Archivo de la categoría: Geología como profesión

A qué se dedican los profesionales de la geología y cuáles son sus campos de actuación.

Abecevidas | Marie Tharp

Este año no llegamos a tiempo de participar con este retrato alfabético en la iniciativa de escritura creativa del mes de febrero 2025 de Café Hypatia: mujer y ciencia. #PVmujerciencia25 #11F #Polivulgadoras, pero aprovechamos el 8M Día Internacional de la Mujer Trabajadora para compartir este relato alfabético de la vida de Marie Tharp.

Analizó por primera vez, de manera detallada, los datos de batimetría del mar, pudiendo descubrir «montañas» en el fondo marino.

Primeros seis perfiles batimétricos del océano Atlántico representados por Marie Tharp. Créditos: Documento Especial #65 de la Sociedad Geológica de América – Los suelos de los océanos: I. Atlántico Norte

Batimetría, la ciencia utilizada por Tharp para estudia la topografía de fondo de lagos y mares en función del espesor de la columna de agua.

Marie Tharp dibujando el diagrama fisiográfico del océano Atlántico Norte. A la izquierda se ven los registros de sondeos, un prototipo del globo terráqueo con las dorsales representadas se encuentra en el medio, y una versión ampliada de sus seis perfiles del Atlántico Norte se ve en el esquina superior derecha de la foto. Finales de la década de 1950. Créditos:  Lamont-Doherty Earth Observatory.

Contratada para redactar y hacer cálculos para los estudiantes de la Universidad de Columbia, conoció a Maurice Ewing y Bruce Heezen trabajando para sus investigaciones.

Dió a conocer los fondos marinos con la publicación del primer mapa fisiográfico del Atlántico Norte en 1957. No pudo ser un mapa topográfico en detalle porque el gobierno norteamericano clasificó estos datos al considerar que podían resultar beneficiosos para la Unión Soviética en plena Guerra Fría.

Mapa del Océano Atlántico. Diagrama fisiográfico del Océano Atlántico.
Colección Mapas, Biblioteca Regenstein: G9101.C2 1957 H.4

En 2016, Google Earth lanzó una extensión descargable con el mapa histórico de Maire Tharps.

Imagen de Google Earth con el mapa histórico de Marie Tharp. Fuente: Google Earth.

Fue una de las Petroleum Geology Girls cuando se permitió a las mujeres entrar en el mundo de la Geología del Petróleo ante la necesidad de encontrar nuevos yacimientos de combustible para continuar en la guerra; siendo Standard Oil and Gas su primer lugar de trabajo.

Marie Tharp en 1944, cuando empezó a trabajar para Standard Oil and Gas. Créditos: Lamont-Doherty Earth Observatory.

Geología, una disciplina considerada masculina como muchas otras en esa época. Con la II Guerra Mundial los hombres se fueron al frente y la falta de geólogos posibilitó a las mujeres estudiar esta ciencia.

Hija única de Bertha Louise Tharp, maestra de alemán y latín , y William Edgar Tharp, topógrafo del Departamento de Agricultura de los Estados Unidos . Nació en Ypsilanti (Michigan) en 1920, y menudo acompañaba a su padre en su trabajo de campo, lo que le dio una temprana introducción a la cartografía.

Marie Tharp ayudando a su padre en la cartografía de suelos. Créditos: colección personal Marie Tharp

Identificó la dorsal en el centro del océano Atlántico (1953), prueba de la expansión de los océanos, pero su compañero Heezen tardó más de un año en aceptar que pudiera tener razón ya que él era partidario de la teoría de la tierra en expansión.

En primer plano, Marie Thurp dibujando sus mapas a mano con lápiz y tinta tras procesar los datos de ecosonda. Bruce Heezen de pie al fondo
Créditos: Joe Covello, National Geographic.

Juntó disciplinas como la geología, las matemáticas, la física y el dibujo en su trabajo diario, siendo hoy en día una referente de enfoque multidisciplinar de educación STEAM.

Kilómetros de líneas de datos les sirvieron a Maire Tharp y Bruce Heeze para cartografiar los distintos océanos del planeta y conocer así la realidad del fondo marino, hasta entonces interpretado como cubetas rellenas de fango.

Los mapas publicados entre 1959 y 1963 no contaban con el nombre de Marie Tharp, ni tampoco se le reconoció el mérito de ser la descubridora del rift de la dorsal mesoatlántica.

Marie Tharp trabajando con cientos de perfiles de ecosondeos para cartografiar la topografía del fondo oceánico. (Columbia, 1964). Créditos:  Lamont-Doherty Earth Observatory.

Maurice Ewing fue un importante geofísico que estudiaba el comportamiento de las ondas sísmicas en la superficie de los continentes y que desarrolló varios instrumentos para el análisis topográfico de los mares, todo con respaldo del Gobierno Norteamericano por la importancia estratégica de los fondos marinos. Sería el jefe del laboratorio donde trabajó Marie, y ante sus logros junto a Bruce entorpeció sus trabajos negándoles las subvenciones para los viajes en barco y no renovando sus contratos en 1968.

No fue hasta 1977 que empezó a reconocerse su trabajo con el Premio Nacional de Ciencias de los Estados Unidos. Posteriormente llegaron otros reconocimientos: premio Hubbard de la National Geographic Society (1978), premio por sus logros de la Sociedad de Mujeres Geógrafas (1996), nombrada una de las Cartógrafas Más Destacadas del Siglo XX por la Sociedad Phillips de la Biblioteca (1997), Premio a la Mujer Pionera en Oceanografía de la Institución Oceanográfica Woods Hole (1999), y el primer Premio Honorífico Lamont-Doherty de la Universidad de Columbia (2001).

Organizado el primer congreso oceanográfico internacional en Nueva York, el famoso oficial naval Jacques Cousteau acudió en su buque Calypso desde Europa arrastrando por el lecho marino un trineo con cámaras convencido de poder desmentir la existencia de la dorsal que proponían Tharp y Heezen, sin embargo, lo que obtuvo fueron imágenes que confirmaban su existencia.

Prohido para las mujeres de EE.UU. trabajar en barcos, Tharp se encargaba de interpretar y representar en gabinete los datos que su compañero Bruce Heezen le mandaba desde el buque de investigación. No le permitieron embarcar hasta 1965, cuando Tharp tenía 45 años.

Marie Tharp y Bruce Heezen observando el trazador sísmico a bordo del buque científico USNS Kane en su viaje inaugural, en 1968. Créditos: AIP Emilio Segrè Visual Archives, Gift of Bill Woodward, USNS Kane Collection

Quiso estudiar literatura como primera opción en St. John´s College (Annapolis) pero no admitían mujeres porque en ese tiempo las mujeres solo podían trabajar fuera de casa como maestras de escuela, enfermeras o secretarias.

Revolucionó la geología, la ciencia y la concepción del mundo. En sus propias palabras: “Yo tenía un lienzo blanco para llenar con extraordinarias posibilidades, un rompecabezas fascinante para armar. Eso era una vez en la vida –una vez en la historia del mundo–. Fue una oportunidad para cualquier persona, pero especialmente para una mujer de la década de 1940.”

Marie Tharp posa con su mapa, coloreado por Heinrich C. Berann, producido por National Geographic en 1968. Créditos:  Lamont-Doherty Earth Observatory.

Se graduó en Inglés y Música en la Universidad de Ohio (1943), en Geología del Petróleo en la Universidad de Michigan (1944) y en Matemáticas en la Universidad de Tulsa (1948).

Tharp es el nombre puesto a un pequeño cráter de impacto situado en el hemisferio sur de la cara oculta de la Luna como homenaje por parte de la Unión Astronómica Internacional.


Parte del mapa de la cara oculta de la Luna del USGS donde se ve el cráter nombrado como Tharp. Fuente: Wikipedia

Un joven graduado en Bellas Artes, Howard Foster, fue contratado por Heezen para dibujar sobre el mapa del océano Atlántico los epicentros de los terremotos marinos registrados. Coincidían con la dorsal descubierta por Tharp y reforzaba su propuesta del movimiento de los continentes.

Vema era el nombre del barco que adquirió el Instituto Lamont en 1953, y con el que Bruce pudo recopilar todos los datos que Tharp cartografió a mano, representando cada detalle submarino.

World Ocean Floor Map (Mapa Mundial de los Fondos Oceánicos) fue su gran obra final, publicada en 1977 junto con Heezen y el pintor Heinrich Berann. Heezen no llegó a verlo publicado ya que murió por un infarto cuando se encontraba en un submarino en las costas de Islandia ese mismo año.

Mapa Mundial de los Fondos Oceánicos. Mapa pintado manualmente por Heinrich Berann. Créditos: Heezen-Tharp «World ocean floor» de Berann. [?, 1977], Berann, Heinrich C, Bruce C Heezen y Marie Tharp.
Tharp y Heezen repasando el mapa de los fondos marinos en elaboración por el pintor Heinrich Berann. Créditos:  Lamont-Doherty Earth Observatory

Xerografía es el proceso con el que se reprodujeron muchos de sus mapas. En 1995 donó más de 40.000 artículos a la biblioteca del congreso norteamericano: información geológica y sísmica, datos de gravedad, mapas de referencia, revistas técnicas, informes, diagramas fisiográficos e incluso sus mapas del fondo oceánico.

Marie Tharp con los bibliotecarios del congreso Winston Tabb y James H. Billington visionando algunos de los articulos que Tharp donó a dicha biblioteca. Créditos: Rachel Evans.

Ya son muchos los reconocimientos a su figura, pero aún se sigue sin estudiar su nombre ni la importancia de sus descubrimientos para asentar los pilares fundamentales de la geología moderna.

Zambullida en un mundo de hombres, muchos fueron los obstáculos que le pusieron sus colegas masculinos y a los que tuvo que sobreponerse para hacer su trabajo.

Fotografía de Marie Trarp en 2001, junto al prototipo del globo terráqueo que hizo con Heezen en la década de los años 50, donde se representan las dorsales oceáncias. Marie falleció en 2006. Créditos:  Lamont-Doherty Earth Observatory.

Abecevidas | Florence Bascom

Participamos con este retrato alfabético en la iniciativa de escritura creativa del mes de febrero 2024 de Café Hypatia: mujer y ciencia. #PVmujerciencia24 #11F #Polivulgadoras

Apostó por la coeducación de mujeres y hombres.


Bryn Mawr College es la Universidad femenina donde trabajó de 1895 a 1928, donde fundó el Departamento de Geología y cuyo laboratorio de pregrado lleva su nombre.

Cristalografía, mineralogía y petrología eran sus campos de especialización.

Dibujos hechos a mano por Bascom de las láminas delgadas que estudió para una publicación del USGS en 1926.
Arnold, L. (2000). Becoming a geologist: Florence Bascom and Johns Hopkins, 1888-1895. Earth sciences history, 19(1), 2-25
Dibujos hechos a mano por Bascom de las láminas delgadas que estudió para una publicación del USGS en 1926.
Arnold, L. (2000). Becoming a geologist: Florence Bascom and Johns Hopkins, 1888-1895. Earth sciences history, 19(1), 2-25

Desarrolló una gran carrera con más de 40 publicaciones.


El asteroide 6084 y un cráter de Venus se llaman Bascom en su honor.


Fue la primera mujer en formar parte del consejo directivo de la Sociedad Geológica Americana (GSA).

Bascom se retiró de la enseñanza en 1928, pero siguió trabajando en el Servicio Geológico de Estados Unidos hasta 1936.
Bascom se retiró de la enseñanza en 1928, pero siguió trabajando en el Servicio Geológico de Estados Unidos hasta 1936.

Geóloga y docente, luchó por la igualdad de oportunidades de las mujeres en un área totalmente masculinizada como era la geología.

Hija de una maestra sufragista y un profesor de filosofía del Williams Collage.

Florence Bascom (arriba a la izquierda) y su familia. Su padre (a la izquierda) y su madre (a la derecha) fueron mentores clave a lo largo de la vida de Florence. (Dominio público, parte de la Colección Sophia Smith)
Florence Bascom (arriba a la izquierda) y su familia. Su padre (a la izquierda) y su madre (a la derecha) fueron mentores clave a lo largo de la vida de Florence. (Dominio público, parte de la Colección Sophia Smith)

Investigó la formación de los Montes Apalaches, siendo aún importantes sus estudios.


Junto a su tutor George Williams, se formó en la petrografía de campo y de microscopio.


Katharine Fowler fue una de sus famosas discípulas, junto a otras como Anna Jones Stose, Eleanora Bliss Knopf, Mary Porter, Julia Gardner, Ida Ogilvie


La educación superior de las mujeres de todo el mundo era una de sus metas.


Mantuvo correspondencia con el mineralogista V. M. Golschmidt durante casi 20 años, interrumpida solo 3 años por la II Guerra Mundial.


Nombrada consultora geológica por el Servicio Geológico Americano (USGS), siendo la primera mujer en este cargo.


Orgullosa profesora de futuras figuras femeninas de la geología, como ella misma se definió.


Florence Bascom (centro, mirando a la cámara) con un grupo de mujeres estudiantes en el campo en 1917.
Arnold, L. B. (1993). The Bascom-Goldschmidt-Porter Correspondence 1907 to 1922. Earth Sciences History, 196-223.
Florence Bascom (centro, mirando a la cámara) con un grupo de mujeres estudiantes en el campo en 1917.
Arnold, L. B. (1993). The Bascom-Goldschmidt-Porter Correspondence 1907 to 1922. Earth Sciences History, 196-223.

Primera mujer en doctorarse por la Universidad de J. Hopkins.


Quiso estudiar geología en el campo, aunque con ello incumplía las normas sociales.


Florence Bascom en el Parque Nacional Yellowstone. (Colección Sophia Smith, Smith College).
Florence Bascom en el Parque Nacional Yellowstone. (Colección Sophia Smith, Smith College).

Recibió sus clases de postgrado detrás de un biombo para que su presencia no molestara a sus compañeros varones.

Se graduó en Artes Artes y Letras (1882), en Ciencias (1884) e hizo un Máster en Geología (1898).


Tuvo el apoyo de importantes figuras masculinas del momento, que se aliaron para hacer posible su formación y sus primeras oportunidades laborales.


Una vez posicionada, fue el apoyo de las que le precedieron.


Florence Bascom con otras mujeres en una expedición al Gran Cañón, 1906 (Colección Sophia Smith, Smith College).
Florence Bascom con otras mujeres en una expedición al Gran Cañón, 1906 (Colección Sophia Smith, Smith College).

Viajó a Alemania en 1906 para ampliar sus conocimientos en microscopía, junto con el que se convirtió en gran amigo, V. M. Goldschmidt.


Florence Bascom en el laboratorio de Victor Goldschmidt durante su año sabático en 1907. (Dominio público)
Florence Bascom en el laboratorio de Victor Goldschmidt durante su año sabático en 1907. (Dominio público)

Williamstown, Massachusetts, ciudad donde nació.


Yacen sus restos en el cementerio de la universidad privada de su ciudad, Williams College.

Sepultura de Florence Bascon en el Williams College Cemetery
Sepultura de Florence Bascon en el Williams College Cemetery

En resumen

GEOLODÍA 23. El Patrimonio Geológico como herencia y su conservación

Autor: Jaime Cuevas

Si lo prefieres, puedes escuchar este artículo aquí:

Cualquier forma de terreno natural que no haya sido modificada por la acción humana se ha formado o configurado por procesos geológicos. Tanto las discretas lomas en campo abierto como una imponente montaña tienen detrás procesos y materiales geológicos que generalmente se remontan a cientos, miles o millones de años.

Imagen de Monument Valley, Arizona, USA. Foto de Iván Pérez.
Monument Valley (Arizona, USA). Imagen de Iván Pérez.

La lentitud de estos procesos, junto con la profundidad del tiempo geológico, crea una abrumadora relación de escala comparada con la percepción humana del tiempo.

Para saber más sobre el tiempo geológico: Cómo se entiende el tiempo en geología.

Por esta razón, la destrucción de un fósil o la modificación del relieve por expansión de infraestructuras u obtención de recursos deja una sensación de proceso irreversible: si desaparece una forma o elemento del paisaje, sin duda los procesos geológicos la podrán repetir, pero probablemente no esté ya la humanidad para observarlo.

Por ello, tenemos la responsabilidad de cuidar y valorar una herencia de formas y elementos geológicos, para trasmitirla a futuras generaciones y que también puedan observarlas, estudiarlas o simplemente disfrutarlas. La idea de herencia entre generaciones es uno de los enfoques más claros para entender el concepto de Patrimonio Geológico.

¿Qué es el Patrimonio Geológico?

Bajo el marco de Patrimonio Geológico se hace referencia a aquellos lugares u objetos naturales de origen geológico que tienen valores científicos, culturales o educativos, tales como rocas, minerales, fósiles o paisajes.

Debido al largo tiempo necesario para formarse, estos objetos naturales contienen fragmentos de información sobre procesos del pasado que ayudan a comprender la historia de la Tierra, de la Vida e incluso del Universo.

Los avances tecnológicos actuales permiten llegar a un nivel de resolución muy preciso sobre esa información, pero obviamente esta resolución irá aumentando con futuras técnicas analíticas aún no desarrolladas.

Esta es otra buena razón para conocer, cuidar y mantener en las mejores condiciones posibles la herencia geológica que hemos recibido y que dejaremos a las futuras generaciones.

Evolución de la geoconservación

Las primeras iniciativas de geoconservación de lugares o elementos geológicos en España las promueve y coordina el Instituto Geológico y Minero de España (IGME).

Con la elaboración durante las décadas de los 70 y 80 del Mapa Geológico Nacional por parte del IGME se pone en marcha el Inventario Nacional de Puntos de Interés Geológico, un primer catálogo donde se recogen lugares emblemáticos desde el punto de vista geológico.

En la década de los 90 hay un creciente interés general por la geoconservación y surgen distintas iniciativas de catalogación por parte de algunas Comunidades Autónomas, pero con una cobertura muy desigual del territorio.

Hacia el final del siglo XX la UNESCO y la Sociedad Geológica Internacional (IUGS) promueven el proyecto Global Geosites, un catálogo de lugares de interés geológico que sigue unos criterios específicos para justificar su relevancia mundial.

Lógicamente, hay muchos otros lugares que no alcanzan ese grado de singularidad global, aunque no por ello sean menos interesantes y merecedores de una catalogación y puesta en valor.

Inventario Español de Lugares de Interés Geológico (IELIG)

Con el objetivo de hacer un inventario nacional completo y unificado, en 2011 el IGME pone en marcha el Inventario Español de Lugares de Interés Geológico (IELIG) que pretende unir y ampliar las anteriores propuestas de catalogación, tanto internacionales como de ámbito nacional y autonómico.

Actualmente el IELIG tiene más de 4.500 lugares de interés geológico que en la web info.igme.es/ielig/ se pueden consultar públicamente para que los conozca la ciudadanía, las instituciones y que, en última instancia, sean considerados en los planes de ordenación territorial de cada municipio. Además, este catálogo está abierto a seguir ampliándose incluyendo nuevas propuestas de lugares de interés geológico.

Imagen de la base de datos de Lugares de Interés Geológico (IELIG) del IGME. Permite realizar búsquedas por poblaciones o puntos geográficos.
Imagen de la base de datos de Lugares de Interés Geológico (IELIG) del IGME. Permite realizar búsquedas por poblaciones o puntos geográficos.

IELIGs en Arévalo

En el entorno de Arévalo hay actualmente tres puntos catalogados en el IELIG.

Mapa de localización de los tres lugares de interés geológico en las inmediaciones de Arévalo (Ávila).
Mapa de localización de los tres lugares de interés geológico en las inmediaciones de Arévalo (Ávila).

Dos de ellos son de interés geomorfológico, sedimentológico y estratigráfico y se encuentran en campos de dunas pleistocenas del último episodio glacial hace unos 10.000 años. Son formaciones geológicas de arenales naturales, donde en algunos puntos aún se pueden observar antiguas canteras para la extracción de áridos. Estas formaciones de dunas son importantes para los estudios paleoclimáticos ya que constituyen registros de una época con un clima en la región de Ávila muy distinto al actual.

Vista de los frentes de la cantera abandonada del LIG Dunas eólicas cuaternarias de Arévalo (DI127). Tomada de info.igme.es/ielig/
Vista de los frentes de la cantera abandonada del LIG Dunas eólicas cuaternarias de Arévalo (DI127). Tomada de info.igme.es/ielig/

Si quieres ampliar información sobre las dunas de Ávila, te recomendamos: Un mar de dunas en La Moraña | Herramientas para descubrir los cinturones de dunas de Ávila

El tercer LIG se encuentra en las márgenes del río Arevalillo y es el yacimiento de vertebrados de La Lugareja. En él se han encontrado fósiles de tortugas gigantes y del mamífero Hispanomerix, un pariente del actual ciervo almizclero asiático. Este yacimiento es del periodo Mioceno superior hace 9 millones de años y es de especial relevancia por su interés paleontológico.

Parte anterior del peto de Titanochelon bolivari encontrado en Arévalo (Ávila) y expuesto en la Sala de las Tortugas, en la Universidad de Salamanca. Hernández-Pacheco, 1917.

Apadrina una roca

En el contexto del IELIG está incluida la iniciativa “Apadrina una roca”.

Se trata de un programa de participación ciudadana en el que cualquier persona puede “apadrinar” un LIG que le resulte interesante y que pueda visitar con frecuencia.

Desde la página web del IELIG se puede participar mediante un formulario de datos básicos y con el compromiso de visitar regularmente el LIG para comprobar su estado.

El objetivo es crear un vínculo entre los participantes de esta iniciativa y los LIG que han elegido, de forma que tengan un canal de comunicación con el IGME para informar de incidencias que puedan amenazar su integridad.

Logo del proyecto de participación ciudadana Apadrina una Roca está promovido por el IGME para el cuidado y protección de los lugares de interés geológico
El proyecto de participación ciudadana Apadrina una Roca está promovido por el IGME para el cuidado y protección de los lugares de interés geológico.

Este contenido forma parte del Geolodía 2023 de Ávila en Arévalo, Ávila (España).

Cómo se forma el petróleo

La mayor parte del petróleo que conocemos se forma fundamentalmente a partir de zooplancton y fitoplancton marino que murió y se sedimentó junto con arcillas en los fondos marinos en unas condiciones de falta de oxígeno (anoxia).

Esto hace que la materia orgánica de estos organismos no se descomponga y que sea enterrada gradualmente al continuar la sedimentación en estas cuencas marinas.

Zooplancton. Especie no identificada de copepoda. Imagen de Uwe Kils – English Wikipedia. CC BY-SA 3.0

Presión y temperatura

Con el enterramiento aumentan también la presión y la temperatura. Los sedimentos arcillosos que contienen la materia orgánica se trasforman en una roca que llamamos lutita.

Hay que imaginarse que esto en algunas ocasiones se ha producido a escala planetaria y ha generado capas de decenas o centenares de metros de espesor con porcentajes de materia orgánica que pueden superar el 10%.

Capas de lutitas y margas de origen marino con contenidos altos de materia orgánica. Cuenca de Jaca, Pirineo Oscense. Imagen de Javier Elez.
Capas de lutitas y margas de origen marino con contenidos altos de materia orgánica. Cuenca de Jaca, Pirineo Oscense. Imagen de Javier Elez.

En ocasiones, estos mismos procesos se han dado en lagos de gran tamaño, que atraparon cantidades importantes de materia orgánica en los sedimentos de su fondo, generando condiciones similares (más reducidas en tamaño) a las producidas en las cuencas marinas.

Cuando los contenidos en materia orgánica son altos y la roca es capaz de generar hidrocarburos, se la suele denominar informalmente roca madre (hot shale o black shale en terminología anglosajona).


El incremento de presión, pero sobre todo el de temperatura, hace que la materia orgánica (CHONP) se transforme en petróleo.


Esto ocurre en una ventana de temperaturas pequeña que va desde los 50 a los 150ºC, ya que:

  • Por encima (175º C), el petróleo termina desnaturalizándose y transformándose primero en gas y después en carbono.
  • Y por debajo de 50ºC no existe transformación.
Sondeo para la explotación de petróleo. El testigo recuperado está teñido de negro por el crudo. Imagen cedida por Israel Polonio.

Como ves, las condiciones ambientales globales y geológicas para que se formen esas rocas que contienen tanta cantidad de materia orgánica son complejas:

  • Anoxia en los océanos (poco oxígeno).
  • Alta productividad biótica (mucha vida).
  • Sedimentación de arcillas.
  • Enterramiento.
  • Incremento de presión y temperatura.

Sin embargo, estas situaciones las hemos tenido reiteradas veces a lo largo de la evolución del planeta (en repetidas ocasiones durante los periodos Paleozoico, Mesozoico y Cenozoico).

Las condiciones para la formación de petróleo se han dado repetidas veces a lo largo de la historia de la Tierra, en el Paleozoico, Mesozoico y Cenozoico. Descubre cuánto abarcan estas eras en la Tabla Cronoestratrigráfica Internacional.

Y en ocasiones han afectado a gran parte del planeta al mismo tiempo; por eso hay petróleo en tantos lugares diferentes del mundo.

Las condiciones ambientales globales y geológicas favorables para la formación del petróleo se han dado muchas veces a escala planetaria. En este gráfico se puede ver la producción de petróleo en todo el mundo en el año 2019, lo que da una idea de su distribución global. Fuente de los datos: BP Statistical Review of World Energy; gráfico: https://ourworldindata.org/fossil-fuels.

Petróleo de origen vegetal

En menor cantidad también hay una serie de hidrocarburos que vienen derivados del enterramiento de materia orgánica de origen vegetal continental (árboles y similares).

El ejemplo típico: en zonas de desembocadura de ríos en deltas en las que el rio arrastra la vegetación y la acumula en zonas preferentes junto con los sedimentos del delta. Sabemos que este proceso, aunque tiene un alcance geográfico menor, también se ha producido innumerables ocasiones a lo largo de la historia del planeta.

¿En cuánto tiempo se forma el petróleo?

Es difícil saber cuánto tiempo se necesita para que tenga lugar la transformación de la materia orgánica en petróleo, ya que el tiempo geológico es un elemento que no podemos simular en un laboratorio. Pero habitualmente hablamos de cientos de miles a millones de años.


Actualismo: el método científico que alumbró la geología moderna

Autor – Gabriel Castilla

Uno de los grandes problemas a los que se enfrenta la ciencia es el llamado pensamiento mágico, es decir, el razonamiento erróneo que hunde sus raíces en la religiosidad dogmática y la superstición. Es difícil conseguir que un individuo cambie de opinión sobre un tema, especialmente cuando éste forma parte de su sistema de valores, y es por ello que pocas personas cambian de equipo de fútbol, pensamiento político o confesión religiosa a lo largo de la vida. Esto se debe a que de manera natural nuestro cerebro filtra la información que le llega, prestando atención solo a aquella parte que confirma sus creencias y opiniones.

Los psicólogos llaman a este autoengaño selectivo sesgo cognitivo de confirmación, que explica, entre otras muchas cosas, por qué somos fieles a la línea editorial de un periódico o preferimos las tertulias de una determinada cadena de televisión. Este es, en esencia, el mecanismo mental que lleva a algunas personas a defender contra toda evidencia científica sus opiniones, aunque éstas les lleven a creer que la Tierra es plana o que el origen de los seres humanos en el marco de la teoría de la evolución es una falacia.

El hecho de que la historia de la Tierra y el origen de la humanidad aparezca relatada en la Biblia supuso un gran obstáculo para el desarrollo de las ciencias naturales, pues durante siglos numerosos pensadores intentaron acomodar sus observaciones con las revelaciones divinas del libro del Génesis.

La superación del sesgo de confirmación en las ciencias naturales

El primer científico que concibió una metodología capaz de liberar la geología de este yugo especulativo fue el naturalista de origen escocés James Hutton, que en su libro Teoría de la Tierra (1788) asumió que no se debe recurrir o inventar ninguna causa desconocida, fantástica o extraordinaria si los procedimientos lógicos disponibles pueden ser suficientes para explicar un fenómeno natural. O dicho de otro modo: el estudio de la naturaleza se debe abordar partiendo únicamente de hechos demostrados y verificables, pues solo razonando así es posible encontrar soluciones a problemas que antes eran inabordables. Además de fiabilidad, este método le otorga a la ciencia geológica la capacidad de hacer predicciones, o sea, la posibilidad de entender el futuro partiendo del pasado.

Fue otro naturalista de origen escocés, Charles Lyell (Figura 1), quien supo ver en esta conexión temporal la semilla de una nueva forma de pensar, el actualismo. Ante los ojos de Lyell los relieves de la corteza terrestre son consecuencia de la acción de procesos análogos a los que observamos en la actualidad (ríos, glaciares, el viento, volcanes, terremotos, etc.), de ahí el término actualismo. Desarrolló esta idea en el libro Principios de Geología (1830-1833) y la condensó en una sola frase: La clave del pasado está en el presente; estableciendo así una conexión entre los cambios experimentados por la tierra a lo largo del tiempo.

Figura 1. Calotipo de Charles Lyell hacia 1843-47. Fuente: Colección del Metropolitan Museum of Art en Internet Archive. Imagen procesada por el autor a partir del archivo original.

La idea de evolución temporal de la corteza, entendida como sinónimo de cambio, influyó decisivamente en Charles Darwin, quien tomó la obra de Lyell como libro de cabecera durante el viaje alrededor del mundo a bordo del Beagle.

Pocos años después, en 1847, se presentó en España la primera traducción al castellano de mano del geólogo Joaquín Ezquerra del Bayo, quien fue capaz de destilar la esencia de una obra científica de 650 páginas en unas pocas frases:

Grande ha sido la revolución que Lyell ha hecho en esta ciencia, aun cuando tal vez no sea suya la primera idea (…); cuasi la totalidad de los fenómenos que se observan en la corteza de nuestro globo, tanto con respecto al trastorno de las rocas que la constituyen, como con respecto a los restos de seres organizados que en ellas hay encerrados, se explican muy bien por la marcha natural de las mismas causas que están obrando en la actualidad; lo mismo que pasa ahora ha estado pasando hace muchísimo tiempo. La Geología ha perdido todo lo que tenia de fabuloso y de inconcebible, adquiriendo una sencillez que, no por eso deja de ser más admirable y más sorprendente.

Por aquella misma época, hacia 1843, el pionero de la fotografía William Henry Fox Talbot registraba la primera imagen de una investigación geológica de campo. Bajo el título The Geologists (los geólogos) muestra a un hombre y una mujer analizando un afloramiento de roca caliza en Chudleigh (Devon, Reino Unido). Todo apunta a que los protagonistas son el investigador Henry De La Beche y la naturalista autodidacta Mary Anning, primera geóloga de la historia (Figura 2).

El actualismo metodológico y la geología

Hoy, casi 180 años después de que se tomara esta fotografía (el nombre técnico es calotipo), geólogos y geólogas de todo el mundo desarrollamos nuestro trabajo en el contexto del llamado actualismo metodológico, que podemos resumir así: las causas que actúan modelando el planeta en la actualidad ya actuaron en el pasado, e incluso los procesos catastróficos (impactos de asteroides, cambios climáticos globales, etc.) deben entenderse como sucesos normales ocurridos en el pasado, que pueden suceder en el presente y que con toda probabilidad sucederán también en el futuro.

Figura 2. The Geologists calotipo realizado por William Henry Fox Talbot en 1843. Fuente: National Media Museum / Science & Society Picture Library. Imagen procesada por el autor a partir del archivo original.

Pero tal y como planteamos al principio, uno de los problemas a los que se enfrenta la ciencia moderna es el pensamiento que niega la realidad de los hechos verificables; un desafío para la razón que solo puede ser contestado desde la divulgación y la alfabetización científica de la sociedad. Para hacerlo posible es necesario disponer de herramientas didácticas que faciliten la enseñanza y el aprendizaje de las ciencias a cualquier edad, pues la única forma de aprender a razonar por analogía es practicando. Y es en este sentido donde los pinares que cubren los campos de dunas de La Moraña abulense nos ofrecen un inesperado recurso didáctico: su resina.

La resina y el ámbar como recurso didáctico

Figura 3. Mosquito siendo atrapado por la resina de un pino en las inmediaciones de El Oso (Ávila), inicio del complejo proceso de ambarización. A la derecha vemos una muestra de ámbar que contiene un mosquito fosilizado en su interior. Fuente: Gabriel Castilla y Wikipedia.

Como podemos ver en la Figura 3, la resina líquida puede atrapar todo tipo de partículas en su interior, como es el caso de este mosquito, cuyo aspecto es similar al que podemos observar en el interior de una muestra de ámbar. El ámbar es precisamente resina procedente de coníferas que ha experimentado un lento proceso de endurecimiento y enterramiento hasta su transformación en un fósil hace millones de años.

El ámbar es un tesoro para la ciencia debido a la enorme cantidad de información que podemos encontrar en su interior, pero también porque el proceso de ambarización es químicamente muy complejo y requiere que la resina sobreviva al proceso de degradación al que naturalmente se ve sometido por efecto del calor, la humedad y la descomposición por parte de bacterias y hongos. Es por ello que el ámbar es un mineral escaso en todo el mundo y se reconoce su valor ornamental desde la Edad del Bronce (2500-1500 a.C.), cuando la demanda debió ser tan elevada que incluso se han detectado falsificaciones realizadas con resina de pino en ajuares funerarios.

¿Significa esto que los autores de la falsificación establecieron por analogía una relación entre la resina y el ámbar? Probablemente sí. ¿Implica esto que aquellas personas llegaron a intuir la noción de actualismo, entendida como relación entre el presente (resina) y el pasado (ámbar)? Difícil saberlo.

Ver cómo quedan atrapados los insectos en la resina y alcanzar a comprender cómo logra ésta transformarse en un mineral requiere entender y manejar nociones abstractas como mineralización, fosilización y tiempo geológico.

Para comprender el concepto de actualismo son necesarios ejemplos tan claros como el que acabamos de ver, pues nos permite visualizar un proceso natural complejo de forma intuitiva y sencilla. Un paseo por La Moraña puede ser una experiencia didáctica inesperada si caminamos despacio y escuchamos con atención las historias que nos susurran sus árboles.

Fuentes de consulta

Herramientas para descubrir los cinturones de dunas de Ávila

Autor – Javier Elez

Con la llegada de la revolución digital todos tenemos más herramientas para explorar el mundo, también los geólogos. Desde el punto de vista de la geología, temática principal de este blog, queremos destacar dos que nos permiten, por ejemplo, descubrir que el norte de Ávila está cubierta de dunas.

Satélites y Sistemas de Información Geográfica (SIG)

En primer lugar, las imágenes y datos de todo tipo obtenidas de nuestro planeta por los diversos satélites existentes. Y en segundo lugar los programas informáticos que nos permiten manejar estos datos, tanto consultarlos y visualizarlos como operar con ellos, y que se denominan de forma genérica Sistemas de Información Geográfica (SIG).

Para los que no lo veáis claro, echad un vistazo a Google Earth y pensad en cómo es posible imaginarse el planeta con este detalle sin tener las herramientas adecuadas… Difícil, ¿verdad?

Hoy queremos poneros un ejemplo de la aplicación de las no tan nuevas ya tecnologías de satélite al conocimiento de nuestro planeta.

Las dunas de la Moraña

En Ávila existen dunas con unas formas súper delicadas conservadas prácticamente intactas desde hace unos 11.500 años. ¿Lo sabías?

Estos depósitos eólicos desérticos se agrupan en cinturones de dunas que tienen longitudes kilométricas y formas muy elaboradas. Como todas las dunas, eran movidas por los vientos dominantes en su momento. Pero, ¿dónde están ahora? Pues escondidas en el paisaje.

Para desenmascararlas necesitamos de los datos que nos proporcionan los satélites y un poco de software.

  • Los datos que vamos a utilizar son datos de elevación (altimetría) de alta resolución obtenidos mediante tecnología LIDAR. Los tenemos de forma gratuita para todo el territorio nacional en el Centro Nacional de Información Geográfica.
  • Para cocinar estos datos utilizamos un Sistema de Información Geográfica (SIG), que es el software que nos va a permitir realizar cálculos con los datos de elevación. El cocinado es sencillo: calculamos lo que se denomina modelo de elevaciones sombreado, que es una simulación de las sombras que haría el sol sobre el modelo del terreno que suponen los datos de elevación. El resultado es espectacular, mira la Figura 1.
Figura  1. Desliza la barra para ver el modelo sombreado a la izquierda y la fotografía de satélite a la derecha. Verás cómo las dunas solo se ven a simple vista con el primero. La zona es la cabecera del rio Arevalillo, al norte de El Oso, y abarca entre otras a la localidad de Cabizuela.

Si hacemos zoom en las dos dunas bien definidas abajo a la izquierda del cinturón veremos esto:

Figura 2. Las bonitas dunas de Cabizuela con más detalle. La elevación que tienen sobre el fondo prácticamente plano llega a ser de unos 12 m máximo.
Figura 3. Foto en el campo y desde el sur de las mismas dunas de Cabizuela. Encima de ellas quedan las zonas de pinares, donde no se puede cultivar nada más. Como ves, a simple vista no son nada evidentes.

Aquí va un video 3D realizado a partir de los datos del modelo de elevación junto con el modelo de elevaciones sombreado. En él hemos exagerado en la vertical para que se vea mejor el relieve, otro truco que se puede hacer con estos datos.

Estos cinturones de dunas no solo se encuentran aquí en la Moraña abulense, sino que se extienden a lo largo de toda la zona sur de la meseta castellano-leonesa y se reconocen fácilmente también en Segovia (Tierra de Pinares) y Valladolid.

Busca tú las dunas con Iberprix

Si quieres buscar tú mism@ las dunas, te dejamos aquí un visor online muy sencillo que te ahorrará todo el trabajo de manipulación de datos.

Se llama Iberpix, es un producto gratuito que ofrece el Instituto Geográfico Nacional de España y es extremadamente sencillo de usar.

Abajo a la derecha encontráis un botón rojo con un símbolo de «capas», pincháis y os aparecen pestañas.

Desmarca todas y marca solo la de “Relieve” y podrás ver un modelo de elevaciones sombreado de toda España.

Dadle al zoom ya que tiene muy buena resolución…

En próximos artículos os contamos cómo se forman las dunas y qué información nos aportan sobre el clima y el paisaje en el que se formaron, justo aquí, en la Moraña abulense.

¿Te atreves a decir desde dónde soplaba el viento dominante hace 11.500 años…?

Actividades docentes relacionadas

HERRAMIENTA. Observación de la superficie de España mediante Iberpix

HERRAMIENTA. Herramienta de software QGIS

PRÁCTICA. Análisis geomorfológico mediante Iberpix 4 del Instituto Geográfico Nacional

RECURSO DIDÁCTICO. Web de descarga gratuita de los datos geográficos necesarios para cualquier proyecto

#PaisajeSonoro | La Historia de la Tierra grabada en las rocas y los fósiles

De Isabel Hernández

Pulsa Play y activa el audio para escuchar este Paisaje sonoro. Si tienes problemas para escucharlo en tu móvil pulsa AQUÍ. 

Para no perder el sentido de la Historia, la Historia Natural

La Historia de la Tierra ha sido larga. Se remonta a mucho antes de que el ser humano apareciera en ella y está registrada en las rocas y los fósiles.

Al “tocar» la Historia, el ser humano se encontró con una barrera psicológica: pensar en un tiempo geológico de millones de años ha sido un salto reciente en el conocimiento humano, que muchos no han dado todavía.

En esta reflexión sonora sobre qué papel juegan la Geología y la Paleontología en el conocimiento de la Historia Natural, ponemos voz y música a las hermosas palabras de la paleontóloga Nieves López en “Geología y Paleontología para aficionados”.

Texto: Geología y Paleontología para aficionados, de Nieves López Martínez.

Música: Elegi (Svanesang, Den Store Hvite Stillhet, Despotiets Vessen).

Arreglos y voz: Isabel Hernández. Grabado en el estudio de Manu Míguez.

Fotografía: Gabriel Castilla.