Si esto sucede a una profundidad de unos 4.000 metros, implica que se están moviendo cuatro kilómetros de columna de agua.

En ese momento el agua sube sobre su nivel habitual y luego por gravedad baja, oscilando de forma similar a cuando tiramos una piedrita a un lago y se forman las típicas ondas. La consecuencia de este movimiento oscilatorio es una onda estacionaria en el mar (Fig. 3).

Descripción accesible de la imagen:

La imagen muestra un conjunto de ondas concéntricas en la superficie del agua, vistas desde arriba. En el centro, un punto más oscuro indica el lugar donde una gota acaba de caer, formando un pequeño cráter circular rodeado por anillos que se expanden hacia fuera. Las ondas son simétricas y reflejan la luz, creando un efecto metálico o plateado. El fondo es difuso y grisáceo, lo que resalta el movimiento suave y regular de las ondas. La imagen transmite calma y representa visualmente cómo se propaga la energía a través del agua.
Figura 3. Ondas en el agua que se propagan de forma concéntrica al origen, igual que un tsunami. Fuente Wikipedia.

Estas ondas se mueven por los océanos a velocidades de cientos de km/h. En el océano abierto no son peligrosas, los barcos en muchas ocasiones ni siquiera las notan porque tienen longitudes de onda muy largas (de hasta 300 km) y amplitudes muy pequeñas (menores a un metro). Pueden cruzar el Océano Pacífico de Japón a California en unas 9 horas.

Pero cuando llegan a la costa la cosa cambia, al disminuir la profundidad la onda roza con el fondo, se frena, crece en la vertical y acumula agua y presión. Como el tren de ondas es continuo llega un momento en el que el agua amontonada en la zona litoral crece tanto que se cae hacia el continente inundando las zonas costeras en muchas ocasiones de forma violenta y generando los daños que tenemos todos en la retina.

En japonés, tsunami significa “Ola de Puerto” haciendo referencia a la dinámica del fenómeno, pues en mar abierto no se aprecia y solo cuando llega a la costa es cuando vemos las grandes olas.

En España tenemos registro geológico de Tsunamis, siendo los más recientes en la costa atlántica de Andalucía. El más conocido fue causado por el terremoto de Lisboa en 1755, con más de mil víctimas mortales solo en Andalucía. Este terremoto provocó en las costas andaluzas un tsunami con olas de 10 a 12 m de altura (equivalente a un edificio de cuatro plantas), con tiempos de inundación máximos superiores a los 8 minutos, llegando a inundar zonas situadas a más de 5 km hacia el interior de la costa.

Pero no ha sido el único. En la costa atlántica de Andalucía tenemos registro de siete grandes tsunamis en los últimos 7.000 años, de ellos cuatro se consideran que responden a terremotos de magnitudes muy importantes (mayores a 8)

Para más información:
https://www.ign.es/web/resources/sismologia/qhacertsu/qhacertsu.html
https://www.interior.gob.es/opencms/pdf/archivos-y-documentacion/documentacion-y-publicaciones/publicaciones-descargables/proteccion-civil/Guia_de_informacion_riesgo_tsunamis_126230890.pdf

Bibliografía:
https://earthobservatory.nasa.gov/images/148036/ten-years-after-the-tsunami
Lario , J., Za Zo, C., Goy, J. L., Silva , P. G., Bardaji, T., Cabero , A., Dabrio, C. J. (2011). Holocene palaeotsunami catalogue of SW Iberia. Quaternary International. doi:10.1016j.quaint.2011.01.036

Entradas relacionadas:

Geología desde Ávila en la GeoQuedada 2025: un encuentro inspirador

El pasado fin de semana, del 24 al 25 de mayo, Geología desde Ávila participamos en la GeoQuedada 2025, organizada por el colectivo GeoDa Divulga en el espectacular entorno de las Arribes del Duero, en la provincia de Salamanca.
Aunque no pudimos asistir a las actividades del viernes (nos quedamos con las ganas de conocer la Sala de las Tortugas de la USAL, y el seguro maravilloso Taller de Estrellas de Nahúm Méndez (@UnGeólgoEnApuros), sí estuvimos durante todo el sábado y el domingo, compartiendo experiencias, aprendiendo de otros proyectos y disfrutando de la geología y del entorno.

Nuestra intervención tuvo lugar el sábado por la mañana, en el espacio cultural La Panera de Aldeadávila de la Ribera. Allí, Anabel Casado presentó la comunicación «Geología desde Ávila, un proyecto colectivo y horizontal hecho por geólogas y geólogos multidisciplinares», donde explicamos cómo surge y se desarrolla nuestro proyecto desde una perspectiva colaborativa, inclusiva y comprometida, y siempre disfrutando.

La imagen está dividida en dos partes. A la izquierda, sobre un fondo violeta con estrellas y dibujos decorativos, aparece una fotografía en primer plano de Ana Isabel Casado, una mujer de cabello largo y oscuro, sonriente, con una chaqueta vaquera, frente a un muro de calizas. Encima de su foto, se lee el título: "Geología desde Ávila, un proyecto colectivo y horizontal hecho por geólogas y geólogos multidisciplinares". Debajo de la imagen, aparece su nombre: "Ana Isabel Casado", junto a iconos decorativos de una cara sonriente y una estrella.

A la derecha, sobre fondo claro con una fotografía de fondo desenfocada de una calle con árboles y piedra, aparece un texto titulado: “¿Quién es Ana Isabel y por qué debía venir a hablarnos?”. El texto describe que Ana Isabel es doctora en Geología por la UCM, especializada en caracterización físico-química de materiales geológicos mediante espectroscopía Raman. Trabaja en el CIEMAT y es profesora asociada en la Universidad Rey Juan Carlos. También se resalta su amplia trayectoria en divulgación, participando en eventos como las Geolimpiadas, la Noche Europea de los Investigadores e Investigadoras o la Semana de la Ciencia. Al pie del texto aparece el logotipo de la asociación GEODA.
Imagen 1: Cartel de presentación creado por GEODA para anunciar la participación de Anabel en el encuentro.

A través de esta charla mostramos algunas de nuestras iniciativas más representativas, como el Geolodía de Ávila, las GeoCharlas en centros educativos, las musealización geológica del Centro de Interpretación de las Lagunas de El Oso y, por supuesto, este blog que tantas alegrías nos da; destacando el uso de metodologías participativas, el enfoque intergeneracional y la apuesta por la accesibilidad como señas de identidad.

La imagen muestra a Ana Isabel Casado, vestida con un conjunto verde, de pie en el escenario del auditorio mientras habla con un micrófono en la mano. Detrás de ella hay una pantalla de proyección con una presentación poco visible por el brillo, sobre Geología desde Ávila. A un lado del escenario hay una mesa con un ordenador portátil, cables y equipo de sonido. Frente al escenario, se ven varias personas sentadas en las butacas rojas del público. En el frontal del escenario hay un cartel con la palabra "Aldeadávila" y varias imágenes decorativas relacionadas con la geología o el entorno natural. El auditorio tiene paredes rosadas, cortinas granates y techo blanco con luces de panel.
Imagen 2: Anabel Casado, integrante del proyecto Geología desde Ávila, durante una charla divulgativa donde presentó su trayectoria como geóloga y divulgadora, así como las claves del enfoque colectivo y multidisciplinar del grupo. Fotografía de Geoda.

El programa del sábado incluyó también las intervenciones de Jabito Jablonski (@MuseodelaFalla), con su experiencia en el Museo de la Falla de Juzbado; Marisa Castiñeira (@mcastigarcia), que compartió estrategias para enseñar geología en secundaria; Marta Rincón (@Falladamente) con su propuesta para modelizar en secundaria procesos volcánicos de manera sencilla; y Rafael Fort (@IGEO), quien nos habló sobre la puesta en valor del patrimonio geológico.

La tarde continuó con un crucero fluvial por el Duero, saliendo del embarcadero de Aldeadávila. Gracias a las explicaciones de Elvira (https://www.corazondelasarribes.com/) conocimos cómo el Duero fue y sigue siendo una frontera natural entre España y Portugal con una historia compartida. Este valle fue lugar de contrabando en una y otra orilla en época de dictadura. Nos contó cómo era la realidad de las familias que vivían de las cabras y que se encontraron en este lugar hasta casi los años 60 del siglo pasado, utilizando todos los recursos disponibles y agudizando al máximo su ingenio; y también conocimos las singularidades de este lugar que permite la presencia de gran cantidad de especies de fauna y flora, destacando las aves como el buitre leonado, el alimoche o el águila real.

Fotografía tomada desde una embarcación navegando por el río Duero a su paso por los Arribes, una zona de profundo encajamiento fluvial en la frontera entre España y Portugal. En el centro de la imagen se aprecia la estela blanca que deja el motor de la barca sobre las aguas verdosas del río, que brillan con la luz del sol. A ambos lados se elevan abruptamente laderas cubiertas de vegetación densa, con afloramientos rocosos visibles entre los árboles. El cielo está completamente despejado y azul. La escena transmite la majestuosidad del paisaje natural protegido de los Arribes del Duero, con sus impresionantes cañones y biodiversidad.
Imagen 3: Vistas desde el crucero fluvial por el río Duero, en el Parque Natural Arribes del Duero. La imagen muestra el encajamiento fluvial característico de la zona, con laderas abruptas cubiertas de vegetación, mientras se ve la estela del barco por estas aguas fronterizas entre España y Portugal. Fotografía de Anabel Casado

Después del crucero, hicimos una ruta geológica al Picón de Felipe, uno de los miradores más emblemáticos del Parque Natural Arribes del Duero que debe su nombre a una leyenda sobre el amor imposible entre un español y una portuguesa. Desde este impresionante balcón natural, se pueden admirar las vistas del cañón del río Duero, que en esta zona alcanza profundidades de hasta 500 metros, creando un paisaje de paredes graníticas casi verticales. Al fondo, en la zona más estrecha del cañón, podemos ver La Presa de Aldeadávila, una joya de la ingeniería hidroeléctrica construida entre 1956 y 1963 que alberga dos centrales hidroeléctricas que juntas son las más productivas de España. Esta presa puede resultarte familiar ya que ha sido escenario de varias producciones cinematográficas como «Terminator: Dark Fate» y «Fast and Furious 10».

Ana Isabel con chaleco reflectante amarillo fosforito y camiseta roja observa el paisaje desde un mirador rocoso con barandilla metálica (el mirador de Felipe), en lo alto de un profundo cañón del parque natural de los Arribes del Duero. Frente a ella, al fondo del barranco, fluye el río Duero encajado entre paredes verticales de roca. Se distingue una presa hidroeléctrica con compuertas y un conjunto de cables de alta tensión que atraviesan la garganta. El paisaje combina vegetación dispersa en las laderas, formaciones rocosas y una vista impresionante del valle. La luz del sol, en ángulo, proyecta sombras alargadas y realza los contrastes del terreno.
Imagen 4: Anabel observando el impresionante cañón del Duero desde un mirador en el Parque Natural Arribes del Duero. Al fondo se distingue la presa de Aldeadávila, una de las más emblemáticas infraestructuras hidroeléctricas de España, encajada entre las escarpadas paredes rocosas del valle. Fotografía de Eduardo Cuadra.

El domingo por la mañana, para cerrar esta edición de la Geoquedada 2025, visitamos el Pozo de los Humos. Con ese nombre se conoce al conjunto de saltos de agua de más de 50 metros de desnivel controlado por el sistema de fallas y diaclasas en el contacto de rocas graníticas con rocas metamórficas. Una visión impresionante aún teniendo menos agua en esta época del año.

Imagen panorámica de un valle profundo cubierto de vegetación densa en el Parque Natural de los Arribes del Duero. En el centro, destaca una cascada alta que se precipita desde un risco rocoso hasta una poza oscura en el fondo del barranco. El agua continúa descendiendo en pequeños saltos hacia un cauce más estrecho. Las paredes del desfiladero están formadas por afloramientos de roca granítica, cubiertos parcialmente por árboles y matorral. En primer plano, se observa una gran roca gris con líquenes. El cielo está despejado y la escena transmite una sensación de frescura, verticalidad y naturaleza salvaje. La cascada es el Pozo de los Humos, uno de los paisajes más emblemáticos de los Arribes del Duero.
Imagen 5: Vista panorámica del Pozo de los Humos, una espectacular cascada en el Parque Natural Arribes del Duero. El agua cae desde una gran pared rocosa hasta una poza profunda rodeada de vegetación, creando uno de los paisajes más emblemáticos de la zona.

De esta reunión nos quedamos con poder desvirtualizar a compañeras y compañeros de la divulgación que conocíamos a través de redes y con quienes compartimos inquietudes y admiración mutua desde hace tiempo. Vernos cara a cara, intercambiar ideas, y reconocer en cada proyecto una parte del entusiasmo colectivo por divulgar la geología fue, sin duda, uno de los grandes regalos de la GeoQuedada.

Queremos agradecer a la organización de Geoda, y en especial a Daniel H. Barreña (HombreGeológico), por la cálida acogida, la impecable coordinación y por haber creado un espacio donde la geología se vive, se siente y se comparte. Y a todas las entidades y personas que han apoyado este encuentro, y han participado en él (GeoCastAway, Ekobideak, ViajandoConCiencia…) Volvemos con nuevas ideas, la mochila llena de inspiración y muchas ganas de seguir construyendo comunidad geodivulgadora.

Fotografía grupal tomada en el interior de una embarcación acristalada con cubierta translúcida, rodeada de vegetación. Aparecen 18 personas adultas, hombres y mujeres, algunas de pie y otras agachadas en primera fila, posando y sonriendo a cámara. Llevan ropa informal, camisetas con mensajes o logotipos relacionados con la geología o la ciencia, y varias personas llevan gafas de sol. En el fondo se ve un paisaje arbolado a través de las paredes de cristal. Se trata de un grupo de divulgadoras y divulgadores de la geología en la excursión por los Arribes del Duero.
Imagen 6: Foto de grupo de participantes en la Geoquedada 2025, celebrada en el Parque Natural Arribes del Duero. Fotografía de Geoda.

¿Cómo se formaron los océanos? El problema del origen del agua en la Tierra

Autores – Gabriel Castilla Cañamero, María Isabel Reguera e Iván Martín-Méndez

Alrededor de dos polos gira la existencia humana.

El polo de las ilusiones. Y el polo de las realidades.

José Echegaray. Ciencia popular, 1905.

Los astronautas de la misión Apolo 8 tomaron la primera fotografía de la Tierra vista desde la órbita de la Luna. Esta icónica imagen nos mostró por primera vez el contraste entre la yerma superficie lunar, la vasta negrura del espacio y el brillo de un planeta azul (Figura 1).

Figura 1. Fotografía icónica del espacio conocida como “El amanecer de la Tierra”, tomada el 24 de diciembre de 1968 desde la nave Apolo 8. En primer plano se ve la superficie gris y desolada de la Luna, mientras que al fondo, sobre el horizonte lunar, asoma parcialmente el planeta Tierra, de color azul y blanco, suspendido en la negrura del espacio. La imagen transmite la fragilidad y belleza del planeta desde la distancia. Crédito: NASA/Bill Anders.

La imagen está acompañada por el pie: Figura 1. El amanecer de la Tierra, fotografía tomada el 24 de diciembre de 1968 por el astronauta Bill Anders del Apolo 8. Crédito: NASA/Bill Anders.

Figura 1. El amanecer de la Tierra, fotografía tomada el 24 de diciembre de 1968 por el astronauta Bill Anders del Apolo 8. Crédito: NASA/Bill Anders.

Los océanos ocupan el 71% de la superficie terrestre, lo que equivale a un volumen de unos mil quinientos millones de kilómetros cúbicos de agua, el medio donde probablemente surgió y evolucionó la vida durante miles de millones de años. Desde nuestra perspectiva, esta cantidad de agua puede parecer inmensa (especialmente considerando que alrededor del 60% del cuerpo humano está compuesto por agua); sin embargo, si comparamos la masa de los océanos, mares, ríos, lagos, aguas subterráneas y glaciares (1,4 x 1021 kg), con la masa de la Tierra (6 x 1024 kg), descubrimos que la hidrosfera representa apenas un 0,02% del total.

Para comprender lo que esto significa, pensemos en un contexto que nos resulte más familiar: si la Tierra fuese un avión Boeing 747completamente cargado, el agua de la hidrosfera equivaldría a la masa de un solo pasajero (Figura 2). Por otro lado, la razón por la que la Tierra se ve de color azul desde el espacio no se debe a la presencia océanos, sino a que las moléculas de nitrógeno y oxígeno de la atmósfera esparcen la luz solar mediante un fenómeno óptico conocido como dispersión Rayleigh.

Figura 2. Gráfico de cuadrados que representa visualmente la proporción entre la masa de los océanos y la masa total del planeta Tierra. Un total de 100 cuadrados forman una cuadrícula de 10 por 10, todos de color marrón claro excepto una pequeña franja azul en la esquina superior izquierda, que simboliza la masa de la hidrosfera. El área azul ocupa solo el 0,02% del total, mientras que el 99,98% restante está representado por el color marrón. El título del gráfico indica: "Masa de los océanos en relación a la masa de la Tierra". Fuente: elaboración propia.
La imagen está acompañada por el pie: Figura 2. Representación gráfica de la masa de la hidrosfera (rectángulo azul) en relación a la masa del planeta Tierra (marrón). Fuente: elaboración propia.

Figura 2. Representación gráfica de la masa de la hidrosfera (rectángulo azul) en relación a la masa del planeta Tierra (marrón). Fuente: elaboración propia.

Esta comparativa demuestra que tenemos una visión algo distorsionada de la cantidad de agua que hay en la Tierra: el pozo de las ilusiones al que se refería Echegaray. Entonces, y siguiendo con la cita de nuestro primer Premio Nobel: ¿cuál es el pozo de las realidades? El relato científico, sin duda. Repasemos las pruebas que nos ofrece la Geología para responder a tres preguntas fundamentales en esta historia:

1.- ¿Cuánta agua hay en la Tierra?

2.-  ¿Cómo llegó hasta aquí?

3.-  ¿Cuándo se formó el primer océano?

1. ¿Cuánta agua hay en la Tierra? La paradoja de los océanos invisibles

La mayor parte del agua de la Tierra se encuentra almacenada en el manto, un lugar inaccesible que representa el 84% de la masa total del planeta (Figura 3). Está formado por silicatos (minerales ricos en silicio y oxígeno) que se encuentran sometidos a altísimas presiones (un millón y medio de veces superior a la presión atmosférica) y temperaturas que varían entre los 600 y los 3.500 º C. En este ambiente los materiales se encuentren en un estado físico entre sólido y líquido-viscoso, condiciones que solo podemos reproducir en laboratorios de muy alta presión empleando yunques de diamante.

Figura 3. Esquema en blanco y negro del interior de la Tierra, representado en un corte transversal desde la superficie hasta el centro. Se identifican las principales capas internas: la corteza en la parte superior, seguida por el manto (dividido en manto superior y manto inferior), y el núcleo (dividido en núcleo externo y núcleo interno). La transición entre el manto superior e inferior está señalada con una línea de puntos a unos 670 km de profundidad. También se indican zonas geodinámicas como una zona de subducción en el margen izquierdo y una dorsal oceánica en el derecho. Se marcan profundidades clave: 670 km (límite entre mantos), 2.900 km (límite entre manto inferior y núcleo externo) y 5.100 km (límite entre núcleo externo e interno). Adaptado de Anguita (2002).

Figura 3. El interior terrestre está dividido en tres partes: corteza, manto y núcleo. El manto se divide a su vez en dos: el manto superior, que comienza a unos 70 km; y el manto inferior, que se extiende entre los 670 km y los 2.900 km de profundidad. Entre ambas regiones se localiza una zona de transición (con línea de puntos). Adaptado de Anguita (2002).

En la parte superior del manto encontramos principalmente olivino (Mg,Fe)2SiO4,pero, conforme aumenta la profundidad, aumentan también la presión y la temperatura, lo que provoca una reconfiguración de su red cristalina. Los experimentos de laboratorio demuestran que bajo las condiciones de presión y temperatura reinantes a unos 515 kilómetros de profundidad se forma un mineral llamado ringwoodita (Mg2SiO4), que se comporta como una especie de esponja capaz de atraer hidrógeno y atrapar en su estructura cristalina los elementos que componen la molécula de agua. Dicho de otra forma: el agua presente en el manto no se encuentra en estado sólido, líquido o gaseoso, sino como hidróxido (moléculas de oxígeno e hidrógeno unidas entre sí) atrapado en este mineral (Figura 4).

Figura 4. Imagen microscópica que muestra cristales de ringwoodita, un mineral de color azul intenso, distribuidos de forma dispersa sobre un fondo claro. Los cristales tienen formas irregulares y bordes angulosos, con tamaños de pocas décimas de milímetro. En la esquina superior izquierda hay una escala de referencia que indica 0,1 mm. Fuente: Steve D. Jacobsen/Schmandt, B. et al. (2014).

Figura 4. Ringwoodita vista al microscopio. Fuente: Steve D. Jacobsen/Schmandt, B. et al. (2014).

La importancia de la ringwoodita no se limita al laboratorio. De hecho, en 2014 y 2022, el hallazgo de fragmentos inalterados de este mineral en el interior de diamantes naturales (Figura 5) proporcionó pruebas directas de su existencia en el manto. Los diamantes, formados por carbono puro cristalizado bajo condiciones extremas de presión, pueden contener impurezas que, si bien reducen su valor para la joyería, resultan de enorme interés científico. Estos diamantes, que ascendieron desde unos 700 kilómetros de profundidad impulsados por violentas erupciones volcánicas, actuaron como auténticas sondas naturales, atrapando materiales de la base del manto superior. Los análisis químicos realizados sobre ringwoodita natural indican que contiene algo más de un 1% de agua en su estructura cristalina, lo que, en términos prácticos, sugiere que el manto podría albergar una cantidad de agua equivalente a dos veces la de toda la hidrosfera.

Pero, ¿cómo llegó todo este agua hasta allí? Caben dos posibilidades: o fue arrastrada desde el exterior por la subducción de la corteza continental; o siempre estuvo allí presente.

Figura 5. Fotografía de un diamante transparente y facetado sobre un fondo gris neutro. En su interior se observan numerosas inclusiones minerales, visibles como manchas oscuras e irregulares, que corresponden a ringwoodita y circón. El diamante tiene forma asimétrica, con múltiples caras planas y bordes definidos. Procede de la República Centroafricana. En Lorenzon et al. (2022).

Figura 5. Diamante encontrado en la  República Centroafricana, con presencia de inclusiones minerales (manchas oscuras) de ringwoodita y circón. En Lorenzon et al. (2022).

Imagen con fondo naranja que contiene un texto divulgativo en letras blancas y negritas en algunas partes. El título resalta en mayúsculas: "¿Sabías que el mineral más abundante de la Tierra no se descubrió en la naturaleza hasta el año 2014?".

El texto explica que para que la comunidad científica reconozca oficialmente un mineral descubierto en laboratorio, este debe hallarse también en la naturaleza. Muchos minerales del manto terrestre no se encuentran fácilmente en la superficie debido a que son inestables a las condiciones de presión y temperatura de la corteza. A profundidades mayores de 650 km, la ringwoodita se transforma en bridgmanita (fórmula: (Mg,Fe)SiO₃), un denso silicato de hierro y magnesio, posiblemente el mineral más abundante del manto. Aunque se conocía por síntesis, la bridgmanita no se identificó en estado natural hasta 2014, cuando fue hallada en un meteorito llamado Tenham, que cayó en 1879 en Queensland, Australia.

2. ¿Cómo llegó el agua a la Tierra? Atravesando la línea de nieve.

Las estrellas nacen dentro de nebulosas constituidas por moléculas de gas y partículas de polvo. A medida que la nube primordial se contrae y colapsa por la gravedad de la estrella en formación, el momento angular aplana la distribución del material, formando un disco rotatorio que recibe el descriptivo nombre de disco protoplanetario (Figura 6). El hidrógeno es el elemento químico más abundante del universo, de lo cual se infiere que estaba presente en el disco protoplanetario solar hace unos 4.600 millones de años. Sin embargo, el oxígeno, que es necesario para formar el agua y los silicatos, apenas representa el 1% de los elementos químicos del universo.

Figura 6. Imagen astronómica del disco protoplanetario HL-Tauri, una estrella joven situada a unos 450 años luz de la Tierra. En el centro, un núcleo brillante rodeado por varios anillos concéntricos luminosos intercalados con surcos oscuros, que indican posibles órbitas de planetas en formación. La imagen muestra una estructura en tonos de amarillo y naranja sobre un fondo negro, con una apariencia difusa pero detallada. Esta es una de las capturas más nítidas realizadas por el radiotelescopio ALMA (Atacama Large Millimeter/submillimeter Array). Fuente: Observatorio Europeo Austral (ESO).

Figura 6. Imagen del disco protoplanetario HL-Tauri, una estrella naciente situada a unos 450 años luz de la Tierra. Los surcos oscuros señalan las potenciales órbitas de futuros planetas. Es una de las imágenes más nítidas tomadas por ALMA (Atacama Large Millimeter/submillimeter Array). Fuente: Observatorio Europeo Austral (ESO).

En la región del disco próxima al recién formado Sol, el calor generado por el choque entre partículas provocó la sublimación del hidrógeno y otros elementos ligeros. Parte del oxígeno se unió a átomos de otros elementos, como el carbono, el magnesio, el hierro y el silicio para formar los silicatos que darían lugar a los planetas rocosos. Se cree que la génesis de estos mundos telúricos siguió un proceso gradual y jerárquico: primero se formaron pequeños cóndrulos del tamaño de un grano de arroz, los cuales crecieron hasta convertirse en guijarros y bloques. Estos acrecionaron hasta alcanzar las dimensiones kilométricas de los asteroides y los planetesimales. Los modelos señalan que en este contexto un planeta del tamaño de la Tierra tardaría en formarse menos de 30 millones de años.

Lejos del Sol, las bajas temperaturas permitieron que las sustancias volátiles como el agua, quedaran atrapadas en forma de hielo. La frontera entre ambos dominios recibe el nombre de línea de nieve (Figura 7). Según las teorías tradicionales, el agua debió llegar a la Tierra desde allí, viajando a bordo de asteroides y cometas.

Figura 7. Esquema que muestra el proceso de formación planetaria a partir de un disco protoplanetario. A la izquierda, tres imágenes sucesivas de una estrella joven indican la evolución temporal. A su alrededor se representa un disco de gas y polvo que se va transformando. En una etapa intermedia, el disco contiene una zona interior con planetesimales de roca (esferas marrones) y una zona exterior con planetesimales de hielo (esferas azules), separadas por una línea vertical azul etiquetada como "Línea de nieve". Sobre esta región se indica la presencia de gas (hidrógeno y helio). En la etapa final del esquema aparecen formados planetas rocosos, asteroides, gigantes gaseosos y planetas de hielo, ordenados desde la región más cercana a la estrella hacia el exterior. El texto del pie indica que observaciones del Telescopio James Webb en 2023 detectaron agua en el interior de discos protoplanetarios, lo que cuestiona el modelo clásico de línea de nieve. Fuente: elaboración propia.

Figura 7. La línea de nieve es la frontera que separa dos ambientes en el disco protoplanetario: un interior caliente y seco, poblado por planetesimales rocosos; y un exterior frío con abundantes planetesimales de hielo. En 2023 el Telescopio James Web detectó la presencia de moléculas de agua en el interior de 4 discos protoplanetarios de estrellas similares al Sol. Estas observaciones no encajan con el modelo clásico de línea de nieve, actualmente en revisión. Fuente: elaboración propia.

¿Cómo sabemos que la primitiva Tierra era en origen un mundo seco que se hidrató con el agua procedente del Sistema Solar exterior? La clave reside en la firma isotópica del hidrógeno.

La huella dactilar del agua

El término isótopo significa en griego “mismo lugar” y hace referencia a aquellos elementos químicos que aunque ocupan una “misma posición” en la Tabla Periódica (poseen un mismo número atómico), pero tienen distinta masa atómica debido a la presencia de neutrones. Para el caso de la molécula de agua (H2O) debemos tener en cuenta que tanto el hidrógeno como el oxígeno cuentan con isótopos estables. Para el caso que nos ocupa nos interesa centrarnos solo en los dos isótopos del hidrógeno: el protio y el deuterio (Tabla I).

Se llama relación isotópica de una muestra de agua al cociente que se obtiene al dividir la cantidad del isótopo más escaso entre la cantidad del isótopo más abundante. Para el hidrógeno del agua correspondería la relación del deuterio (D) respecto del protio (H), también conocida como relación D/H. El resultado numérico que se obtiene se compara con una muestra de referencia conocida como VSMOW (siglas de Viena Standard Mean Ocean Water –agua oceánica media estándar de Viena). Dicha muestra es agua marina destilada que se conserva en la Agencia Internacional de Energía Atómica con sede en Viena, y que, en términos prácticos, es equivalente a la huella dactilar del agua de la Tierra.

La relación D/H nos permite comparar la química del agua de la Tierra con muestras procedentes de otros cuerpos del Sistema Solar. Estos análisis comparativos nos enseñan dos cosas:

1. Durante mucho tiempo los cometas fueron los mejores candidatos a “aguadores” debido, precisamente, a que contienen gran cantidad de agua. No obstante, en el año 2015 la misión Rosetta de la Agencia Espacial Europea zanjó definitivamente el debate al analizar in situ la superficie del cometa 67P/Churyumov-Gerasimenco. Los datos mostraron que su relación D/H es tres veces mayor que la de nuestros océanos.

2. El análisis de los meteoritos de tipo condrita, que tienen su origen en los asteroides de la parte exterior del cinturón principal, tienen una relación D/H similar los océanos terrestres (Figura 8).

Figura 8. Gráfico de barras en el que se compara la relación D/H (deuterio/hidrógeno) del agua en diferentes cuerpos del sistema solar. El eje horizontal muestra valores de la relación D/H multiplicada por 10⁶, con un rango aproximado de 0 a 320. Una línea discontinua vertical negra marca la relación de los océanos terrestres en 155,7 × 10⁻⁶.

En la parte superior del gráfico se representan los valores de condritas carbonáceas hidratadas, mayormente agrupadas cerca del valor oceánico, y los de varios cometas, cuyos valores son considerablemente mayores (entre 290 y 320 × 10⁻⁶), marcados con una franja azul sombreada. En la parte inferior del gráfico se incluyen los datos de micrometeoritos recogidos en la Antártida, con un pico centrado también cerca del valor oceánico. Una flecha a la izquierda indica que la nebulosa proto-solar tuvo un valor muy bajo de D/H.

El gráfico apoya la conclusión de que los cometas no fueron los principales aportadores de agua a la Tierra, a diferencia de las condritas y micrometeoritos. Fuente: adaptado de Pinti (2005).

Figura 8. Comparativa entre las Relaciones D/H del agua de los océanos terrestres (155,7 x 10-6), con muestras de condritas carbonáneas hidratadas (149 x 10-6), micrometeoritos recogidos en la Antártida (154 x 10-6) y cometas (290-320 x 10-6). Aunque los cometas son buenos candidatos para ejercer de “aguadores”, los datos isotópicos descartan esta posibilidad. Fuente: adaptado de Pinti (2005).

Un inesperado regalo del cinturón de asteroides

Las condritas son un tipo de meteoritos que debe su nombre a las diminutas esferas o cóndrulos de silicato que contienen. Como ya hemos visto, fueron los primeros que se formaron por acreción, y su datación radiométrica ha permitido establecer la edad canónica del Sistema Solar en 4.569  millones de años (Figura 9).

Figura 9. Imagen en alta resolución de una sección pulida del meteorito de Allende, donde se observan múltiples cóndrulos: pequeñas estructuras esféricas y de bordes difusos de tonalidades grises, blanquecinas y oscuras. Los cóndrulos están embebidos en una matriz de color gris negruzco que los rodea. En la parte inferior derecha se incluye una escala gráfica que indica 5 mm. La imagen muestra con claridad la textura típica de las condritas carbonáceas. Fotografía de James St. John – Wikimedia Commons.

Figura 9. Cóndrulos en un fragmento del meteorito de Allende. Fotografía de James St. John- Wikimedia Commons.

De los varios tipos de condrita que existen, las de tipocarbonáceo presentan minerales hidratados y compuestos orgánicos ricos en nitrógeno y carbono. Por lo general proceden de asteroides primitivos (el choque entre ellos libera escombros que alcanzan la Tierra en forma de meteoritos), que son aquellos cuya composición química se estableció en el disco protoplanetario y conservan las huellas de los procesos que ocurrieron durante los primeros instantes de la formación y evolución del Sistema Solar (Figura 10). Este tipo de asteroides fueron muy numerosos en el pasado, pero los modelos señalan que el crecimiento y posterior migración de Júpiter y Saturno hasta su posición actual, provocó que miles de ellos fueran lanzados hacia el Sistema Solar interior, llevando agua y otros elementos volátiles hasta las órbitas de los planetas terrestres.

Figura 10. Imagen compuesta que muestra dos asteroides primitivos sobre un fondo negro del espacio. A la izquierda se encuentra el asteroide Bennu, de forma casi esférica con una superficie irregular y rugosa cubierta de rocas y bloques. A la derecha está el asteroide Ryugu, de aspecto más claro, también con superficie rugosa y forma más poligonal. Bennu, de unos 490 metros de diámetro, fue explorado por la misión Osiris-Rex de la NASA en 2020, que extrajo 122 gramos de material que llegaron a la Tierra en 2023. Ryugu, de 896 metros de diámetro, fue visitado por la sonda japonesa Hayabusa 2 en 2019; sus muestras fueron entregadas en 2020. Fuente: NASA/JAXA.

Figura 10. Dos asteroides primitivos: Bennu (izquierda) y Ryugu (derecha). Bennu (de 490 m de diámetro) fue visitado en octubre de 2020 por la misión Osiris-Rex de la NASA, que perforó su superficie y recogió 122 gramos de polvo y rocas que llegaron a la Tierra en septiembre de 2023. El asteroide Ryugu (de 896 m de diámetro) fue visitado en 2019 por la sonda Hayabusa 2, de la Agencia Japonesa de Exploración Aeroespacial (JAXA). Las muestras llegaron a la Tierra en 2020. Fuente: NASA/JAXA.

En la noche del 28 de febrero de 2021, varias cámaras especiales para la detección de bólidos, captaron una gran bola de fuego sobre Reino Unido. Su fulgor llamó la atención de más de mil testigos y la trayectoria de caída fue registrada por decenas de cámaras de timbres y salpicaderos. La masa principal (319,5 g) del meteorito se descubrió por la mañana en la localidad de Winchcombe, en la puerta de una vivienda (Figura 11).

Figura 11. Primer plano de un fragmento del meteorito Winchcombe sostenido entre los dedos índice y pulgar de una mano enguantada con guantes de látex morado. El fragmento es de color negro mate, con superficie rugosa e irregular. Al fondo, desenfocado, se observa papel de aluminio y una superficie de laboratorio. La imagen fue tomada durante los análisis científicos realizados para estudiar su contenido en agua. Este meteorito, una condrita carbonácea, fue recuperado pocas horas después de su caída gracias a la colaboración ciudadana, lo que permitió preservar su composición original. Fuente: Museo de Historia Natural, Londres.

Figura 11. Meteorito Winchcombe durante los análisis que se realizaron para establecer su contenido en agua. Gracias a la colaboración ciudadana se pudieron recoger varios fragmentos en pocas horas, un detalle importante si tenemos en cuenta que las condritas carbonáceas son muy susceptibles a la alteración por el entorno terrestre y que las firmas isotópicas pueden modificarse en cuestión de días. Fuente: Museo de Historia Natural, Londres.

De todos los análisis químicos a los que fue sometido el meteorito Winchcombe, nos interesan especialmente tres resultados: (1) se trata de una condrita carbonácea, (2) presenta un alto contenido en agua (un 10% de su peso), y (3) este agua tiene una firma isotópica idéntica a la hidrosfera terrestre.

Impactos a hipervelocidad

La transferencia de agua mediante impactos es el mecanismo de hidratación planetaria que mejor se ha estudiado experimentalmente. En las instalaciones del campo de tiro vertical de la NASA, se hicieron colisionar a hipervelocidad (unos 18.000 kilómetros por hora -catorce veces la velocidad del sonido-), proyectiles de antigorita, un mineral análogo a las condritas carbonáceas, contra objetivos de piedra pómez anhidra. Después de cada experimento se recuperaron los productos de impacto, que básicamente consistían en vidrios generados por la enorme presión, algunos restos de antigorita y brechas ricas en material fundido (Figura 12).  

Fotografía en blanco y negro de un experimento de impacto a hipervelocidad realizado en laboratorio. En el centro de la imagen se observa un fogonazo brillante, con rayos de luz que se expanden radialmente hacia los bordes de una cámara circular metálica. El destello ilumina las paredes internas del túnel, revelando una estructura cilíndrica. El fenómeno simula el impacto de partículas a velocidades extremas, como las que ocurren en el espacio. Fuente: NASA / Ames Research Center, Mountain View, California.

Figura 12. Fogonazo de impacto a hipervelocidad. Fuente: NASA/ Ames Research Center, Mountain View, California.

Sorprendentemente, los impactos liberaron mucha más agua de la esperada. Estos experimentos han demostrado que los objetos similares a las condritas carbonáceas pudieron entregar hasta un 30% de su agua indígena a cuerpos de silicato como la Tierra, bajo las velocidades y los ángulos de impacto que prevalecieron durante las fases tempranas de la formación de los planetas terrestres. Estos resultados plantean, además, la posibilidad de que estos planetas en crecimiento atraparan agua en sus interiores a medida que crecían.

Fondo naranja con título en blanco en mayúsculas:
¿PUDO LLEGAR EL AGUA DESDE EL CINTURÓN DE ASTEROIDES SIN NECESIDAD DE IMPACTOS?

Texto explicativo en blanco:
Un grupo de científicos del Observatorio de París presentó en diciembre de 2024 un modelo alternativo al de los impactos para explicar cómo el agua pudo viajar desde la línea de nieve hasta el interior del Sistema Solar. Según el modelo, al disiparse el joven disco protoplanetario, el aumento de luminosidad del Sol primitivo provocó la sublimación de los volátiles de los asteroides, liberando agua en forma de un nuevo disco gaseoso-viscoso. Este disco, formado principalmente por agua, se habría expandido gradualmente desde el cinturón de asteroides hacia el Sistema Solar interior. La gravedad de los planetas habría sido la principal responsable de capturar esta agua. Según los autores, el agua de la Tierra se habría depositado entre 10 y 100 millones de años después del nacimiento del Sol. Este tipo de discos de agua podrían detectarse en sistemas planetarios jóvenes gracias al telescopio espacial James Webb y al radiotelescopio ALMA.

En la parte inferior, sobre fondo naranja, hay una ilustración con el siguiente pie de figura en blanco:
Figura 13. Captura de agua sin necesidad de impactos. El proceso de liberación de volátiles por parte de los asteroides habría comenzado apenas 5 millones de años después del nacimiento del Sol. ¿Cayó el agua del cielo como si la arrojaran desde un inmenso cubo? Fuente: Sylvain Cnudde / Observatorio de París – PSL / LESIA.

La ilustración (Figura 13) representa al Sol (esfera amarilla a la izquierda), el planeta Tierra en el centro y una nube de asteroides a la derecha. Flechas blancas indican el movimiento del agua (H₂O) desde los asteroides hacia la Tierra, simbolizando un flujo continuo de vapor de agua. El fondo es oscuro con gradientes azules.

3. ¿Cuándo se formó el primer océano?

En enero de 2001 se hizo pública la primera evidencia científica de la existencia de un océano en la joven Tierra. La prueba llegó de la mano de circones detríticos (como los granos de arena de un río o una playa) encontrados en el interior de rocas cuarcíticas en el Distrito Murchison de Australia Occidental. La edad de los circones se determinó mediante dataciones radiométricas de Uranio-Plomo, y las condiciones ambientales se establecieron con ayuda del análisis de isótopos de oxígeno.  Las pruebas señalan que estos circones se formaron hace unos 4.300 millones de años a partir de magmas que contenían un aporte significativo de corteza continental retrabajada, y que se formaron en presencia de agua cerca de la superficie de la Tierra. En definitiva: la Tierra contaba con una hidrosfera estable que interactuaba con la corteza 250 millones de años después de su formación.

Las teorías de cómo este primer océano se pudo formar y permanecer estable en la superficie terrestre se basan en la especulación y la modelización geofísica. A pesar de ello, hay determinadas ideas clave que nos permiten inferir algunas pinceladas de esta historia (Figura 14):

Esquema horizontal dividido en cuatro paneles que representan la evolución de la Tierra primitiva y la formación del primer océano, con fechas indicadas debajo de cada etapa:

Panel 1 (4.560 – 4.500 millones de años): Se muestra un planeta fundido con núcleo y manto, rodeado de gases expulsados (CO₂, H₂O, SiO₂) por desgasificación. Un gran objeto (Theia) impacta sobre la superficie, vaporizando silicato. El planeta tiene una temperatura superficial de unos 2000 °C. Se menciona la presencia de un océano de magma.

Panel 2 (4.500 – 2.500 Ma): El planeta está aún muy caliente con un flujo térmico elevado. Se forma una atmósfera de vapor de agua y dióxido de carbono. Se menciona el efecto invernadero y el inicio de la formación de la corteza.

Panel 3 (4.400 – 4.300 Ma): El planeta comienza a enfriarse. La atmósfera residual de CO₂ genera nubes, y se representa la condensación del vapor de agua y la formación de océanos a través de lluvias intensas.

Panel 4 (4.200 – 3.900 Ma): Representa un planeta con océanos estables y una atmósfera más tenue. Aparece la corteza terrestre y se plantea la posibilidad del inicio de la tectónica de placas y del ciclo del carbonato-silicato. En la parte superior se plantea la hipótesis del Gran Bombardeo Terminal.

La imagen está acompañada por el pie:
Figura 14. Secuencia evolutiva de la joven Tierra y los principales acontecimientos que llevaron a la formación del primer océano. Fuente: adaptado de Pinti (2005).

Figura 14. Secuencia evolutiva de la joven Tierra y los principales acontecimientos que llevaron a la formación del primer océano. Fuente: adaptado de Pinti (2005).

  • La Tierra primigenia recibió numerosos impactos de asteroides y planetesimales. El gran impacto que formó la Luna (Theia), hace unos 4.530 millones de años, liberó tanta energía que fundió por completo al menos el 70% la superficie terrestre.
  • La joven Tierra era un cuerpo muy caliente, con un elevado flujo térmico que provocaría unaintensa actividad volcánica. La intensa desgasificación provocada por el vulcanismo masivo, acumuló en la atmósfera dióxido de carbono (CO2) y vapor de agua, lo que provocaría un intenso efecto invernadero que mantendría caliente la superficie terrestre.
  • Para que una masa de agua líquida sea estable en la superficie de un planeta, esta debe  encontrarse por debajo del llamado punto crítico del agua, es decir,bajo condiciones de presión y temperatura que permitan distinguir el estado líquido del estado gaseoso. La presión crítica es de 221 bar (aproximadamente 221 veces la presión atmosférica normal), y la temperatura crítica es de 374 ºC.  Una fuerte presión atmósfera de CO2 permitiría la existencia de agua líquida, aunque la temperatura de la superficie terrestre fuese superior a los 200 ºC por el efecto invernadero.
  • Dos son los factores que permiten que un planeta pueda retener una atmósfera con elementos volátiles como el agua: un fuerte campo gravitatorio (que depende de la masa) y la presencia de un campo magnético que pueda protegerla del viento solar.
  • Conforme la concentración de CO2 disminuía y la superficie terrestre se iba enfriando, se condensaba el vapor de agua presente en la atmósfera y aumentaban las precipitaciones.
  • La lenta disolución del CO2 atmosférico debió acidificar aquel primer océano estable.
  • El estudio de la superficie lunar sugiere que entre 4.100 y 3.900 millones de años pudo tener lugar un episodio conocido como Bombardeo Tardío Intenso . Considerando que la superficie terrestre es catorce veces más grande que la de la Luna, y que la gravedad de la Tierra es seis veces mayor (lo que implica mayor capacidad de atracción), se ha calculado que sobre la Tierra debieron caer un número de asteroides unas 20 veces mayor que sobre la Luna. En este escenario, la colisión de un asteroide de 200 kilómetros de diámetro harían hervir los 200 primeros metros de un océano en todo el planeta; y el impacto de un objeto de 500 kilómetros pondría en ebullición la hidrosfera terrestre en su totalidad.

Con estos ingredientes la comunidad científica se ha aventurado a recrear artísticamente cómo pudo ser aquel primer océano hacia el final del eón Hádico (Figura 15). Pero, como suele ser común en ciencia, el pozo de las realidades a veces solo es una ilusión provisional.

Recreación artística de la Tierra durante el periodo conocido como Gran Bombardeo Terminal, hace entre 4.200 y 3.900 millones de años. La imagen muestra un paisaje dramático con un cielo rojo-anaranjado intenso y una superficie rocosa salpicada de cuerpos de agua. Decenas de meteoritos y asteroides incandescentes atraviesan el cielo en múltiples direcciones, dejando largas estelas brillantes. Algunos impactan violentamente contra el terreno y el agua, generando explosiones y salpicaduras. El entorno transmite una atmósfera caótica y extremadamente activa, con montañas al fondo y reflejos de fuego sobre el agua.

Fuente: Stephen Mojzsis / University of Colorado / NASA Lunar Science Institute / William Bottke / Southwest Research Institute.

Figura 15. Recreación artística de cómo pudo ser la Tierra hace 4.200-3.900 millones de años. Fuente: Stephen Mojzis/University of Colorado/NASA Lunar Science Institute/William Bottke/Southwest Research Intitute.

Bibliografía

Anguita, F. (2002) Biografía de la Tierra. Historia de un planeta singular. Editorial Aguilar. Versión digital revisada en: https://docta.ucm.es/entities/publication/e73ed2e8-2f75-452e-8839-2b027cdce8a8

Anguita, F. y Castilla, G. (2010). Planetas. Una guía para exploradores de la frontera espacial. Editorial Rueda.

Daly, R. T. y Schultz, P.H. (2018). The delivery of water by impacts from planetary accretion to present. Science Advances, Vol 4, nº 4.

Glavin, D.P. et al. (2025). Abundant ammonia and nitrogen-rich soluble organic matter in samples from asteroid (101955) Bennu. Nature Astronomy, Vol.9 pp. 199-210.

Hallis, L.J. (2017). D/H ratios of the inner Solar System. Philosophical Transactions of the Royal Cosiety A. Vol. 375, nº 2094.

Hernández-Bernal, M.S. y Solé, J. (2010). Single chondrule K-Ar and Pb-Pb ages of Mexican ordinary chondrites     as tracers of extended impact events. Revista Mexicana de Ciencias Geológicas, Vol. 27, 1. Pp. 123-133.

Jewitt, D.J. y Young, E.D. (2015) El origen del agua en la Tierra. Investigación y Ciencia, 464 (mayo), pp. 54-61.

Quentin Kral, P.H. et al. (2024). An impact-free mechanism to deliver water to terrestrial planets and exoplanets. Astronomy and Astrophysics, Vol. 692, A70.

King, A.J. et al. (2022). The Winchcombe meteorite, a unique and pristine witness from the outer solar system. Science Advances, Vol. 8, nº 46.

Lorenzon, S. (2022) et al. Ringwoodite and zirconia inclusions indicate downward travel of super-deep diamonds. Geology, Vol. 50 (9), 996-1000.

Mojzsis, S.J.; Harrison, T.M. y Paloma, R.T. (2001). Oxygen-isotope evidence from ancient zircons for liquid water at the Earth’s surface 4,300 Myr ago. Nature, Vol. 409 (6817), pp.178–18.

Pearson, D. et al. (2014). Hydrous mantle transition zone indicated by ringwoodite included within diamond. Nature 507, 221–224.

Pinti, D.L. (2005). The Origin and Evolution of the Oceans. En Advances in Astrobiology and Biogeophysics, pp. 83–112.

Rubin, A. (2013) Meteoritos primitivos. Investigación y Ciencia, 439 (abril), pp. 24-29.

Schmandt, B. et al. (2014) Dehydration melting at the top of the lower mantle. Science, Vol. 344. Pp. 1265-1268.

Trigo-Rodríguez, J.M. et al. (2019). Accretion of water in carbonaceous chondrites: current evidence and implications for the delivery of water to early Earth. Space Science Riews, Vol. 215, 18.

Dataciones uranio-plomo con circones: una ventana al pasado remoto de la Tierra

Autores – Gabriel Castilla Cañamero, Iván Martín-Méndez y Enrique Merino Martínez

Allí donde se manifiesta el mineral, la eternidad habla.

Michel Onfray. Estética del Polo Norte, 2015

A finales de febrero de 1896, el químico Henri Becquerel realizó un experimento curioso: colocó un paquete de sales de uranio junto a una placa fotográfica envuelta en papel negro y las guardó en el cajón de un escritorio. Días después, descubrió que las sales habían dejado unas manchas borrosas en la placa, como si algún tipo de rayo invisible capaz de atravesar los objetos hubiera dejado su huella (Figura 1). Intrigado por la naturaleza de este fenómeno, compartió el hallazgo con una investigadora de doctorado de origen polaco llamada Marie. En junio de 1903, Marie defendió su tesis doctoral titulada: Investigaciones sobre sustancias radiactivas, en la que demostraba que ciertos elementos, como el uranio, emiten energía de forma constante. Pocos meses después, Bequerel, Marie y su esposo Pierre Curie fueron galardonados con el Premio Nobel de Física por el descubrimiento de la radiactividad espontánea.

Figura 1. Plancha fotográfica de Henri Becquerel que fue expuesta a la radiación emitida por el uranio a finales de febrero de 1896. Este tipo de descubrimiento, totalmente casual pero de gran valor científico, se conoce como serendipia. En la imagen se aprecia la forma de una cruz de Malta que se encontraba guardada en el mismo cajón, entre la placa fotográfica y las sales de uranio. Fuente: Archivo Becquerel/Wikipedia Commons.

Apenas un año después, el físico Ernest Rutherford descubrió que los elementos químicos radiactivos se transforman en otros a lo largo del tiempo: el uranio (U), por ejemplo, se convierte lentamente en plomo (Pb). Esta transformación, denominada desintegración radiactiva, ocurre a velocidad constante y predecible (Figura 2). Rutherford sugirió al químico Bertram Boltwood una idea revolucionaria: la posibilidad de usar esta descomposición radiactiva para calcular la edad de una roca midiendo la proporción de los dos elementos presentes en ella. En 1907, Boltwood aplicó por primera vez este principio al binomio uranio-plomo en una serie de muestras de rocas y estimó que algunas de ellas podían tener hasta 2.200 millones de años de antigüedad. Así, en apenas una década, el estudio de la radiactividad dio origen al método de datación radiométrica y permitió cuantificar el tiempo geológico con precisión numérica.

La imagen muestra una gráfica con fondo amarillo claro que representa cómo cambia la cantidad de un elemento radiactivo con el tiempo. El eje vertical indica la velocidad del proceso, mientras que el eje horizontal representa el tiempo.

Sobre la gráfica hay una curva descendente de color naranja, que empieza alta y desciende con una pendiente cada vez más suave. Esta curva representa un proceso de descomposición radiactiva de tipo exponencial, en el que la cantidad de sustancia radiactiva se reduce con el tiempo.

A lo largo de la curva hay cuatro cuadrados que simbolizan la proporción de elemento radiactivo restante:

Al inicio, el cuadrado está totalmente rojo: representa el 100 % del elemento radiactivo.

Más adelante, un segundo cuadrado aparece dividido en dos mitades, una roja y una blanca, indicando que queda el 50 % del material radiactivo. Este punto está marcado como “Vida media”, que es el tiempo que tarda en desintegrarse la mitad del material.

Luego aparece un cuadrado con solo una cuarta parte en rojo: indica que queda el 25 % del elemento.

Finalmente, un cuadrado con una pequeña porción roja representa el 12,5 % restante.

La gráfica muestra visualmente que al principio la desintegración es rápida, pero después se vuelve más lenta. Aunque nunca llega exactamente a cero, la cantidad de material radiactivo se reduce progresivamente a lo largo del tiempo.

Figura 2. Como se puede apreciar en la gráfica, la descomposición radiactiva es un proceso de tipo exponencial. En rojo tenemos la cantidad de elemento radiactivo presente en cada momento: primero disminuye muy rápido y luego más lentamente hasta llegar a cero. La vida media o período de semidesintegración es el tiempo que tarda un conjunto de átomos en quedar reducido a la mitad. Como podemos ver en la Tabla I, algunas desintegraciones son tan lentas que tienen vidas medias más largas que la vida del Universo. Adaptado de Anguita (1988).

La idea era prometedora, pero…  

Pese a la promesa del método, los pioneros de la datación tuvieron que salvar tres grandes obstáculos:

1º. Falta de conocimiento sobre los isótopos: Rutherford y Boltwood desconocían la existencia de los neutrones en el núcleo de los átomos y por tanto el papel que juegan los isótopos en el proceso de desintegración.

2º. Dudas sobre lo que se databa exactamente: Existían serias dudas sobre si las dataciones obtenidas señalaban la edad de cristalización de los minerales, la edad de formación de las rocas, o simplemente la antigüedad de los elementos químicos que los forman. Tampoco estaba claro si se podía aplicar este método a rocas ígneas, metamórficas y sedimentarias por igual.

3º. Limitaciones técnicas: A los problemas de índole teórico, había que sumarle las dificultades técnicas; aislar y medir con suficiente precisión pequeñas cantidades de elementos en las rocas requería de instrumentos que aún no existían.

El papel de los isótopos.

Los elementos químicos están formados por átomos, los cuales, a su vez, están compuestos por electrones, protones y neutrones. Sin embargo, estos últimos no fueron descubiertos hasta 1932, cuando el físico James Chadwick los identificó. En los elementos químicos, el número de protones define su identidad; el número de neutrones, en cambio, puede variar. Hoy sabemos que muchos elementos químicos poseen isótopos, es decir: variantes de un mismo elemento que difieren en el número de neutrones presentes en el núcleo. En la naturaleza existen dos tipos de isótopos: los estables y los inestables (o radiactivos), y son estos últimos los que se pueden emplear en las dataciones.

En el caso del uranio, la Tabla Periódica de los Elementos indica que su número atómico es 92, lo que significa que en estado natural posee 92 electrones y 92 protones, además de un número variable de neutrones que define sus tres isótopos:

1.- El Uranio-234 (234U) con 92 protones y 142 neutrones.

2.- El Uranio-235 (235U), que tiene 92 protones y 143 neutrones.

3.- El Uranio-238 (238U), que posee 92 protones y 146 neutrones.

En términos prácticos, esto quiere decir que en 1 gramo de uranio están presentes los tres isótopos en distinta proporción. El más abundante en la naturaleza es el 238U que representa el 99,2 % de la masa de cualquier muestra que tomemos al azar, y le siguen el 235U con un 0,7 % y el 234U con menos de un 0,1 %.

Los tres isótopos de Uranio (U) son radiactivos, pero los dos primeros se usan comúnmente en geocronología porque se desintegran a isótopos estables de plomo (Pb): el 238U se transmuta por descomposición radiactiva en 206Pb, un proceso cuya vida media es de  4.470 millones de años (Figura 3), mientras que el 235U se transforma en 207Pb en un tiempo medio de 700 millones de años.

La imagen muestra un diagrama en forma de red de recuadros conectados por flechas, que representa la serie radiactiva de desintegración del uranio-238 hasta llegar al plomo-206, pasando por diversos elementos intermedios.

Los elementos están organizados en un eje con dos dimensiones:

En sentido horizontal, se indica el número atómico (de 81 a 92), con los nombres de los elementos correspondientes (como talio, plomo, bismuto, uranio, etc.).

En sentido vertical, se representa el peso atómico, de mayor a menor.

Cada recuadro contiene el símbolo químico del elemento seguido de un número en superíndice, que indica el isótopo (por ejemplo, U²³⁸ para el uranio-238 o Pb²⁰⁶ para el plomo-206).
Las flechas negras entre recuadros indican la dirección de la desintegración de un isótopo en otro.

El proceso comienza con el uranio-238 (U²³⁸), que se desintegra en torio-234 (Th²³⁴), y este a su vez en protactinio-234 (Pa²³⁴), y continúa pasando por radio (Ra²²⁶), radón (Rn²²²), polonio (Po²¹⁸, Po²¹⁴, Po²¹⁰), bismuto (Bi²¹⁴, Bi²¹⁰), talio (Tl²¹⁰) y diferentes isótopos de plomo (Pb²¹⁴, Pb²¹⁰), hasta llegar finalmente al plomo-206 (Pb²⁰⁶), que es estable y marca el fin de la cadena de desintegración.

Entre los elementos intermedios destaca el polonio-214 (Po²¹⁴), señalado en el pie de figura como el más inestable de todos, ya que tiene una vida media de menos de un segundo. El nombre "polonio" fue elegido por Marie Curie en homenaje a su país natal, Polonia.

En conjunto, la figura muestra cómo, a lo largo del tiempo, un elemento radiactivo como el uranio se transforma de forma espontánea en otros elementos, liberando radiación en el proceso, hasta convertirse finalmente en un elemento estable.

Figura 3. Secuencia de trasmutaciones que llevan del uranio-238 al plomo-210. El polonio-214 (que debe su nombre a la tierra natal de Marie Curie)  es el isótopo más inestable de la serie, con una vida media de menos de un segundo. Adaptado de Anguita (1988).

El triunfo de la datación mediante uranio-plomo

El binomio uranio-plomo es ideal para datar rocas antiguas debido a su larga vida media. De hecho fue empleado por el geólogo norteamericano Clair Patterson para alcanzar uno de los hitos más importantes en geología: establecer por primera vez la edad absoluta de la Tierra.

¿Cómo lo hizo?

A su director de tesis, el geoquímico Harrison Brown, se le ocurrió la idea de que, en lugar de centrarse en medir la cantidad de uranio presente en una roca antigua, sería más sencillo detectar la presencia de isótopos de plomo acumulado como producto de su desintegración. Esta técnica, conocida hoy como método de acumulación o datación plomo-plomo, permitió abordar el problema desde una nueva perspectiva, evitando errores debido a la pérdida o ganancia de uranio.  Pero, ¿dónde encontrar muestras de roca a priori tan antiguas como la propia Tierra? Patterson asumió acertadamente que los planetas se formaron como resultado de un proceso de acreción de partículas a partir de una nebulosa de gas y de polvo, y que los meteoritos que en la actualidad impactan contra la Tierra son los escombros supervivientes de aquel proceso. O sea: se propuso datar estos “ladrillos sobrantes” para estimar cuándo comenzó a formarse la edad del “edificio planetario”.

Aislar una suficiente cantidad de minerales presentes en meteoritos (rocas de origen extraterrestre y, por tanto, ya de por sí escasas), que contuvieran algo de uranio, pero sobre todo plomo, fue una tarea ardua. Además, debía asegurarse que estas muestras no estuvieran contaminadas por agentes externos, como el plomo procedente de la combustión de gasolina. Este desafío requirió siete años de meticuloso trabajo y llevó al diseño y a la creación  del primer laboratorio de geoquímica esterilizado del mundo (hoy en día denominados “Salas Blancas” – Figura 4-).

La imagen en color muestra a un hombre mayor, descalzo, sin camisa y con los pantalones remangados hasta media pantorrilla, limpiando el suelo de un laboratorio con una mopa o escurridor de goma. Se trata del científico Clair Patterson, reconocido por su trabajo sobre la datación de la Tierra y por alertar sobre la contaminación por plomo.

El laboratorio tiene un aspecto ordenado, con muebles de madera clara, una campana de extracción a la derecha, y varias tuberías y cables visibles bajo la encimera. Encima de un dispensador de papel, hay una caja azul y amarilla con la etiqueta "Saran Wrap" (una marca de film plástico). En el suelo parece haber una película plástica transparente que el científico está limpiando cuidadosamente.

Esta escena refleja el nivel extremo de limpieza que Patterson mantenía en su laboratorio para evitar cualquier mínima contaminación externa, especialmente de plomo, ya que su trabajo requería mediciones ultrasensibles. Gracias a estas medidas, fue pionero en establecer uno de los primeros laboratorios de ambiente limpio (clean room) en el mundo.

Figura 4. Clair Patterson limpiando su laboratorio para evitar la contaminación. Fuente: Archivos y Colecciones Especiales del Instituto Tecnológico de California (Caltech Archives CCP145.5-7).

Finalmente, en 1953, las muestras fueron analizadas con la ayuda de un (entonces novedoso) espectrómetro de masas, un instrumento que permite separar con mucha precisión los elementos que constituyen un mineral. ¿El resultado? Patterson calculó la edad de la Tierra en 4.550 millones de años, con un margen de error de más o menos unos 70 millones de años, (¡menor del 2% a pesar de los medios disponibles en ese momento!). En líneas generales este valor continúa siendo válido en la actualidad.

El circón: una trampa para el uranio

A medida que avanzaba el conocimiento sobre la vida media de las transmutaciones radiactivas de los isótopos y mejoraba la precisión de la espectrometría de masas, surgieron nuevos métodos de datación radiométrica, útiles para datar diferentes tipos de rocas y minerales (Tabla I). A pesar de ello, el método uranio-plomo sigue siendo el más fiable para calcular la edad de rocas muy antiguas, y la principal razón es que hoy disponemos de una técnica mucho más depurada gracias al papel que desempeña un mineral con propiedades extraordinarias: el circón. 

La tabla presenta cuatro métodos de datación radiométrica utilizados para determinar la antigüedad de las rocas. Está organizada en cuatro columnas:

Elemento padre (el isótopo radiactivo original),

Elemento hijo (el producto estable tras la desintegración),

Vida media (tiempo que tarda en desintegrarse la mitad del elemento padre), y

Observaciones sobre su uso geológico.

Los datos incluidos son los siguientes:

Samario-147 se desintegra en Neodimio-143, con una vida media de 106 000 millones de años. Se utiliza principalmente en rocas metamórficas antiguas.

Rubidio-87 se convierte en Estroncio-87, con una vida media de 47 000 millones de años. Este método puede aplicarse a cualquier tipo de roca.

Uranio-238 se transforma en Plomo-206, con una vida media de 4 510 millones de años. Es considerado el método más preciso para datar rocas.

Potasio-40 se desintegra en Argón-40, con una vida media de 1 300 millones de años, y es el método más comúnmente usado.

Esta tabla permite comparar la aplicabilidad y precisión de distintos métodos de datación radiométrica, clave para entender la historia geológica de la Tierra.

El circón (silicato de zirconio: ZrSiO4) es un mineral accesorio de pequeño tamaño que cristaliza  a partir de magmas procedentes del manto superior o de la base de la corteza terrestre, por lo que es un mineral muy común en rocas ígneas, como el granito (Figura 5). Durante su formación tiende a incorporar diversos elementos que reemplazan parcialmente el circonio (Zr) en su estructura cristalina, tales como uranio, torio, titanio y elementos de las tierras raras; pero rechaza fuertemente el plomo durante su crecimiento. Una vez cristalizado, retiene estos elementos, principalmente el uranio, del que puede llegar a tener entre 100 y 1000 ppm (partes por millón). Y puesto que rechazó el plomo durante la cristalización, cualquier plomo que aparezca posteriormente dentro de su estructura se debe exclusivamente a la desintegración radiactiva. Es decir, se puede asumir que todo el 206Pb y 207Pb presentes cuando se analiza una muestra tiene su origen en la descomposición radiogénica del uranio.

La imagen está dividida en dos partes.
A la izquierda, se muestra una fotografía en color de una roca ígnea, de aspecto rugoso y granular. Es un granito procedente de Pakistán. En su superficie se observan cristales alargados y brillantes de color rojo oscuro, señalados con flechas blancas. Estos cristales son circones de tamaño centimétrico, minerales extremadamente duros y resistentes que suelen contener pequeñas cantidades de uranio y plomo, lo que los hace muy valiosos para la datación geológica.

A la derecha, se presenta una imagen en blanco y negro aumentada de un solo cristal de circón visto con lupa o microscopio. El cristal tiene forma alargada y ligeramente achatada, con bordes irregulares y una superficie que muestra zonas oscuras y claras, indicando variaciones internas en su estructura. Este ejemplar es mucho más pequeño que los de la izquierda, con un tamaño submilimétrico.

La comparación entre ambas imágenes muestra cómo los circones pueden variar en tamaño, desde algunos milímetros hasta varios centímetros, y resalta su utilidad tanto en observaciones macroscópicas como en estudios microscópicos.

Figura 5. Circones centimétricos (flechas) cristalizados en un granito procedente de Paquistán (izquierda) y aspecto de un ejemplar de tamaño submilimétrico visto con una lupa (derecha). Fuente: colección Gabriel Castilla y Wikipedia Commons.

Además, el circón es durísimo y resiste altas temperaturas, presiones y procesos geológicos como el metamorfismo o la erosión, lo que le permite conservar su firma isotópica incluso después de miles de millones de años. Puede crecer (recristalizar) en rocas metamórficas en condiciones de alta presión y hasta 900 ºC de temperatura, permitiendo datar el evento (o los eventos) en el que volvió a integrar uranio en su estructura (que posteriormente volverá a transformarse en plomo). Igualmente, su gran dureza le permite sobrevivir intacto a ciclos de erosión, transporte y sedimentación, manteniéndose “químicamente estable” en forma de grano detrítico en el interior de rocas sedimentarias, y permitiendo datar la edad máxima de deposición de esas rocas.

La imagen está dividida en dos partes.
En la parte superior aparece un texto informativo sobre el hecho de que la roca más antigua de la Tierra podría haberse encontrado en la Luna.

El texto explica que en 2019 se anunció que una muestra traída por la misión Apolo 14 de la NASA contenía un fragmento de la antigua corteza terrestre. Los científicos creen que esta roca se formó a unos 160 km de profundidad en la Tierra y que fue expulsada al espacio por el impacto de un asteroide, aterrizando finalmente en la Luna. La muestra, que pesa casi 9 kilos, es un tipo de roca llamado brecha, compuesta por fragmentos de diferentes rocas fundidas y compactadas por el calor de los impactos que moldearon la superficie lunar.

La datación de los cristales de circón contenidos en la muestra indica que esta roca se formó hace 4.011 millones de años. Aunque se han encontrado cristales de circón más antiguos (de hasta 4.374 millones de años) en la Tierra, esos se han preservado en rocas erosionadas, mientras que esta muestra lunar conserva el contexto original.

En la parte inferior del cartel se muestra una fotografía en blanco y negro de la roca lunar, etiquetada como “14321,46”. Es una roca rugosa, de color oscuro, y se encuentra sobre una superficie lisa. A la izquierda, una escala vertical marca 2 centímetros. Una flecha blanca apunta a un fragmento incrustado en la roca, señalado como el clasto (trozo) que se habría formado originalmente en la Tierra.

Fuente de la imagen: JPL-NASA.

Receta para analizar un circón

1º. Se realiza un estudio de campo y se recolectan las muestras de roca de interés.

2º. Las rocas son molidas y tamizadas. El polvo grueso de roca obtenido es lavado y separado por gravedad para concentrar los minerales más pesados.

3º. Los concentrados de minerales pesados se seleccionan y extraen con un separador magnético.

4º. La purificación final se logra separando a mano cada circón. Como no miden más de 1mm esta tarea se realiza con ayuda de una lupa binocular y pinzas finas.

5º. Los circones se pegan en cinta de doble cara y se montan en moldes, que son rellenados con una resina.

6º Cuando la resina ya está consolidada, se pule para que la parte central de los minerales quede expuesta y se pueda analizar.

En la actualidad los circones se analizan química e isotópicamente mediante varias técnicas derivadas de la espectrometría de masas, principalmente dos:

(1) La microsonda iónica de alta resolución (Super High-Resolution Ion Micro-Probe, también conocida como SHRIMP).

(2) El espectrómetro de masas de plasma acoplado inductivamente y ablación láser (LA-ICP-MS, siglas de Laser Ablation Inductively Coupled Plasma Mass Spectrometer).

Estas técnicas permiten estudiar con gran precisión partes muy concretas de un cristal, vaporizan los átomos de uranio y plomo que surgen de un punto seleccionado (Figura 7). Los datos que se obtienen se procesan y se corrigen para ser usados en los cálculos de relaciones isotópicas de U-Pb (y Th) y estimación final de edades.

Figura 7. Circón procedente del gneis de Acasta (Canadá). Los pequeños círculos que se observan fueron producidos por haces de iones que vaporizaron partes del cristal para establecer la relación de uranio y plomo en esos puntos concretos. Ha sido datado en unos 4.000 millones de años. Adaptado de York (1993).

Una gráfica para datarlos a todos

Cuando se forma un circón (cristaliza por debajo de los 900 º C), el sistema uranio-plomo se reinicia. A medida que pasa el tiempo los isótopos de plomo creados por la descomposición radiactiva del uranio quedan atrapados y se concentran. Si nada lo perturba, datarlo es muy sencillo: solo habrá que situar las concentraciones de plomo respecto al uranio inicial sobre una gráfica, la llamada curva de concordia, que se construye relacionando las cantidades de isótopos de plomo que se forman a partir de los dos principales isótopos de uranio (Figura 8a).

La imagen muestra una gráfica científica conocida como curva de concordia, utilizada en geocronología para fechar rocas mediante la comparación de las proporciones de isótopos de uranio y plomo.

El eje horizontal representa la relación entre Plomo-207 y Uranio-235, mientras que el eje vertical representa la relación entre Plomo-206 y Uranio-238.

Ambos sistemas se basan en la desintegración radiactiva natural del uranio en plomo a lo largo del tiempo.

La curva que recorre la gráfica comienza en el origen (punto inferior izquierdo, marcado como “HOY” en rojo) y asciende hacia la derecha hasta alcanzar el punto más alto a la derecha, marcado como “ORIGEN” en rojo (correspondiente a una antigüedad de 4.5 Ga, es decir, 4.500 millones de años).

A lo largo de esta curva hay varios puntos negros marcados con etiquetas de edad, como:

1.5 Ga (1.500 millones de años),
2 Ga, 2.5 Ga, 3 Ga, 3.5 Ga, 4 Ga, hasta 4.5 Ga.

Estos puntos representan proporciones de isótopos que corresponden a edades concretas, calculadas a partir de las vidas medias conocidas de los isótopos U-235 (más rápida) y U-238 (más lenta). Por ejemplo:

A los 704 millones de años, la cantidad de Uranio-235 se ha reducido a la mitad, por lo que la relación Pb/U es 1.

A los 1.408 millones de años, solo queda una cuarta parte del Uranio-235, así que la relación Pb/U es 3, y así sucesivamente.

Esta gráfica permite comparar las proporciones de isótopos medidos en una muestra y deducir su edad, siempre que no haya habido pérdida de elementos. Si un punto medido cae fuera de la curva, puede indicar que el sistema ha sido alterado.

Figura 8a. Curva de concordia para el sistema uranio-plomo. El hecho de conocer con precisión las vidas medias de los dos principales isótopos del uranio nos permite construir una gráfica con proporciones plomo/uranio muy concretas para los 4.550 millones de años de historia de la Tierra. En una roca de 704 millones de años, el 235U está en su vida media por lo que habrá una relación Pb/U = 1. En una roca de 1.408 millones de años solo quedará un átomo de 235U por cada tres átomos de 207Pb, por lo que la relación Pb/U = 3, y así sucesivamente. En el caso del 238U la descomposición es más lenta, por eso en ese eje de la gráfica las relaciones adoptan valores menores que 1. Los puntos negros sobre la curva señalan las edades para esas proporciones en giga años (Ga), es decir miles de millones de años (1Ga = 1000.000.000 años).

Es muy raro que a lo largo de los miles de millones de años de la historia de la Tierra un circón no se vea alterado por cambios de presión y temperatura en su entorno. Cuando esto sucede, pueden escapar isótopos de plomo, por lo que las dataciones ya no caerán exactamente sobre la curva de concordia. Es decir, se abre y distorsiona el sistema isotópico. Es aquí cuando toma sentido datar muchos circones con el fin de establecer diversos niveles de pérdida de plomo y con ellos establecer una recta de discordia, recta que cortará la curva de concordia en dos puntos, lo que proporcionará información sobre la edad del circón y sobre el supuesto momento en que se produjo el episodio de metamorfismo que alteró la química del mineral (Figura 8b).

La imagen muestra un diagrama de concordia, como el de la Figura 8a, utilizado en geocronología para fechar rocas a partir de la desintegración radiactiva del uranio en plomo.

El eje horizontal indica la proporción entre Plomo-207 y Uranio-235.

El eje vertical muestra la proporción entre Plomo-206 y Uranio-238.

La curva de concordia (línea verde) representa las proporciones que se obtendrían si una muestra no ha perdido ni ganado material desde su formación.

En este gráfico, aparecen además tres puntos azules marcados como M1, M2 y M3, que representan tres muestras distintas de cristales de circón procedentes de una misma roca antigua. Estos tres puntos no caen sobre la curva, sino que están alineados sobre una línea recta azul más clara llamada recta de discordia.

Esta recta de discordia se traza cuando una roca ha sufrido algún proceso que ha modificado sus proporciones originales de plomo y uranio, por ejemplo, un episodio de metamorfismo (aumento de presión y temperatura que no llega a fundir la roca).

La recta intersecta la curva de concordia en dos puntos clave:

El punto superior, marcado como 3.2 Ga (3.200 millones de años), indica la edad original de formación de la roca que contiene los circones.

El punto inferior, marcado como 2 Ga (2.000 millones de años), señala el momento en que se produjo la alteración metamórfica, que causó una pérdida de plomo en los cristales.

Este tipo de análisis permite reconstruir la historia térmica de una roca y saber tanto cuándo se formó como cuándo fue modificada por eventos posteriores.

Fuente: Adaptado de York (1993) y elaboración propia.

Figura 8b. Diagrama de concordia para tres muestras de circones (M1, M2 y M3) de una roca antigua que ha experimentado una alteración por metamorfismo (cambio de presión y temperatura pero sin llegar a fundir). La recta de discordia intersecta la curva “por arriba” en 3.2 Ga, revelando la edad de la roca que contiene las tres muestras, y “por abajo” en 2 Ga, señalando el momento en que se produjo el episodio de alteración metamórfica que desencadenó la pérdida de plomo. Adaptado de York (1993) y elaboración propia.

La imagen muestra un recuadro de fondo gris con texto blanco que aborda el tema:
¿Cuál es el circón más antiguo?

El texto informa que en 2007 se anunció el descubrimiento de circones detríticos, es decir, granos de circón que han sobrevivido a la erosión de las rocas originales que los contenían. Estos granos, similares a los granos de cuarzo en arena de playa, fueron hallados en Jack Hills, Australia Occidental, y tienen una antigüedad estimada de 4.252 millones de años.

Se explica que estos circones son los microdiamantes naturales más antiguos conocidos en la Tierra. Sin embargo, este récord fue superado en 2014, cuando se anunció el hallazgo de un circón Hádico (del eón Hádico, el más antiguo de la historia terrestre), con una antigüedad de aproximadamente 4.400 millones de años.

El texto plantea una pregunta clave:

“¿Por qué se conservan los granos más resistentes pero no las rocas a las que pertenecieron?”

Esta cuestión subraya la importancia de los circones como testigos de las primeras etapas de la historia geológica de la Tierra, ya que no se han conservado rocas completas de ese periodo, pero sí estos cristales extremadamente resistentes que permiten reconstruir parte de esa historia temprana.

Nuevos avances en datación U-Pb

El circón sigue siendo el mineral insignia para la datación geocronológica, por su resistencia y fiabilidad. Sin embargo, los nuevos avances en la precisión de los métodos instrumentales y analíticos han permitido que, además del circón, actualmente se pueden datar otros minerales mediante el método uranio-plomo. Algunos de los más utilizados son:

Monacita (CePO4): rica en uranio y torio, y común en rocas metamórficas y graníticas. Es menos resistente al metamorfismo que el circón, pero muy útil en geología regional para datar procesos metamórficos.

Xenotima (YPO4): similar a la monacita pero con itrio en lugar de cerio. También incorpora uranio y se encuentra en rocas ígneas y metamórficas.

Titanita (o esfena, CaTiSiO5): contiene uranio en cantidades moderadas, siendo más susceptible a pérdidas de Pb que el circón. Se emplea en rocas ígneas y metamórficas, siendo importantes en rocas pobres en circón.

Baddeleyita (ZrO2): se encuentra en basaltos y gabros antiguos, y rocas mantélicas donde el circón es raro o ausente.

Bibliografía consultada.

Allégre, C.J.; Manhès, G. y Göpel, C. (1995). The age of the Earth. Geochimica et Cosmochimica Acta, Vol. 59 (8), pp.1445-1456.

Anguita, F. (1988). Origen e Historia de la Tierra. Editorial Rueda.

Bellucci, J.J. et al. (2019). Terrestrial-like zircon in a clast from an Apollo 14 breccia. Earth and Planetary Science Letters 510, pp. 173-185.

Bryson, B. (2003). Una breve historia de casi todo. Edición especial ilustrada. RBA Editores.

Casado, M. J. (2006). Las damas del laboratorio. Editorial Debate.

Greshko, M. (2019). La posible roca más antigua de la Tierra se recogió en la Luna. National Geographic. Versión on-line.

Guo, J-L. et al. (2000). Significant Zr isotope variations in single zircon grains recording magma evolution history. Proceedings of the National Academy of Sciences, Vol. 117 (35), pp. 21125-21131.

Harley, L. y Kelly, N.M. (2007). Zircon- Tyny but Timely. Elements, 3 (1).

Mennekem, M. et al. (2007). Hadean diamonds in zircon from Jack Hills, Western Australia. Nature 448 (7156), pp. 917-920.

Naipauer, M. (2021). Circones, los relojes de la Tierra. Ciencia Hoy, Vol. 30, n. 176, pp. 51-57.

Patterson, C. (1956). Age of meteorites and the Earth. Geochimica et Cosmochimica Acta, Vol. 10, pp.230-237.

Valley. J. W. et al. (2014). Hadean age for a post-magma-ocean zircon confirmed by atom-probe tomography. Nature Geoscience 7, pp. 219-223.

Wilde, S.A.; Valley, J.W.; Peck, W.H. y Graham, C.M. (2001). Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago. Nature, 409 (6817), pp.175-178.

York, D. (1993). Protohistoria de la Tierra. Investigación y Ciencia, 198 (marzo), pp.40-47.

Prepárate para el Geolodía 2025. ¡La muralla de Ávila se llena de la Historia de la Tierra!

Un año más, desde Geología desde Ávila tenemos el placer de anunciar que vuelve el Geolodía. En esta edición 2025, os proponemos un emocionante recorrido geológico por uno de los grandes iconos de nuestra provincia: la muralla de Ávila.

El Geolodía Ávila 2025 se celebrará el domingo 11 de mayo y, como siempre, será una actividad gratuita y abierta a todos los públicos, sin necesidad de inscripción previa. Solo será necesario registrarse en el punto de salida, situado en la Puerta del Carmen (frente al Centro de Congresos Lienzo Norte), entre las 9:30 y las 12:30 h.

Durante el recorrido, invitamos a peques y mayores a descubrir cómo ha cambiado la Tierra a lo largo del tiempo. Para ello, contaremos con cuatro carpas temáticas dedicadas a los distintos eones geológicos, donde nuestro equipo de voluntarias y voluntarios —geólogas, geólogos y amantes de la divulgación— explicarán la evolución del planeta desde sus orígenes hasta hoy.

Además, se entregará una guía de campo impresa, con actividades y pasatiempos que irás completando con los sellos de cada eón, sin dejar de visitar la carpa inicial y la final para hacerte con los 6 sellos. ¡Complétalos todos y consigue el premio final!

El Geolodía es una iniciativa de ámbito estatal que se celebra simultáneamente en todas las provincias españolas, con el objetivo de acercar la geología a la sociedad a través de itinerarios guiados, accesibles y gratuitos. En Ávila, volvemos a apostar por una propuesta inclusiva, participativa y educativa, pensada para todos los públicos, desde personas curiosas hasta auténticos fans de la Tierra.

Os esperamos el 11 de mayo para disfrutar de una jornada de geología histórica al aire libre y redescubrir nuestro planeta con otros ojos: los ojos de la geología.

Tienes toda la información en nuestra web.

Abecevidas | Marie Tharp

Este año no llegamos a tiempo de participar con este retrato alfabético en la iniciativa de escritura creativa del mes de febrero 2025 de Café Hypatia: mujer y ciencia. #PVmujerciencia25 #11F #Polivulgadoras, pero aprovechamos el 8M Día Internacional de la Mujer Trabajadora para compartir este relato alfabético de la vida de Marie Tharp.

Analizó por primera vez, de manera detallada, los datos de batimetría del mar, pudiendo descubrir «montañas» en el fondo marino.

Primeros seis perfiles batimétricos del océano Atlántico representados por Marie Tharp. Créditos: Documento Especial #65 de la Sociedad Geológica de América – Los suelos de los océanos: I. Atlántico Norte

Batimetría, la ciencia utilizada por Tharp para estudia la topografía de fondo de lagos y mares en función del espesor de la columna de agua.

Marie Tharp dibujando el diagrama fisiográfico del océano Atlántico Norte. A la izquierda se ven los registros de sondeos, un prototipo del globo terráqueo con las dorsales representadas se encuentra en el medio, y una versión ampliada de sus seis perfiles del Atlántico Norte se ve en el esquina superior derecha de la foto. Finales de la década de 1950. Créditos:  Lamont-Doherty Earth Observatory.

Contratada para redactar y hacer cálculos para los estudiantes de la Universidad de Columbia, conoció a Maurice Ewing y Bruce Heezen trabajando para sus investigaciones.

Dió a conocer los fondos marinos con la publicación del primer mapa fisiográfico del Atlántico Norte en 1957. No pudo ser un mapa topográfico en detalle porque el gobierno norteamericano clasificó estos datos al considerar que podían resultar beneficiosos para la Unión Soviética en plena Guerra Fría.

Mapa del Océano Atlántico. Diagrama fisiográfico del Océano Atlántico.
Colección Mapas, Biblioteca Regenstein: G9101.C2 1957 H.4

En 2016, Google Earth lanzó una extensión descargable con el mapa histórico de Maire Tharps.

Imagen de Google Earth con el mapa histórico de Marie Tharp. Fuente: Google Earth.

Fue una de las Petroleum Geology Girls cuando se permitió a las mujeres entrar en el mundo de la Geología del Petróleo ante la necesidad de encontrar nuevos yacimientos de combustible para continuar en la guerra; siendo Standard Oil and Gas su primer lugar de trabajo.

Marie Tharp en 1944, cuando empezó a trabajar para Standard Oil and Gas. Créditos: Lamont-Doherty Earth Observatory.

Geología, una disciplina considerada masculina como muchas otras en esa época. Con la II Guerra Mundial los hombres se fueron al frente y la falta de geólogos posibilitó a las mujeres estudiar esta ciencia.

Hija única de Bertha Louise Tharp, maestra de alemán y latín , y William Edgar Tharp, topógrafo del Departamento de Agricultura de los Estados Unidos . Nació en Ypsilanti (Michigan) en 1920, y menudo acompañaba a su padre en su trabajo de campo, lo que le dio una temprana introducción a la cartografía.

Marie Tharp ayudando a su padre en la cartografía de suelos. Créditos: colección personal Marie Tharp

Identificó la dorsal en el centro del océano Atlántico (1953), prueba de la expansión de los océanos, pero su compañero Heezen tardó más de un año en aceptar que pudiera tener razón ya que él era partidario de la teoría de la tierra en expansión.

En primer plano, Marie Thurp dibujando sus mapas a mano con lápiz y tinta tras procesar los datos de ecosonda. Bruce Heezen de pie al fondo
Créditos: Joe Covello, National Geographic.

Juntó disciplinas como la geología, las matemáticas, la física y el dibujo en su trabajo diario, siendo hoy en día una referente de enfoque multidisciplinar de educación STEAM.

Kilómetros de líneas de datos les sirvieron a Maire Tharp y Bruce Heeze para cartografiar los distintos océanos del planeta y conocer así la realidad del fondo marino, hasta entonces interpretado como cubetas rellenas de fango.

Los mapas publicados entre 1959 y 1963 no contaban con el nombre de Marie Tharp, ni tampoco se le reconoció el mérito de ser la descubridora del rift de la dorsal mesoatlántica.

Marie Tharp trabajando con cientos de perfiles de ecosondeos para cartografiar la topografía del fondo oceánico. (Columbia, 1964). Créditos:  Lamont-Doherty Earth Observatory.

Maurice Ewing fue un importante geofísico que estudiaba el comportamiento de las ondas sísmicas en la superficie de los continentes y que desarrolló varios instrumentos para el análisis topográfico de los mares, todo con respaldo del Gobierno Norteamericano por la importancia estratégica de los fondos marinos. Sería el jefe del laboratorio donde trabajó Marie, y ante sus logros junto a Bruce entorpeció sus trabajos negándoles las subvenciones para los viajes en barco y no renovando sus contratos en 1968.

No fue hasta 1977 que empezó a reconocerse su trabajo con el Premio Nacional de Ciencias de los Estados Unidos. Posteriormente llegaron otros reconocimientos: premio Hubbard de la National Geographic Society (1978), premio por sus logros de la Sociedad de Mujeres Geógrafas (1996), nombrada una de las Cartógrafas Más Destacadas del Siglo XX por la Sociedad Phillips de la Biblioteca (1997), Premio a la Mujer Pionera en Oceanografía de la Institución Oceanográfica Woods Hole (1999), y el primer Premio Honorífico Lamont-Doherty de la Universidad de Columbia (2001).

Organizado el primer congreso oceanográfico internacional en Nueva York, el famoso oficial naval Jacques Cousteau acudió en su buque Calypso desde Europa arrastrando por el lecho marino un trineo con cámaras convencido de poder desmentir la existencia de la dorsal que proponían Tharp y Heezen, sin embargo, lo que obtuvo fueron imágenes que confirmaban su existencia.

Prohido para las mujeres de EE.UU. trabajar en barcos, Tharp se encargaba de interpretar y representar en gabinete los datos que su compañero Bruce Heezen le mandaba desde el buque de investigación. No le permitieron embarcar hasta 1965, cuando Tharp tenía 45 años.

Marie Tharp y Bruce Heezen observando el trazador sísmico a bordo del buque científico USNS Kane en su viaje inaugural, en 1968. Créditos: AIP Emilio Segrè Visual Archives, Gift of Bill Woodward, USNS Kane Collection

Quiso estudiar literatura como primera opción en St. John´s College (Annapolis) pero no admitían mujeres porque en ese tiempo las mujeres solo podían trabajar fuera de casa como maestras de escuela, enfermeras o secretarias.

Revolucionó la geología, la ciencia y la concepción del mundo. En sus propias palabras: “Yo tenía un lienzo blanco para llenar con extraordinarias posibilidades, un rompecabezas fascinante para armar. Eso era una vez en la vida –una vez en la historia del mundo–. Fue una oportunidad para cualquier persona, pero especialmente para una mujer de la década de 1940.”

Marie Tharp posa con su mapa, coloreado por Heinrich C. Berann, producido por National Geographic en 1968. Créditos:  Lamont-Doherty Earth Observatory.

Se graduó en Inglés y Música en la Universidad de Ohio (1943), en Geología del Petróleo en la Universidad de Michigan (1944) y en Matemáticas en la Universidad de Tulsa (1948).

Tharp es el nombre puesto a un pequeño cráter de impacto situado en el hemisferio sur de la cara oculta de la Luna como homenaje por parte de la Unión Astronómica Internacional.


Parte del mapa de la cara oculta de la Luna del USGS donde se ve el cráter nombrado como Tharp. Fuente: Wikipedia

Un joven graduado en Bellas Artes, Howard Foster, fue contratado por Heezen para dibujar sobre el mapa del océano Atlántico los epicentros de los terremotos marinos registrados. Coincidían con la dorsal descubierta por Tharp y reforzaba su propuesta del movimiento de los continentes.

Vema era el nombre del barco que adquirió el Instituto Lamont en 1953, y con el que Bruce pudo recopilar todos los datos que Tharp cartografió a mano, representando cada detalle submarino.

World Ocean Floor Map (Mapa Mundial de los Fondos Oceánicos) fue su gran obra final, publicada en 1977 junto con Heezen y el pintor Heinrich Berann. Heezen no llegó a verlo publicado ya que murió por un infarto cuando se encontraba en un submarino en las costas de Islandia ese mismo año.

Mapa Mundial de los Fondos Oceánicos. Mapa pintado manualmente por Heinrich Berann. Créditos: Heezen-Tharp «World ocean floor» de Berann. [?, 1977], Berann, Heinrich C, Bruce C Heezen y Marie Tharp.
Tharp y Heezen repasando el mapa de los fondos marinos en elaboración por el pintor Heinrich Berann. Créditos:  Lamont-Doherty Earth Observatory

Xerografía es el proceso con el que se reprodujeron muchos de sus mapas. En 1995 donó más de 40.000 artículos a la biblioteca del congreso norteamericano: información geológica y sísmica, datos de gravedad, mapas de referencia, revistas técnicas, informes, diagramas fisiográficos e incluso sus mapas del fondo oceánico.

Marie Tharp con los bibliotecarios del congreso Winston Tabb y James H. Billington visionando algunos de los articulos que Tharp donó a dicha biblioteca. Créditos: Rachel Evans.

Ya son muchos los reconocimientos a su figura, pero aún se sigue sin estudiar su nombre ni la importancia de sus descubrimientos para asentar los pilares fundamentales de la geología moderna.

Zambullida en un mundo de hombres, muchos fueron los obstáculos que le pusieron sus colegas masculinos y a los que tuvo que sobreponerse para hacer su trabajo.

Fotografía de Marie Trarp en 2001, junto al prototipo del globo terráqueo que hizo con Heezen en la década de los años 50, donde se representan las dorsales oceáncias. Marie falleció en 2006. Créditos:  Lamont-Doherty Earth Observatory.

Para conservar la naturaleza… ¿hay que tener en cuenta a la geología? Hablemos sobre geoconservación

Autoras: Thais de Siqueira Canesin y Ana Isabel Casado

Según la Unión Internacional de Conservación de la Naturaleza (UICN): “Esencialmente, la geoconservación es la práctica de conservar, mejorar y promover el conocimiento de la geodiversidad y del patrimonio geológico. Por lo tanto, la geoconservación se ocupa principalmente de la conservación de características y/o elementos que tienen una importancia geológica o geomorfológica especial. La geoconservación puede ayudar a mantener la biodiversidad y el funcionamiento de ecosistemas sanos”.

Otros conceptos necesarios para hablar de Geoconservación: geodiversidad y patrimonio geológico

La geodiversidad se refiere a la variedad de procesos y elementos geológicos (rocas, minerales, fósiles), geomorfológicos (geoformas) y pedológicos (suelos) que forman parte los ecosistemas (figura 1).

En el artículo se incluye la Figura 1, que ilustra cómo la geodiversidad se compone de los elementos geológicos, geomorfológicos, pedológicos y los procesos asociados presentes en un ecosistema. Imagina un diagrama o imagen que muestra estos componentes de forma integrada, resaltando su interrelación y dependencia.
Figura 1: La geodiversidad se compone de los elementos geológicos, geomorfológicos, pedológicos y los procesos asociados que se encuentran en ese ecosistema, y que forman parte de él.

En 2004, el geocientífico Murray Gray publicó el primer libro dedicado a la geodiversidad, “Geodiversity: valuing and conserving abiotic nature”, donde describe cómo estas diversas características de la Tierra son esenciales para comprender tanto la historia geológica como el equilibrio de los ecosistemas.

Para determinar la importancia de la geodiversidad de un lugar hay que evaluar sus elementos geológicos en relación a su valor:
1- Intrínseco
2- Cultural
3- Estético
4- Económico
5- Funcional
6- Científico
7- Educativo

Un mismo lugar puede tener uno o varios de estos valores.

El patrimonio geológico es definido por la UICN como “los elementos de la geodiversidad de la Tierra que tienen un valor significativo científico, educativo, cultural o estético”.


Las rocas, las cuevas, los valles, los fósiles, los volcanes… son esenciales para que la ciencia pueda entender y explicar cómo han evolucionado la Tierra y la vida a lo largo del tiempo.

Geoconservación y ecosistemas

Los ecosistemas naturales, como son los bosques, las barreras de coral, los desiertos… son esenciales para la correcta regulación del clima, el agua y la biodiversidad. La conservación de estos ecosistemas es fundamental para garantizar la sostenibilidad del planeta.

La geoconservación desde la perspectiva de la sostenibilidad y la diversidad de la vida en la Tierra, adquiere un significado aún más profundo. No se limita solo a la conservación de la geodiversidad y el patrimonio geológico, sino que también asegura que los ecosistemas y la biodiversidad puedan seguir existiendo.

Cuidar de la Tierra significa cuidar de la naturaleza tanto de su parte viva (biótica) como la parte no viva (abiótica), es decir, tanto de los seres vivos como del sustrato, la base y la geodiversidad que la componen, que están interconectadas para poder ser posibles.

Los elementos de la geodiversidad, los recursos naturales geológicos, están directamente conectados con el equilibrio ecológico. Por ejemplo, los bosques, los corales o los desiertos no solo son importantes por albergan distintas especies de flora y fauna, sino que también juegan un papel esencial en la regulación de los ciclos climáticos y la conservación del suelo. La destrucción de estas áreas puede poner en riesgo tanto los procesos naturales como la vida en el planeta.

Ejemplos muy claros son los ecosistemas de las regiones desérticas (figura 2), de los glaciares y de los ambientes acuáticos que tienen su biodiversidad específica, la cual ha evolucionado y se ha establecido en estos entornos concretos condicionada por el sustrato rocoso. A lo largo de los millones de años de edad del planeta, los ambientes, las rocas y los procesos han ido cambiando y la biodiversidad lo ha hecho con ellos adaptándose a las nuevas condiciones.

Se trata de una ilustración en acuarela que representa un ecosistema desértico. En ella, el cielo muestra tonos pardos que evocan aridez, altas temperaturas y baja humedad. La arena se acumula formando dunas, mientras que en el primer plano se distinguen rocas y suelos. Sobre estos suelos crecen arbustos y algunos árboles, y en el ambiente se pueden ver aves volando a lo lejos, una gacela, y se intuyen comunidades humanas adaptadas a este entorno. Se distinguen los elementos abióticos –como la arena, la temperatura, la humedad, la geomorfología, las rocas y los suelos– y los elementos bióticos, que incluyen la fauna, la vegetación y las comunidades humanas. La imagen enfatiza cómo los elementos vivos se adaptan a las condiciones impuestas por el entorno físico.
Figura 2: En un ecosistema de desierto se pueden distinguir sus elementos abióticos (arena, temperatura, humedad, geomorfología, rocas, suelos…) y sus elementos bióticos (fauna, vegetales, comunidades humanas…). Los elementos bióticos se adaptan a los abióticos.

¿La amenaza a la geodiversidad es también una amenaza para las comunidades humanas?

Comprendiendo los factores que vinculan a los pueblos, las culturas y los distintos grupos humanos con la geodiversidad nos encontramos con un nuevo concepto, la geología social.

En el caso de la humanidad, las distintas poblaciones también se han adaptado al lugar que habitan condicionadas por la geodiversidad. Las comunidades inuit, ribereña, pescadora o los pueblos nómadas del desierto son claros ejemplos de estas adaptaciones.

Cuidar de la naturaleza es, sobre todo, conservar la parte que la sustenta: la geodiversidad y el patrimonio geológico.

Por todo esto, la geoconservación es fundamental para mantener la resiliencia de la Tierra, permitiendo que los ciclos naturales continúen funcionando y que el planeta siga proporcionando recursos esenciales para la vida, como agua potable, aire limpio y suelos fértiles; al mismo tiempo que conserva la biodiversidad necesaria para la salud del ecosistema global.

Esta imagen presenta los 17 Objetivos de Desarrollo Sostenible adoptados por la ONU en 2015. Se visualizan íconos representativos de cada objetivo, que buscan impulsar acciones a nivel global para mejorar la calidad de vida, proteger el planeta y garantizar la paz y la prosperidad para todos.
Figura 3. Los 17 Objetivos de Desarrollo Sostenible (ODS) adoptados por la ONU en 2015. Referencia ONU


Referencias

Brilha, J. (2005). Património geológico e geoconservação: a conservação da natureza na sua vertente geológica. Braga: Palimage Editores. 190 p.

Brilha, J. (2016). Inventory and Quantitative Assessment of Geosites and Geodiversity Sites: a Review. Geoheritage, 8(2), 119–134.

Carcavilla, L. U. (2012) Geoconservación. Instituto Geológico y Minero de España. Madrid, España.

Gray, M. (2004). Geodiversity: valuing and conserving abiotic nature. John Wiley and Sons, Chichester, England, 434 p.

Gordon, J. E., Crofts, R., Díaz-Martínez, E., & Woo, K. S. (2018). Enhancing the Role of Geoconservation in Protected Area Management and Nature Conservation. Geoheritage, 10(2), 191–203. https://doi.org/10.1007/s12371-017-0240-5

IUCN (2025). International Union for Conservation of Nature. IUCN´s World Commission on Protected Areas (WCPA). (https://iucn.org/our-union/commissions/iucn-world-commission-protected-areas-2021-2025).

Sharples, C. (2002). Concepts and Principles of Geoconservation. Tasmanian Parks & Wildlife Service. 81 p.

Geolodía y Gamificación. ¿De qué trata el trabajo que presentamos en el Congreso Geológico de España 2024?

Puedes escuchar el contenido de esta entrada aquí:

En el XI Congreso Geológico de España presentamos una de nuestras propuestas de divulgación científica (figura 1). Esta propuesta se llevó a cabo a través de la gamificación, en el Geolodía de Ávila 22 en Villaflor, y en Ciencia en Acción 2023.

Nuestra compañera @anabelgeoraman durante la exposición del trabajo en la Sesión de Didáctica y divulgación del Congreso Geológico de España el pasado 3 de julio. Se puede ver a Ana Isabel detrás del atril, señalando a la pantalla con la proyección de la presentación de la ponencia, donde se puede leer "Gamificando el Geolodía de Ávila, experiencias en el campo y en entorno cerrado". También se ve a las dos geólogas responsables de la sesión sentadas alrededor de la mesa de organizadoras.
Figura 1: nuestra compañera @anabelgeoraman durante la exposición del trabajo en la Sesión de Divulgación y Enseñanza de las Ciencias de la Tierra, del Congreso Geológico de España el pasado 3 de julio.

La Evolución del Geolodía de Ávila

Desde 2016, el actual equipo organizador del Geolodía de Ávila ha trabajado en mejorar la experiencia de esta actividad. Tradicionalmente, este evento consistía en rutas autoguiadas con paradas en puntos geológicos significativos, donde geólogas y geólogos ofrecían explicaciones detalladas. Sin embargo, a pesar del éxito de este formato, las encuestas de participantes revelaban la necesidad de una aproximación más inclusiva y lúdica, especialmente para asistentes más jóvenes y familias.

Introducción a la Gamificación

En la edición de 2022, desarrollada en Villaflor (Ávila), se tomó la decisión de gamificar el Geolodía. La gamificación, una metodología que introduce elementos de juego en contextos no lúdicos; y busca aumentar la participación y el compromiso de quienes participan. La idea era sencilla pero poderosa: transformar el recorrido geológico en un juego de aventura, donde cada parada ofreciera no solo información científica, sino también retos y recompensas.

Elementos de la Gamificación en el Geolodía

La gamificación del Geolodía de Ávila se basó en los elementos que estructuran este tipo de actividades: dinámicos, mecánicos y componentes de juegos. Estos elementos se organizan de manera jerárquica en tres niveles (figura 2):

  1. Elementos Dinámicos: Aspectos generales que mantenían el funcionamiento de la actividad, como la historia subyacente y el flujo de la narrativa.
  2. Elementos Mecánicos: Reglas y procesos que guiaban el desarrollo del juego, incluyendo el uso de mapas y la búsqueda de paradas.
  3. Elementos componentes: Herramientas y objetos físicos utilizados, como pegatinas y mapas interactivos.
Pirámide propuesta por Werbach y Hunter (2012) para jerarquizar e interrelacionar los distintos elementos de la gamificación. En la cúspide se sitúan los elementos dinámicos, que son los aspectos generales que hacen funcionar la actividad. Inmediatamente debajo se sitúan los elementos dinámicos que provocan el desarrollo del juego y que condicionan los elementos dinámicos. Y en la base se encuentran los elementos componentes, medios por los que se ejecutan los elementos mecánicos y los elementos dinámicos por lo que ambos dependen de éstos.
Figura 2. Pirámide propuesta por Werbach y Hunter (2012) para jerarquizar e interrelacionar los distintos elementos de la gamificación.

La historia central involucraba a quienes se acercaron al Geolodía en una misión para resolver un desafío geológico final, explorando diferentes paradas que representaban puntos de interés geológico en Villaflor. Cada parada proporcionaba una insignia y una pista para resolver el enigma final, promoviendo tanto la colaboración como la competencia amistosa.

Impacto y Resultados

La respuesta a la gamificación fue abrumadoramente positiva. Las encuestas post-evento reflejaron comentarios entusiastas como «super divertido el laberinto» y «muy interesante, una actividad para repetir». Los datos recogidos mostraron que la gamificación no solo aumentó la satisfacción de quienes participaban, sino que también redujo el abandono y mejoró el aprendizaje.

La adaptación de la actividad para espacios cerrados, como aulas, fue igualmente exitosa. En el concurso internacional «Ciencia en Acción» en Viladecans, Barcelona, la versión gamificada del Geolodía de Ávila ganó el primer premio en la categoría de Laboratorio de Geología. Este reconocimiento destacó la capacidad de la gamificación para comunicar contenidos científicos de manera efectiva y atractiva.

Conclusión

La experiencia de gamificar el Geolodía de Ávila representa un avance significativo en la divulgación científica. Al integrar elementos lúdicos en actividades educativas, se logra captar la atención de un público amplio y diverso, desde jóvenes estudiantes hasta docentes y familias. Este enfoque innovador no solo mejora la experiencia de aprendizaje, sino que también demuestra el potencial de la gamificación para revitalizar la educación y la divulgación científica.


Puedes leer el trabajo completo en la web de reseachgate

Casado, A.I., Melón, P., Pérez-Tarruella, J., Canesis, T.S., Béjard, T.M., Muñoz, F., Díez-Canseco, J., Cuevas, J., Claro, A., Castilla-Cañamero, G., Cuerva, A. y Élez, J.;. (2024): Gamificando el Geolodía de Ávila, experiencias en el campo y en entorno cerrado. Geo-Temas, 20: 490-493.

Primera página del trabajo Casado et al. (2024).
Figura 3.: Primera página del trabajo Casado et al. (2024).

GEOLODÍA 24. ¿Qué es un glaciar y cómo funciona? Los glaciares de montaña

Por Ana Isabel Casado y Pablo Melón

Un glaciar (del francés glacier) es una gran masa de hielo comprimido, formada por acumulación, compactación y recristalización de nieve hasta crear hielo glaciar (figura 1); y que necesita de miles de años para que esto suceda.

Gráfico de cambios en la morfología y en la porosidad de la nieve con la profundidad hasta convertirse en hielo glaciar.
Figura 1. Cambios en la morfología y en la porosidad del agua sólida con la profundidad, desde nieve granular hasta hielo glaciar

Con esta compactación, el hielo se reorganiza perdiendo el aire que se encuentra entre las partículas sólidas hasta que solo queda el aire del interior de burbujas. El resultado es la formación de hielo glaciar, con su característico color azul.

Los glaciares son dinámicos (se mueven) y generan procesos de erosión, transporte y sedimentación, al igual que sucede con el agua líquida.

Clasificación de los glaciares

La clasificación morfológica de los glaciares se basa en tres factores: su tamaño, su forma y la posición de la masa de hielo (figura 2).

  • Glaciares de casquete: son de gran escala. Ocupan casi el 10% de la superficie terrestre. Su forma es masiva y fluye en todas direcciones.
  • Glaciares de meseta: son de mediana escala. Su forma también es masiva. Fluyen en todas direcciones y se encuentran cubriendo zonas elevadas y mesetas.
  • Glaciares de montaña (o alpinos): son de pequeña escala. Consisten en corrientes de hielo más largas que anchas y se encuentran entre zonas montañosas elevadas, formando valles en U.
GLACIARES DE CASQUETEGLACIARES DE MESETAGLACIARES DE MONTAÑA
TAMAÑOGrandeMedianoPequeño
FORMAMasivaMasivaCorriente de hielo más larga que ancha
POSICIÓNGrandes superficies (>10% de la Tierra)Zonas elevadas y mesetasEntre montañas elevadas, con valles en U
Figura 2. Tabla con las características de tamaño, forma y posición de los glaciares. Con estas características se pueden definir tres tipos de glaciares claramente distintos: de casquete, de meseta y de montaña.

Como ya has visto en la entrada del Paleograciar de la Serradilla (Cepeda la Mora, Ávila), en el Sistema Central existieron glaciares activos en el Último Máximo Glaciar (20.000-30.000 años). Estos glaciares eran del tipo Glaciar de Montaña.

Partes de un glaciar de montaña

Los glaciares de montaña son masas de hielo que fluyen pendiente abajo y que existen porque la acumulación de nieve a gran altura compensa la fusión de hielo a baja altura y la descarga por deshielo.

Esta masa de hielo en movimiento va incorporando fragmentos rocosos de todo tipo de tamaños, y genera morfologías propias que persistirás aún cuando el glaciar haya desaparecido, como ha pasado en La Serradilla.

Las dos zonas de un glaciar de montaña (acumulación vs. ablación)

  • ZONA DE ACUMULACIÓN (ganancia de masa): parte más alta donde más nieva y se alimenta el glaciar. Las bajas temperaturas se encargan de mantener este agua sólida.
  • ZONA DE ABLACIÓN O DE FUSIÓN (pérdida de masa): zona baja donde el agua sólida se derrite por el aumento de la temperatura. Se forman pequeños drenajes y escorrentías superficiales que alimentan los ríos ladera abajo. En ocasiones, el glaciar puede desembocar en un lago o mar y fragmentarse en grandes bloques de hielo llamados icebergs.
Figura 3. Los glaciares de montaña tienen dos zonas claramente diferenciadas, la zona de acumulación, donde hay una ganancia de masa por la precipitación de nieve, y la zona de ablación, donde se pierde masa por sublimación y deshielo. Donde no hay ni pérdida ni ganancia de masa se llama línea de equilibrio. Morfológicamente, existen estructuras propias de estos sistemas glaciares que permanecen una vez el hielo se ha retirado, como el circo, las morrenas o los bloques erráticos.

Estas dos zonas (acumulación y ablación) se encuentran separadas por la línea de equilibrio, lugar donde el conjunto de las ganancias y las pérdidas es igual a cero.

El dinamismo y la capacidad de cambio son las características más importantes de los sistemas glaciares de montaña. Estos modifican su forma, se mueven, crecen, decrecen…

Algunas definiciones

Los circos glaciares son depresiones con forma semicircular y paredes muy inclinadas, que se desarrollan en la zona de acumulación (figura 3). Su forma se debe a la suma de la erosión basal, el arrastre de fondo y la gelifracción de las rocas de las paredes.

Cuando el hielo ya no existe, quedan los circos en las zonas altas de las montañas, en los cuales es habitual que se formen lagos.

La lengua glaciar (figura 3) es la masa de hielo que se desborda del circo y se desplaza pendiente abajo.

La masa de hielo va incorporando fragmentos rocosos de todo tipo de tamaños mientras se desplaza, acumulándolos principalmente en sus bordes. A estas acumulaciones se les llama morrenas (figura 3). Estas morrenas se conservan una vez desaparecido el glaciar, y se diferencian como crestas formadas por detritos de tamaños variados que nos permiten conocer las dimensiones de las masas glaciares, ya que las limitan.

Dos tipos de morrenas principales:

  • Morrena lateral: se desarrolla a los lados del glaciar y se alimenta principalmente de las rocas que caen desde las paredes laterales del valle glaciar.
  • Morrena final o terminal: se desarrolla en el borde principal del glaciar y marca un periodo de estancamiento. Las más modernas se sitúan a mayor altitud que las más antiguas.

Los bloques erráticos son también seña de identidad de los glaciares de montaña. Son grandes bloques anguloso de roca que son transportados por el glaciar a grandes distancias. Cuando son transportados dentro de un iceberg , y se desprenden de él al derretirse el hielo, se llaman ice-rafting.

Línea de nieve

Que se desarrollen o no glaciares depende de muchos factores, como ya pudiste leer en la entrada de factores que condicionan la formación de un glaciar.

La suma de dos de estos factores, latitud y altitud, generan la denominada línea de nieve (figura 4). Ésta es una línea imaginaria global que marca el límite irregular entre la superficie cubierta de nieve y la superficie libre de nieve. Esta línea no es estática ya que, en general, los glaciares se encuentran en retroceso.

Gráfico sobre dónde se encuentra la línea de nieve en diversas regiones del planeta:
- Regiones polares: 0-600 m
- Regiones templadas: 1000-5000 m
- Regiones ecuatoriales: más de 5000 m
Figura 4. La línea de nieve se mide de manera directa por satélite o fotografías aéreas, o se calcula en base a la isoterma de 0ºC. Es un factor importante en los modelos hidrológicos para estimar caudales y modelos de escorrentía y precipitación.

Este contenido forma parte del Geolodía 2024 de Ávila en Cepeda la Mora, Ávila (España).

Bibliografía

GEOLODÍA 24. Paleoglaciar de la Serradilla. ¿Cómo sabemos que en Cepeda quedan restos de un glaciar?

Al norte del pueblo de Cepeda la Mora, dentro de La Serrota, y en un paraje que se llama Alto de las Serradillas, queda una morfología singular, muy bien preservada y sin embargo muy habitual en el Parque Regional Sierra de Gredos y en todo el Sistema Central. Se trata de un paleoglaciar (Figura 1).

Figura 1. Fotografía del paleoglaciar de la Serradilla, conserva todas las formas pero ya no hay hielo. El relieve no está en equilibrio con el clima actual. Fotografía de Javier Elez.
Figura 1. Fotografía del paleoglaciar de la Serradilla. Conserva todas las formas del antiguo glaciar, pero ya no hay hielo. El relieve no está en equilibrio con el clima actual. Fotografía de Javier Elez.

Un paleoglaciar son los restos de formas y sedimentos de lo que un día fue un glaciar y que ahora ya no tiene hielo. Esto no nos impide ver sus formas típicas (circos y morrenas) y nos invita a pensar que el clima de nuestro planeta ha cambiado de forma habitual a lo largo de su historia.

El paleoglaciar de la Serradilla

Hemos elegido este paleoglaciar específicamente, y no otro de los muchos que hay en Gredos y la Sierra de Béjar, por tener unas dimensiones modestas y ser de fácil acceso desde Cepeda La Mora (Figura 2).

Figura 2. Localización del Paleoglaciar de la Serradilla, en el recuadro en rojo.
Figura 2. Localización del Paleoglaciar de la Serradilla, en el recuadro en rojo.

Estas condiciones, junto con el buen grado de preservación que tiene, hacen que se pueda abarcar en su conjunto con la mirada desde el campo y se puedan entender de forma fácil sus formas más destacadas, depósitos de sedimentos y evolución.

En concreto, este paleoglaciar de la Serradilla está muy bien conservado (aunque le falte el hielo) y presenta varios niveles de morrenas y algunos circos como elementos más característicos (Figura 3).

Figura 3. Esquema geomorfológico del paleoglaciar de la Serradilla. En colores azules las distintas morrenas, cuanto más oscuro más altas topográficamente. Las líneas en azul oscuro indican el límite de los distintos circos (cresta) asociados a las morrenas. Las zonas verdes son antiguos lagos postglaciares tipo la laguna grande de Gredos, que ahora están llenos de sedimento y vegetación y por tanto no son lagos ya. Mapa: Javier Elez.
Figura 3. Esquema geomorfológico del paleoglaciar de la Serradilla. En colores azules las distintas morrenas, cuanto más oscuro más altas topográficamente. Las líneas en azul oscuro indican el límite de los distintos circos (cresta) asociados a las morrenas. Las zonas verdes son antiguos lagos postglaciares tipo la laguna grande de Gredos, que ahora están llenos de sedimento y vegetación y por tanto no son lagos ya. Mapa: Javier Elez.

Recuerda que las morrenas son esos acúmulos de sedimentos que el hielo del glaciar arrastra, en su zona central o en los laterales, en su movimiento cuesta abajo (Figura 4).

Literalmente, el hielo se desborda del circo (que es la zona en donde se acumula la nieve y se compacta para formar hielo) y se cae en función de la pendiente existente.

Figura 4. Fotografía de primer plano de las morrenas del glaciar de las Serradillas, se observa su estructura caótica compuesta por bloques de todos los tamaños. Fotografía: Gabriel Castilla.
Figura 4. Fotografía de primer plano de las morrenas del glaciar de las Serradillas, se observa su estructura caótica compuesta por bloques de todos los tamaños. Fotografía: Gabriel Castilla.

¿Cuándo estuvo activo el glaciar?

Si pensamos en el pasado, este paleoglaciar estuvo activo, incluyendo su lengua de hielo, probablemente al mismo tiempo que los grandes conjuntos de Gredos tan conocidos por las personas aficionadas a las montañas.

No hay dataciones geológicas concretas de la actividad de este paleoglaciar, pero si lo comparamos con los datos de edad que sí existen en otras zonas cercanas, podríamos interpretar que estuvo activo durante el Último Máximo Glaciar (hace unos 20.000 o 30.000 años) y que probablemente el hielo desaparecería definitivamente hace solo unos 13.000 años.

Todo esto es muy tentativo, ya que comparamos con datos de otros paleoglaciares más estudiados en el Sistema Central (Carrasco et al. 2020; Oliva et al., 2019), pero es una interpretación razonable, sujeta a cambiar cuando tengamos datos más precisos.

Figura 5. Vistas 3D desde el NE del paleoglaciar de la Serradilla. A) modelo sombreado con elementos geomorfológicos. B) modelo sombreado únicamente en donde se aprecia el relieve. C) foto de satélite. Mapa: Javier Elez.
Figura 5. Vistas 3D desde el NE del paleoglaciar de la Serradilla. A) modelo sombreado con elementos geomorfológicos. B) modelo sombreado únicamente en donde se aprecia el relieve. C) foto de satélite. Mapa: Javier Elez.

El final de la glaciación

Las morrenas están pintadas en colores azules en los mapas de las Figuras 3 y 5, los escarpes de los distintos circos (la zona más alta erosionada por el hielo en el circo) en azul oscuro.

El hielo ocupaba desde los escarpes hasta las morrenas. En muchos glaciares de nuestro planeta, las morrenas más bajas topográficamente son más antiguas y corresponden a los episodios de máxima extensión de los hielos, mientras que las más altas topográficamente son más recientes.

Al incrementarse poco a poco la temperatura al final de la glaciación, el hielo se refugia en zonas cada vez más altas, moviendo los sedimentos y generando las morrenas en esas zonas, hasta que finalmente la temperatura sube lo suficiente como para que desaparezcan definitivamente los hielos.

En el paleoglaciar de la Serradilla vemos al menos 4 o 5 conjuntos de morrenas escalonadas en la vertical (Figura 5), marcando claramente esa retirada de los hielos que acompaña a un ciclo de calentamiento del planeta, en el cual, como sabes, estamos inmersos a día de hoy. Es una evidencia más de los cambios de clima del planeta en el que vivimos, siempre extremadamente dinámico.

Las zonas pintadas en verde son lagos de origen glaciar. Al desaparecer el hielo por el progresivo calentamiento del planeta, éste se transformó en agua, que fue retenida por las morrenas y dio origen a esos lagos. Estos, como el de la Laguna Grande de Gredos o la Laguna de la Nava o tantas otras, son muy efímeros en tiempo geológico y se rellenan rápidamente de sedimentos, dejando esas praderas planas con mucha vegetación que se ven en el interior del paleoglaciar de la Serradilla.

Este contenido forma parte del Geolodía 2024 de Ávila en Cepeda la Mora, Ávila (España).

Referencias

Carrasco, R.M. et al. (2020). Glacial geomorphology of the High Gredos Massif: Gredos and Pinar valleys (Iberian Central System, Spain). Journal of Maps, 16:2. Pp. 790-804.

Oliva, M. et al. (2019). Late Quaternary glacial phases in the Iberian Peninsula. Earth-Science Reviews 192. Pp. 564-600.