Un glaciar (del francés glacier) es una gran masa de hielo comprimido, formada por acumulación, compactación y recristalización de nieve hasta crear hielo glaciar (figura 1); y que necesita de miles de años para que esto suceda.
Figura 1. Cambios en la morfología y en la porosidad del agua sólida con la profundidad, desde nieve granular hasta hielo glaciar
Con esta compactación, el hielo se reorganiza perdiendo el aire que se encuentra entre las partículas sólidas hasta que solo queda el aire del interior de burbujas. El resultado es la formación de hielo glaciar, con su característico color azul.
Los glaciares son dinámicos (se mueven) y generan procesos de erosión, transporte y sedimentación, al igual que sucede con el agua líquida.
Clasificación de los glaciares
La clasificación morfológica de los glaciares se basa en tres factores: su tamaño, su forma y la posición de la masa de hielo (figura 2).
Glaciares de casquete: son de gran escala. Ocupan casi el 10% de la superficie terrestre. Su forma es masiva y fluye en todas direcciones.
Glaciares de meseta: son de mediana escala. Su forma también es masiva. Fluyen en todas direcciones y se encuentran cubriendo zonas elevadas y mesetas.
Glaciares de montaña (o alpinos): son de pequeña escala. Consisten en corrientes de hielo más largas que anchas y se encuentran entre zonas montañosas elevadas, formando valles en U.
GLACIARES DE CASQUETE
GLACIARES DE MESETA
GLACIARES DE MONTAÑA
TAMAÑO
Grande
Mediano
Pequeño
FORMA
Masiva
Masiva
Corriente de hielo más larga que ancha
POSICIÓN
Grandes superficies (>10% de la Tierra)
Zonas elevadas y mesetas
Entre montañas elevadas, con valles en U
Figura 2. Tabla con las características de tamaño, forma y posición de los glaciares. Con estas características se pueden definir tres tipos de glaciares claramente distintos: de casquete, de meseta y de montaña.
Como ya has visto en la entrada del Paleograciar de la Serradilla (Cepeda la Mora, Ávila), en el Sistema Central existieron glaciares activos en el Último Máximo Glaciar (20.000-30.000 años). Estos glaciares eran del tipo Glaciar de Montaña.
Partes de un glaciar de montaña
Los glaciares de montaña son masas de hielo que fluyen pendiente abajo y que existen porque la acumulación de nieve a gran altura compensa la fusión de hielo a baja altura y la descarga por deshielo.
Esta masa de hielo en movimiento va incorporando fragmentos rocosos de todo tipo de tamaños, y genera morfologías propias que persistirás aún cuando el glaciar haya desaparecido, como ha pasado en La Serradilla.
Las dos zonas de un glaciar de montaña (acumulación vs. ablación)
En un glaciar de montaña se pueden diferenciar dos partes principales (figura 3):
ZONA DE ACUMULACIÓN (ganancia de masa): parte más alta donde más nieva y se alimenta el glaciar. Las bajas temperaturas se encargan de mantener este agua sólida.
ZONA DE ABLACIÓN O DE FUSIÓN (pérdida de masa): zona baja donde el agua sólida se derrite por el aumento de la temperatura. Se forman pequeños drenajes y escorrentías superficiales que alimentan los ríos ladera abajo. En ocasiones, el glaciar puede desembocar en un lago o mar y fragmentarse en grandes bloques de hielo llamados icebergs.
Figura 3. Los glaciares de montaña tienen dos zonas claramente diferenciadas, la zona de acumulación, donde hay una ganancia de masa por la precipitación de nieve, y la zona de ablación, donde se pierde masa por sublimación y deshielo. Donde no hay ni pérdida ni ganancia de masa se llama línea de equilibrio. Morfológicamente, existen estructuras propias de estos sistemas glaciares que permanecen una vez el hielo se ha retirado, como el circo, las morrenas o los bloques erráticos.
Estas dos zonas (acumulación y ablación) se encuentran separadas por la línea de equilibrio, lugar donde el conjunto de las ganancias y las pérdidas es igual a cero.
El dinamismo y la capacidad de cambio son las características más importantes de los sistemas glaciares de montaña. Estos modifican su forma, se mueven, crecen, decrecen…
Algunas definiciones
CIRCO
Los circos glaciares son depresiones con forma semicircular y paredes muy inclinadas, que se desarrollan en la zona de acumulación (figura 3). Su forma se debe a la suma de la erosión basal, el arrastre de fondo y la gelifracción de las rocas de las paredes.
Cuando el hielo ya no existe, quedan los circos en las zonas altas de las montañas, en los cuales es habitual que se formen lagos.
LENGUA GLACIAR
La lengua glaciar (figura 3) es la masa de hielo que se desborda del circo y se desplaza pendiente abajo.
MORRENAS
La masa de hielo va incorporando fragmentos rocosos de todo tipo de tamaños mientras se desplaza, acumulándolos principalmente en sus bordes. A estas acumulaciones se les llama morrenas (figura 3). Estas morrenas se conservan una vez desaparecido el glaciar, y se diferencian como crestas formadas por detritos de tamaños variados que nos permiten conocer las dimensiones de las masas glaciares, ya que las limitan.
Dos tipos de morrenas principales:
Morrena lateral: se desarrolla a los lados del glaciar y se alimenta principalmente de las rocas que caen desde las paredes laterales del valle glaciar.
Morrena final o terminal: se desarrolla en el borde principal del glaciar y marca un periodo de estancamiento. Las más modernas se sitúan a mayor altitud que las más antiguas.
BLOQUES ERRÁTICOS
Los bloques erráticos son también seña de identidad de los glaciares de montaña. Son grandes bloques anguloso de roca que son transportados por el glaciar a grandes distancias. Cuando son transportados dentro de un iceberg , y se desprenden de él al derretirse el hielo, se llaman ice-rafting.
La suma de dos de estos factores, latitud y altitud, generan la denominada línea de nieve (figura 4). Ésta es una línea imaginaria global que marca el límite irregular entre la superficie cubierta de nieve y la superficie libre de nieve. Esta línea no es estática ya que, en general, los glaciares se encuentran en retroceso.
Figura 4. La línea de nieve se mide de manera directa por satélite o fotografías aéreas, o se calcula en base a la isoterma de 0ºC. Es un factor importante en los modelos hidrológicos para estimar caudales y modelos de escorrentía y precipitación.
¿CÓMO SE DICE… …GLACIAR O GLACIAL?
Estas dos palabras se confunden con frecuencia, incluso hay quien las utiliza como sinónimos aunque se trata de dos conceptos diferentes. Glaciarhace referencia a lo relacionado con las masas de hielo. Puede ser un sustantivo, como cuando se habla del glaciar Perito Moreno; o ser un adjetivo como se ha utilizado ampliamente en este post ,circo glaciar, morrena glaciar… Glaciales un adjetivo que se refiere a algo extremadamente frío o helado. Por ejemplo, se usa para hablar del periodo glacial, momento de muy bajas temperaturas.
Al norte del pueblo de Cepeda la Mora, dentro de La Serrota, y en un paraje que se llama Alto de las Serradillas, queda una morfología singular, muy bien preservada y sin embargo muy habitual en el Parque Regional Sierra de Gredos y en todo el Sistema Central. Se trata de un paleoglaciar (Figura 1).
Figura 1. Fotografía del paleoglaciar de la Serradilla. Conserva todas las formas del antiguo glaciar, pero ya no hay hielo. El relieve no está en equilibrio con el clima actual. Fotografía de Javier Elez.
Un paleoglaciar son los restos de formas y sedimentos de lo que un día fue un glaciar y que ahora ya no tiene hielo. Esto no nos impide ver sus formas típicas (circos y morrenas) y nos invita a pensar que el clima de nuestro planeta ha cambiado de forma habitual a lo largo de su historia.
El paleoglaciar de la Serradilla
Hemos elegido este paleoglaciar específicamente, y no otro de los muchos que hay en Gredos y la Sierra de Béjar, por tener unas dimensiones modestas y ser de fácil acceso desde Cepeda La Mora (Figura 2).
Figura 2. Localización del Paleoglaciar de la Serradilla, en el recuadro en rojo.
Estas condiciones, junto con el buen grado de preservación que tiene, hacen que se pueda abarcar en su conjunto con la mirada desde el campo y se puedan entender de forma fácil sus formas más destacadas, depósitos de sedimentos y evolución.
En concreto, este paleoglaciar de la Serradilla está muy bien conservado (aunque le falte el hielo) y presenta varios niveles de morrenas y algunos circos como elementos más característicos (Figura 3).
Figura 3. Esquema geomorfológico del paleoglaciar de la Serradilla. En colores azules las distintas morrenas, cuanto más oscuro más altas topográficamente. Las líneas en azul oscuro indican el límite de los distintos circos (cresta) asociados a las morrenas. Las zonas verdes son antiguos lagos postglaciares tipo la laguna grande de Gredos, que ahora están llenos de sedimento y vegetación y por tanto no son lagos ya. Mapa: Javier Elez.
Recuerda que las morrenas son esos acúmulos de sedimentos que el hielo del glaciar arrastra, en su zona central o en los laterales, en su movimiento cuesta abajo (Figura 4).
Literalmente, el hielo se desborda del circo (que es la zona en donde se acumula la nieve y se compacta para formar hielo) y se cae en función de la pendiente existente.
Figura 4. Fotografía de primer plano de las morrenas del glaciar de las Serradillas, se observa su estructura caótica compuesta por bloques de todos los tamaños. Fotografía: Gabriel Castilla.
¿Cuándo estuvo activo el glaciar?
Si pensamos en el pasado, este paleoglaciar estuvo activo, incluyendo su lengua de hielo, probablemente al mismo tiempo que los grandes conjuntos de Gredos tan conocidos por las personas aficionadas a las montañas.
No hay dataciones geológicas concretas de la actividad de este paleoglaciar, pero si lo comparamos con los datos de edad que sí existen en otras zonas cercanas, podríamos interpretar que estuvo activo durante el Último Máximo Glaciar (hace unos 20.000 o 30.000 años) y que probablemente el hielo desaparecería definitivamente hace solo unos 13.000 años.
Todo esto es muy tentativo, ya que comparamos con datos de otros paleoglaciares más estudiados en el Sistema Central (Carrasco et al. 2020; Oliva et al., 2019), pero es una interpretación razonable, sujeta a cambiar cuando tengamos datos más precisos.
Figura 5. Vistas 3D desde el NE del paleoglaciar de la Serradilla. A) modelo sombreado con elementos geomorfológicos. B) modelo sombreado únicamente en donde se aprecia el relieve. C) foto de satélite. Mapa: Javier Elez.
El final de la glaciación
Las morrenas están pintadas en colores azules en los mapas de las Figuras 3 y 5, los escarpes de los distintos circos (la zona más alta erosionada por el hielo en el circo) en azul oscuro.
El hielo ocupaba desde los escarpes hasta las morrenas. En muchos glaciares de nuestro planeta, las morrenas más bajas topográficamente son más antiguas y corresponden a los episodios de máxima extensión de los hielos, mientras que las más altas topográficamente son más recientes.
Al incrementarse poco a poco la temperatura al final de la glaciación, el hielo se refugia en zonas cada vez más altas, moviendo los sedimentos y generando las morrenas en esas zonas, hasta que finalmente la temperatura sube lo suficiente como para que desaparezcan definitivamente los hielos.
En el paleoglaciar de la Serradilla vemos al menos 4 o 5 conjuntos de morrenas escalonadas en la vertical (Figura 5), marcando claramente esa retirada de los hielos que acompaña a un ciclo de calentamiento del planeta, en el cual, como sabes, estamos inmersos a día de hoy. Es una evidencia más de los cambios de clima del planeta en el que vivimos, siempre extremadamente dinámico.
Las zonas pintadas en verde son lagos de origen glaciar. Al desaparecer el hielo por el progresivo calentamiento del planeta, éste se transformó en agua, que fue retenida por las morrenas y dio origen a esos lagos. Estos, como el de la Laguna Grande de Gredos o la Laguna de la Nava o tantas otras, son muy efímeros en tiempo geológico y se rellenan rápidamente de sedimentos, dejando esas praderas planas con mucha vegetación que se ven en el interior del paleoglaciar de la Serradilla.
Carrasco, R.M. et al. (2020). Glacial geomorphology of the High Gredos Massif: Gredos and Pinar valleys (Iberian Central System, Spain). Journal of Maps, 16:2. Pp. 790-804.
Oliva, M. et al. (2019). Late Quaternary glacial phases in the Iberian Peninsula. Earth-Science Reviews 192. Pp. 564-600.
Por Gabriel Castilla Cañamero, Javier Pérez Tarruella y Javier Élez
De innumerables artimañas se sirve la naturaleza para convencer al hombre de su finitud: el fluir incesante de la marea, la furia de la tormenta, la sacudida del terremoto […]. Pero entre todas ellas la más temible, la más estremecedora, es la pasividad del silencio blanco.
El silencio blanco. Jack London, 1899.
Una definición y algunas preguntas
Los glaciares se forman en aquellos lugares fríos donde la nieve se acumula hasta transformarse en hielo. Conforme crece la capa de nieve, la presión de las capas profundas aumenta, haciendo que disminuya el volumen por compactación y, en consecuencia, que aumente la densidad hasta que se forma hielo glaciar (Figura 1).
Figura 1. Formación del hielo glaciar por enterramiento y compactación (izquierda). El movimiento de un glaciar es consecuencia del comportamiento del hielo compacto y denso bajo la acción de la fuerza de la gravedad (derecha). A partir de una situación de equilibrio entre la zona de acumulación y la zona de ablación los glaciares pueden retroceder, reduciéndose su zona de acumulación; o en caso contrario, avanzar. Figura: Gabriel Castilla, adaptado de Rubial (2005) y Anguita y Moreno (1993).
La diferencia entre un glaciar vivo y una masa de hielo muerto es el movimiento, y el motor que lo impulsa es el gradiente de presión que se forma entre la zona de acumulación donde se forma hielo glaciar y la zona de ablación, que es donde el hielo se pierde tanto por fusión como por la erosión que ejerce el viento (Figura 2).
Figura 2. El glaciar Río Túnel Superior (en la difusa frontera entre la Patagonia de Argentina y Chile). Al fondo se aprecia la zona de acumulación en forma de circo (depresión semicircular rodeada de montañas), y en primer plano el frente de la lengua glaciar. La laguna se ha formado por la fusión del hielo en la zona de ablación. Fotografía de Iván Pérez López.
Pero, ¿cómo llega a formarse un glaciar en un lugar concreto? ¿Qué variables lo condicionan?
Puesto que cada caso de estudio es único, no es posible ofrecer una respuesta general a estas preguntas; sin embargo, existen al menos diez variables que nos permiten aproximarnos a los entresijos de un proceso geológico de singular complejidad y belleza.
La latitud determina el ángulo con el que la radiación solar alcanza la superficie terrestre. Como podemos ver en la Figura 3, esta incide perpendicularmente en la región ecuatorial mientras que en los polos llega con mucha inclinación, lo que implica que se pierda una parte de la energía al atravesar la atmósfera.
Figura 3. La cantidad de radiación solar que incide sobre la superficie terrestre depende de la inclinación con la que atraviesa la atmósfera, es decir, varía con la latitud. La temperatura media anual en la zona ecuatorial es de 25 ºC, mientras que en los polos es de -40 ºC. Figura: Gabriel Castilla.
Es por ello que la cantidad de radiación que reciben las regiones polares es mucho menor que en el ecuador, y este es el principal motivo por el que existen glaciares al nivel del mar en la Antártida, Islandia y Groenlandia (Figura 4).
Las regiones ecuatoriales solo han albergado glaciares al nivel del mar durante los llamados episodios Snowball Earth (literalmente Tierra bola de nieve), intensas glaciaciones del período Criogénico, hace entre 720 y 635 millones de años.
2. Altitud
¿Significa esto que no puede haber glaciares en el ecuador? Sí los hay, pero situados a gran altitud.
Dado que la atmósfera se calienta desde la superficie terrestre, la temperatura desciende con la altura, y en las zonas templadas del planeta esta diferencia térmica es de aproximadamente un grado centígrado por cada 152 metros de ascenso vertical.
Esto quiere decir que en una región donde la temperatura al nivel del mar sea de 25 ºC, a los 4.500 m de altitud podrá alcanzar los -5 ºC (o sea, 30 grados menos), y explica por qué podemos encontrar glaciares a 4.500 m de altitud en la zona ecuatorial de la cordillera de los Andes y en las montañas Rwenzori, en el corazón de África Oriental (Figura 4).
En el caso de la Península Ibérica, situada a una latitud media de 40º norte, el momento álgido del Último Periodo Glaciar tuvo lugar hace entre 24.000 y 21.000 años, y los glaciares se formaron en el Sistema Central a una altitud comprendida entre los 1.500 m y los 2.500 m sobre el nivel del mar actual.
La cantidad de radiación solar que alcanza un punto de la superficie terrestre en un año depende de variables como la nubosidad y el relieve (en el hemisferio norte es la cara sur de las montañas la que recibe más radiación y por tanto es la más cálida).
En las zonas ecuatoriales, el Sol alcanza su altura máxima sobre el horizonte durante 30 días; sin embargo, en las zonas tropicales alcanza esta misma posición en el cielo durante 86 días (¡casi el triple de tiempo!) y es por ello que los trópicos son más cálidos y albergan grandes desiertos. La cantidad de radiación que recibe el área mediterránea es mucho mayor que la que alcanza Escandinavia, donde los inviernos son más rigurosos.
Durante el momento álgido del Último Periodo Glaciar, las zonas de menor insolación alojaron masas de hielo que alcanzaron los 3.000 m de espesor. Sin embargo, en la Península Ibérica el espesor máximo del hielo fue de unos 200 m en la Sierra de Béjar (Sistema Central).
Figura 5. Mapa de insolación de Europa (izquierda) comparado con la distribución de precipitaciones y masas de hielo durante el Último Máximo Glaciar (derecha). Se aprecia una relación entre baja insolación y mayor acumulación de hielo en la zona de Escandinavia. Estas masas de hielo, de hasta 3000 m de espesor, condicionaron el régimen de vientos y la humedad en Centroeuropa (vientos intensos, fríos y secos que depositaron un manto de loess –limo arcilloso- en el continente). Fuente de la imagen: Comisión Europea/Joint Reseach Center y Rea et al. (2020).
4. Albedo
Este término hace referencia a la cantidad de radiación solar que puede reflejar una superficie. El hielo y la nieve fresca son como un espejo y pueden reflejar hasta el 90% de la radiación que reciben, es decir, apenas se calientan por el Sol. Sin embargo, esta situación cambia cuando se deposita sobre ellos ceniza volcánica o sedimento, partículas oscuras de menor reflectividad que sí absorben la radiación solar.
De este hecho se desprende una idea importante: los glaciares se derriten desde dentro, bien por aumento de la temperatura ambiental, o bien porque absorben calor por cambios en el albedo (Figura 6).
Esta es la razón por la que países como Italia, Francia y China intentan conservar algunos glaciares emblemáticos cubriéndolos con material geotextil blanco de alta reflectividad que actúa como aislante térmico.
Figura 6. Vista panorámica del glaciar Svínafellsjökull (Islandia). Se aprecia una notable diferencia de albedo entre el hielo joven (al fondo) y el que contiene ceniza volcánica (primer plano). El hielo sucio de menor albedo se funde antes, creando una laguna de aspecto turbio debido a las finas partículas de ceniza que quedan en suspensión. Fotografía de Gabriel Castilla.
5. Orientación
Diversos estudios señalan que en el hemisferio norte los glaciares tienden a situarse en lugares de sombra (cara norte de los macizos montañosos), protegidos del viento dominante (a sotavento) y con mucha frecuencia orientados hacia el este (Figura 7).
En el hemisferio sur la orientación predominante es sureste, coincidiendo con la cara del relieve que recibe una menor insolación.
Figura 7. Durante el Último Máximo Glaciar, el glaciarismo de La Serrota (Ávila) se desarrolló en torno a los 2.200 m de altitud. La fotografía corresponde al llamado glaciar de la Serradilla, muy cerca de la localidad de Cepeda la Mora. En las imágenes de satélite captadas en marzo de 2024 se aprecia cómo las primeras nevadas dejadas por la borrasca Nelson (con vientos procedentes del oeste-suroeste) depositaron una mayor cantidad de nieve en los valles orientados hacia el noreste y el sureste, es decir, a sotavento. Fotografía de Javier Pérez Tarruella y Copernicus/Sentinel/UE, respectivamente.
6. Continentalidad
Es la lejanía de un territorio respecto de una masa de agua (mar un océano) que aporte humedad (recordemos que sin humedad no hay nieve) y suavice las temperaturas extremas. En el contexto de la Península Ibérica hace referencia a la influencia de frentes fríos y secos procedentes de Centro Europa y Siberia, en relación a los frentes cálidos y húmedos procedentes del Océano Atlántico.
El estudio de los campos de dunas fósiles que se formaron en Tierra de Pinares (comarca que abarca parte de las provincias de Ávila, Valladolid y Segovia), nos permiten conocer la dirección y sentido de los vientos dominantes durante los momentos de extrema aridez del Último Máximo Glaciar.
Diversos modelos señalan que vientos procedentes del suroeste y el oeste azotaron la meseta castellana, favoreciendo tanto el transporte de sedimento que formó las dunas como la erosión eólica (deflación) responsable de la ablación de los glaciares.
Figura 8. Modelo atmosférico para el último máximo glaciar. Las flechas señalan la dirección y el sentido del viento; el código de colores marca la velocidad. El modelo es compatible con los datos de la orientación de los campos de dunas en la península para esa época. Adaptado de Dietrich, 2011.
7. Efecto abrigo
Puesto que durante la última glaciación los vientos dominantes que barrían la península provenían principalmente del oeste y suroeste, es muy probable que los ventisqueros (trampas –abrigos- donde el viento forma torbellinos que atraen la nieve) estuvieran orientados en sentido opuesto, es decir, hacia el este y el noreste.
Como su propio nombre indica, durante las ventiscas la nieve se arremolina y acumula en estos puntos formando neveros (pequeñas masas de hielo que perduran todo el año), que en períodos fríos pueden actuar como áreas de acumulación de nieve.
Figura 9. Nevero en la cara sureste de un relieve montañoso en los Pirineos Orientales (Francia). La imagen fue tomada en agosto de 2017. Si un nevero persiste durante varios años reciben el nombre de nicho de nivación. Fotografía de Gabriel Castilla.
8. Morfología previa
Es importante reconstruir cómo era el relieve montañoso antes de la glaciación y, por tanto, antes de que los glaciares dejaran su huella en el paisaje.
Las cimas de las cordilleras que tienen poca pendiente son más propensas a acumular nieve (y por tanto a la formación hielo glaciar) que las cimas con mucha pendiente o que cuentan con un relieve muy acusado.
En estos casos la nieve tiende a caer en forma de aludes y por tanto no se acumula en las cimas, sino en la profundidad de los valles. Un buen ejemplo lo encontramos en la Sierra de Gredos, que por ser un sistema montañoso antiguo ha sido fuertemente erosionado y su línea de cumbres tiende a la horizontalidad, lo que favorecer la acumulación de nieve en la cuerda de cumbres.
Figura 10. Vista parcial de la cara norte de la Sierra de Gredos (sector oriental), formada durante la Orogenia Alpina, hace unos 40 millones de años. El paisaje que observamos en la actualidad (una línea de cumbres que tiende a la horizontalidad), es el resultado de la acción erosiva del Cuaternario (últimos 2,5 millones de años), periodo en el que se han sucedido hasta 51 episodios climáticos de frío-calor, aunque no todos ellos han dejado evidencias glaciares. Fotografía de Gabriel Castilla.
9. Redes de fractura y escarpes tectónicos
Las rocas se pueden romper por diferentes causas. Las fracturas de pequeña entidad se pueden disponerse al azar o seguir patrones de distribución en función de su origen: desde la existencia de heterogeneidades en la roca (por diferencias de composición, por ejemplo), pasando por desgaste debido a ciclos de calor-frío extremo, la descompresión o tensiones propias de la tectónica de placas. Las diaclasas (fracturas sin desplazamiento) favorecen la infiltración del agua en la roca y con ello la aceleración de los procesos de meteorización química (por alteración y disolución de minerales) y la erosión (Figura 11).
Figura 11. Red de fracturas de una de las cumbres de la Sierra de Gredos. La nieve se acumula principalmente en las zonas más erosionadas, siguiendo una red de fracturas que estás dispuestas verticalmente (líneas azules) y en diagonal (líneas rojas). Conforme la erosión vaya haciendo su trabajo, estas zonas de acumulación irán creciendo. Fotografía de Gabriel Castilla.
Los escarpes tectónicos son fracturas de mayor tamaño que implican un desplazamiento, normalmente formando un relieve con forma de escalón. Estas fallas también favorecen la meteorización, pero sobre todo los movimientos en masa (deslizamientos, vejigas, torrentes, etc.), formando cabeceras de vaciado donde pueden instalarse cuencas glaciares (Figura 12).
Figura 12. Cabecera de vaciado en uno de los picos de la Sierra de Gredos (detalle ampliado de la Figura 10). La montaña ha sido fuertemente erosionada y vaciada por una red de valles torrenciales rectos y paralelos entre sí, posiblemente escarpes de falla. Es en estos valles alargados, situados a gran altura, con pendiente moderada y a resguardo del viento, donde tienden a instalarse las cuencas glaciares durante los episodios de glaciación. Fotografía de Gabriel Castilla.
10. Polvo atmosférico
Durante las glaciaciones una gran cantidad del agua dulce de los continentes queda atrapada en forma de hielo. El resultado es un aumento generalizado de la aridez (falta de humedad ambiental) con una consecuente pérdida de masa vegetal que conlleva la degradación del suelo. Desprovisto de raíces, el suelo es erosionado por el viento con más intensidad, movilizando una gran cantidad de sedimento en forma de arena y grava (que puede formar dunas) y de polvo, que el viento arrastra hasta las capas altas de la atmósfera. Este polvo modificará el albedo de la superficie en la que se deposite, calentándola.
Un análogo podría ser la irrupción en Europa de nubes de polvo sahariano que aceleran el deshielo de las cumbres de Sierra Nevada (Figura 13). ¿Hasta qué punto el polvo puede condicionar la formación y el desarrollo de un glaciar? Algunos estudios señalan que el polvo del desierto del Gobi (entre el norte de China y el sur de Mongolia) podría ser la causa por la que no se formaron grandes masas de hielo en el norte de Asia durante la última glaciación.
Este año el #deshielo en los Lavaderos de la Reina ofrece unas imágenes muy particulares y asombrosas debido a los diferentes episodios de polvo sahariano. pic.twitter.com/A2OUKrpGHt
— Amig@s Sierra Nevada (@SNevada_Parque) May 24, 2022
Figura 13. En marzo de 2022 la borrasca Celia provocó un episodio de polvo sahariano que afectó a gran parte de la Península Ibérica. En la imagen podemos ver los efectos que posteriormente tuvo en el deshielo de Sierra Nevada. Además de cambios en el albedo de la nieve, el oscurecimiento del cielo provocó una disminución de la insolación, con una pérdida del 80% de la capacidad de producción fotovoltaica de España. ¿Cómo pudo afectar el polvo del Sáhara al desarrollo de los glaciares en la Península Ibérica? Publicación de Amig@s Sierra Nevada.
Recapitulación
Los 10 factores que acabamos de ver nos hablan fundamentalmente de cómo nos alcanza la radiación solar, de cómo la atmósfera y el relieve redistribuyen esa radiación en forma de calor mediante el viento y otros fenómenos meteorológicos, y de cómo la geología condiciona la existencia de lugares favorables para la acumulación del hielo glaciar.
En este contexto podemos afirmar que el glaciarismo es un proceso geológico complejo y para entender el origen, la dinámica y la evolución temporal de los glaciares necesitamos manejar conceptos relacionados con muchas disciplinas, desde la física de la atmósfera y la Geografía, pasando por la Astronomía y la Geología.
El estudio de los glaciares es, sin duda, un estimulante reto multidisciplinar para cualquier espíritu curioso y amante de la Naturaleza.
Anguita, F. y Moreno, F. (1993). Procesos Geológicos Externos y Geología Ambiental. Editorial Rueda. Madrid, 311 pp.
Bernat Rebollal, M. (2012). Geomorfología de los depósitos eólicos cuaternarios del centro de la Península Ibérica. Una caracterización de la actividad eólica en tierras depinares y la llanura manchega. Tesis Doctoral. Universidad Complutense de Madrid. Facultad de Ciencias Geológicas. Departamento de Geodinámica.
Carrasco, R.M. et al. (2023). The Prados del Cervunal morainic complex: Evidence of a MIS 2 glaciation in the Iberian Central System synchronous to the global LGM. Quaternary Science Reviews, 312.
Carrasco, R.M. et al. (2011). Reconstrucción y cronología del glaciar de meseta de la Sierra de Béjar (Sistema Central Español) durante el máximo glaciar. Boletín de la Real Sociedad Española de Historia Natural. Sección Geología. Nº 105 (1-4). Pp. 125-135.
Carrasco, R.M. et al. (2020). Glacial geomorphology of the High Gredos Massif: Gredos and Pinar valleys (Iberian Central System, Spain). Journal of Maps, 16:2. Pp. 790-804.
Dietrich, S. (2011). Palaeo wind system reconstruction of the last glacial period over Europe, using high resolution proxy data and model-data-comparison. Johannes Gutenberg-Universität Mainz.
Elis, R. y Palmer, M. (2016). Modulation of ice ages via precession and dust-albedo feedbacks. Geoscience Frontiers Vol. 7, nº 6, pp. 891-909.
Evans, I.S. (1977). World-wide variations in the direction and concentration of cirque and glacier aspects. Geografiska Annaler, 59A (3-4), 151-175.
Krinner, G.; Boucher, O. y Balkanski, Y. (2006). Ice-free glacial northern Asia due to dust deposition on Snow. Climate Dynamics Vol. 27, pp. 613-625.
Oerlemans, J.; Griesen, R.H. y Van Den Broeke, M.R. (2009). Retreating alpine glaciers: increased melt rates due to accumulation of dust (Vadret da Morterasch, Switzerland). Journal of Glaciology, Vol. 55, nº 192, pp. 729-736.
Oliva, M. et al. (2019). Late Quaternary glacial phases in the Iberian Peninsula. Earth-Science Reviews 192. Pp. 564-600.
Oliva. M.; Andrés, N.; Fernández-Fernández. J.M. y Palacios, D. (2023). The evolution of glacial landforms in the Iberian Mountains during the deglaciation. En Palacios, D.; Hughes, P.D.; García-Ruiz; J.M. y Andrés, N. European Glacial Landscapes. The Last Deglaciation. Cap. 22. Pp. 201-208. Elsevier, 2023.
La Asamblea General de las Naciones Unidas designó el 11 de diciembre de 2003 como “Día Internacional de las Montañas”. Desde entonces se ha venido celebrando con la intención de sensibilizar a la humanidad sobre la importancia que las montañas tienen para la vida.
Las montañas merecen nuestra atención por muchos motivos, pero desde una perspectiva naturalística cabe destacar dos:
Primero, porque albergan más de una cuarta parte de las plantas y animales terrestres;
y segundo, porque la aceleración del cambio climático está derritiendo los glaciares a un ritmo sin precedentes. Se espera que la profundidad del hielo en las altas montañas disminuya hasta un 40 por ciento antes del año 2050; un proceso que sin duda tendrá un gran impacto sobre el bienestar, la salud y la economía de millones de personas.
Es por este vínculo entre montañas y glaciares que hemos elegido para la ocasión una secuencia de fotografías de las tierras altas de Islandia.
Además, te animamos a que la acompañes con una banda sonora muy especial: la versión musicada que el compositor Arvo Pärt hizo sobre un poema del escocés Robert Burns (1759-1796). Parafraseando el título de esta obra inmortal, hoy nuestro corazón está en las Tierras Altas.
Las tierras altas de Islandia en imágenes
Foto 1. Estos crestones de roca volcánica son las cumbres de las montañas que reposan bajo el glaciar Vatnajökull, una masa de hielo de 8.100 km2 (prácticamente la misma extensión que la provincia de Ávila) y que en este punto alcanza los 400 metros de espesor. Fotografía de Gabriel Castilla.Foto 2. Frente del glaciar Svínafellsjökull. El color oscuro del hielo se debe a la presencia de cenizas volcánicas. En los últimos 80 años la masa de hielo ha experimentado numerosos avances y retrocesos, fluctuaciones que han dado como resultado la formación de la laguna y la morrena (sedimentos de tamaño muy dispar) que forman el montículo que la delimita. Fotografía de Gabriel Castilla.Foto 3. Cascada de Gullfoss en el río Hvitá, el tercero más caudaloso de Islandia. Nace en el lago del glacial Langjökull, a unos 45 kilómetros al norte. Las paredes del cañón alcanzan una altura de 70 metros en algunos puntos. Fotografía de Gabriel Castilla.Foto 4. Vista panorámica del campo de lava de Mývatnsöraefi, en el noreste de Islandia. Aquí el relieve sobre la árida llanura lo configuran antiguos edificios de volcanes ya extintos. Fotografía de Gabriel Castilla.Foto 5. Nacimiento de una montaña por la erupción del volcán Fragadalsfjall en Islandia (julio de 2023). Fotografía de Gabriel Castilla.
Este año el tema para el Día Internacional de las Montañas, promovido por la FAO, es «Restauración de los ecosistemas de montaña» y pretende sensibilizar sobre la relevancia de los ecosistemas de montaña y demandar soluciones, mejores prácticas e inversiones basadas en la naturaleza que construyan resiliencia, reduzcan la vulnerabilidad y aumenten la capacidad de las montañas para adaptarse a las amenazas diarias y los eventos climáticos extremos.
Para que una corriente de agua erosione un valle fluvial se necesita un tiempo de evolución. En ese tiempo:
Primero comienza a tallar la roca y predomina la erosión vertical.
Después se van dibujando en el terreno los canales secundarios que conforman el área de drenaje de esa corriente.
Y así sucesivamente, hasta llegar a sus interfluvios, los límites de la cuenca hidrográfica.
En una fase inicial, predomina la erosión vertical, pero los factores tectónicos o climáticos pueden hacer que esto cambie.
Cuando la energía de transporte no es suficiente para evacuar toda la carga, se colmata (se rellena) el cauce con sedimentos, formando así llanuras aluviales.
Mientras que en los períodos de mayor energía, la erosión excava en esos sedimentos encajando cada vez más el lecho del río.
El resultado en el paisaje son terrazas colgadas adosadas a los márgenes, quedando topográficamente por encima las más antiguas sobre las más modernas.
Esquema de las ‘terrazas colgantes’ del río Adaja que se pueden observar desde el Mirador de Arévalo.
Colmatación de presas y erosión de deltas, la amenaza de un problema invisible
También tienes este artículo en formato audio. Escúchalo aquí:
Buscar lo diferente es observar; buscar lo común es comprender. Encontrar detalles diferentes es reunir datos, encontrar esencias comunes es crear conocimiento.
El gozo intelectual. Jorge Wagensberg, 2007
¿Qué es un río?
Según la Real Academia Española, un río es una corriente de agua continua y más o menos caudalosa que va a desembocar en otra, en un lago o en el mar.
Si nos ceñimos a esta definición debemos asumir que la mayoría de nuestros ríos en realidad no lo son, pues el agua no discurre libremente y de forma continua por sus cauces. Esto es lo que afirman los datos recopilados por el proyecto AMBER (acrónimo en inglés de gestión adaptativa de barreras en ríos europeos).
El número de obstáculos censados en ríos españoles alcanza ya los 30.000, una cifra que según los expertos podría multiplicarse por seis cuando el conteo esté terminado. Sabiendo que nuestro país tiene unos 187.000 kilómetros de río, estaríamos hablando de algún tipo de barrera a cada kilómetro.
Así pues los ríos españoles avanzan hacia el mar, pero lo hacen a trompicones.
El río Arevalillo a su paso por Arévalo (Ávila). Como podemos ver, el cauce está intervenido a cada pocos metros por diferentes infraestructuras. En primer término el molino de Valdeláguilas (también llamado de Valencia o Quemado), el Puente de los Barros y al fondo el Puente de Medina. Foto: Gabriel Castilla.
¿Por qué tantos obstáculos?
España es el país de Europa con mayor número de presas cuya pared supera los 15 metros de altura. Y si bien estas obras son las que tienen un mayor impacto sobre el cauce y el territorio circundante de un río, la gran mayoría de las barreras son pequeñas obras ya en desuso: rampas, presas, azudes (donde a diferencia de las presas el agua rebosa por encima), pequeños puentes, molinos harineros o antiguas centrales hidroeléctricas que interrumpen la circulación natural del agua, de los sedimentos y de las especies que viven en el cauce y la rivera.
Las razones por las que se han construido este tipo de barreras son diversas. Las grandes presas, por ejemplo, cumplen varias funciones:
Sirven como almacén de agua potable.
Ayudan a controlar las crecidas de los ríos, evitando inundaciones en los valles y las llanuras.
Permiten obtener energía hidroeléctrica.
Vista general del Molino de Valencia. Tradicionalmente la fuerza del agua se ha usado para mover norias, molinos y turbinas. Para ello suele ser necesario represar el agua y hacerla caer por un canal estrecho que aumenta la presión, como cuando taponamos parcialmente la boca de un grifo o de una manguera con un dedo. Foto: Gabriel Castilla.
Una trampa para el sedimento
Como acabamos de ver, las presas que encontramos en los cauces tienen o tuvieron una utilidad, pero su ejecución y permanencia implican unas consecuencias que no siempre son evidentes.
Una presa es una barrera (normalmente) artificial que frena, impide o regula el paso de una corriente de agua.
Cuando un río se frena, pierde energía cinética bruscamente y con ello su capacidad de transportar sedimentos, tanto en el fondo de la corriente (los materiales más pesados, principalmente arena, grava y cantos) como en suspensión (fundamentalmente arena fina, arcilla y limo).
El resultado es una alteración de la pendiente longitudinal del cauce, lo que afecta a la dinámica geomorfológica del río hasta la desembocadura.
Una de las consecuencias del estancamiento del agua en un entorno rico en nutrientes es la eutrofización, como en este caso junto al Molino de Valencia. Al disponer de gran cantidad de alimento, las algas crecen sin control, consumiendo el oxígeno del medio e impidiendo la entrada de radiación ultravioleta en el agua. El resultado es la muerte de organismos aerobios (peces, crustáceos, anfibios, etc.) por anoxia, un incremento de bacterias anaerobias y la concentración de gases nocivos (como óxidos de nitrógeno y metano). Foto: Gabriel Castilla.
Desde el punto de vista ecológico esta barrera supone una modificación del transporte de nutrientes y de la materia orgánica, afectando a la calidad del agua y favoreciendo la eutrofización.
Y desde un punto de vista geológico, la zona embalsada se transforma en una trampa que captura sedimento. Esto tiene dos consecuencias:
La primera es que aguas arriba el cauce se hace más estrecho y la vegetación coloniza zonas que anteriormente estaban activas.
Y la segunda es que el vaso de la presa poco a poco se va rellenando de sedimentos hasta que queda colmatado de barro en vez de agua.
La presa del molino hace de barrera para el sedimento, que queda atrapado aguas arriba. En consecuencia el cauce del río Arevalillo se estrecha y es ocupado por la vegetación. Foto: Gabriel Castilla.
La colmatación de presas es un problema poco conocido pero que tiene graves consecuencias en un país como España, que padece sequías recurrentes y es vulnerable a la desertización.
Según los datos disponibles, la tasa de aterramiento (acumulación de tierras, lodo o arena en el fondo de una depresión por acarreo natural o voluntario) en los embalses españoles ronda los 100 hm3 al año, lo que se traduce en que cada 50 años perdemos unos 5.000 hm3 de capacidad de almacenamiento de agua dulce. Esta cantidad equivale al consumo de agua potable de toda la población de nuestro país durante 3 años.
Mapa digital del terreno donde se aprecia como la presa del Molino de Valencia hace de barrera que modifica el cauce. Aguas arriba el relieve es menos acusado (color verde) porque está relleno de sedimentos, mientras que aguas abajo el río ha erosionado el cauce (color azul) precisamente por la falta de sedimentos. Autor: Javier Pérez Tarruella.
Las principales modificaciones que sufren los cauces situados aguas abajo de los embalses pueden ser tanto de incisión como de sedimentación. La erosión se produce porque la presa retiene la mayor parte del sedimento que circulaba por el río en condiciones naturales. El agua que la presa libera durante crecidas erosiona el lecho aguas abajo pero no aporta nuevos sedimentos, por lo que el balance sedimentario del río entra en una fase de desequilibrio.
¿Sabías que la cantidad de sedimento que queda atrapado en los embalses españoles cada 50 años equivale a unas 4 toneladas de arena y arcilla por cada español al año?
Rompiendo el equilibrio
La desembocadura es el lugar donde un río pierde de manera natural su capacidad de carga. Es aquí, normalmente ya cerca del mar, donde deposita tanto los sedimentos más finos como los nutrientes que ha transportado durante todo su viaje. Si la cantidad de sedimentos que llegan a la costa es alta y tanto las corrientes como el oleaje no los dispersan, entonces se forma un delta.
Los deltas se caracterizan por ser lugares húmedos muy ricos en nutrientes, lo que los convierte en “edenes de biodiversidad”. Además, históricamente han destacado por ser terrenos muy fértiles de gran interés agrícola. En el caso del delta del Nilo, probablemente el ejemplo mejor conocido, la evidencia arqueológica señala que se lleva explotando agrícolamente de forma ininterrumpida desde hace al menos 7.000 años.
El delta del Ebro antes (15 de enero, izquierda) y después (21 de enero, derecha) del paso de la Borrasca Gloria en el año 2020. El delta no desapareció pero durante unos días buena parte de su superficie quedó cubierta por una lámina de agua (color azul) como consecuencia de las fuertes lluvias y del oleaje. La borrasca causó importantes daños en una zona de gran valor ecológico, social y económico. La falta de aporte de sedimento hace que el delta sea una región especialmente vulnerable a las fuertes tormentas. Imagen: satélite SENTINEL HUB-01.
En España el caso más emblemático es el delta del río Ebro, actualmente en retroceso y en grave riesgo de desaparecer.
El principal motivo es la falta de aporte de sedimentos, pues de los 20 millones de toneladas que alcanzaban la meta del curso fluvial antes de los pantanos de Mequinenza, Riba-roja d’Ebre y Flix han quedado reducidos a 90.000 toneladas. O dicho de otro modo: el 99% del sedimento fino que debería alimentar el delta queda atrapado en los vasos de las presas y en las modificaciones del cauce que éstas provocan.
Bibliografía
AMBER Consortium (2020). Atlas de la Barrera AMBER. Una base de datos paneuropea de barreras artificiales. Versión 1.0.
Cobo, R. (2008). Los sedimentos de los embalses españoles. Ingeniería del Agua, Vol. 15, No 4, pp. 231-241.
Elcacho, J. (2020). [Efectos de la borrasca Gloria] ¿Ha desaparecido por completo el delta del Ebro bajo las aguas? La Vanguardia, 22 de enero de 2020.
Europa Press Data. La situación del agua en España y en el mundo, en gráficos [Datos actualizados el 27 de julio de 2022]. Fuentes: INE y FAO.
Martínez Salvador, A. et al (2015). Estimación de aportes de sedimentos a embalses de pequeñas cuencas mediterráneas mediante GeoWEPP. Ensayo en la cuenca vertiente del río Mula al embalse de la Cierva (Cuenca del río Segura). Limnetica, 34 (1), pp. 41-56.
Miranda, D. (2022) Delta del Ebro, un edén de biodiversidad. National Geographic España.
Vericat. D. y Batalla, R.J. (2004). Efectos de las presas en la dinámica fluvial del curso bajo del río Ebro. Revista C & G, No 18 (1-2), pp. 37-50.
Si lo prefieres, puedes escuchar este artículo aquí:
Cualquier forma de terreno natural que no haya sido modificada por la acción humana se ha formado o configurado por procesos geológicos. Tanto las discretas lomas en campo abierto como una imponente montaña tienen detrás procesos y materiales geológicos que generalmente se remontan a cientos, miles o millones de años.
La lentitud de estos procesos, junto con la profundidad del tiempo geológico, crea una abrumadora relación de escala comparada con la percepción humana del tiempo.
Por esta razón, la destrucción de un fósil o la modificación del relieve por expansión de infraestructuras u obtención de recursos deja una sensación de proceso irreversible: si desaparece una forma o elemento del paisaje, sin duda los procesos geológicos la podrán repetir, pero probablemente no esté ya la humanidad para observarlo.
Por ello, tenemos la responsabilidad de cuidar y valorar una herencia de formas y elementos geológicos, para trasmitirla a futuras generaciones y que también puedan observarlas, estudiarlas o simplemente disfrutarlas. La idea de herencia entre generaciones es uno de los enfoques más claros para entender el concepto de Patrimonio Geológico.
¿Qué es el Patrimonio Geológico?
Bajo el marco de Patrimonio Geológico se hace referencia a aquellos lugares u objetos naturales de origen geológico que tienen valores científicos, culturales o educativos, tales como rocas, minerales, fósiles o paisajes.
Debido al largo tiempo necesario para formarse, estos objetos naturales contienen fragmentos de información sobre procesos del pasado que ayudan a comprender la historia de la Tierra, de la Vida e incluso del Universo.
Los avances tecnológicos actuales permiten llegar a un nivel de resolución muy preciso sobre esa información, pero obviamente esta resolución irá aumentando con futuras técnicas analíticas aún no desarrolladas.
Esta es otra buena razón para conocer, cuidar y mantener en las mejores condiciones posibles la herencia geológica que hemos recibido y que dejaremos a las futuras generaciones.
En la década de los 90 hay un creciente interés general por la geoconservación y surgen distintas iniciativas de catalogación por parte de algunas Comunidades Autónomas, pero con una cobertura muy desigual del territorio.
Hacia el final del siglo XX la UNESCO y la Sociedad Geológica Internacional (IUGS) promueven el proyectoGlobal Geosites, un catálogo de lugares de interés geológico que sigue unos criterios específicos para justificar su relevancia mundial.
Lógicamente, hay muchos otros lugares que no alcanzan ese grado de singularidad global, aunque no por ello sean menos interesantes y merecedores de una catalogación y puesta en valor.
Inventario Español de Lugares de Interés Geológico (IELIG)
Con el objetivo de hacer un inventario nacional completo y unificado, en 2011 el IGME pone en marcha el Inventario Español de Lugares de Interés Geológico (IELIG) que pretende unir y ampliar las anteriores propuestas de catalogación, tanto internacionales como de ámbito nacional y autonómico.
Actualmente el IELIG tiene más de 4.500 lugares de interés geológico que en la web info.igme.es/ielig/ se pueden consultar públicamente para que los conozca la ciudadanía, las instituciones y que, en última instancia, sean considerados en los planes de ordenación territorial de cada municipio. Además, este catálogo está abierto a seguir ampliándose incluyendo nuevas propuestas de lugares de interés geológico.
Imagen de la base de datos de Lugares de Interés Geológico (IELIG) del IGME. Permite realizar búsquedas por poblaciones o puntos geográficos.
IELIGs en Arévalo
En el entorno de Arévalo hay actualmente tres puntos catalogados en el IELIG.
Mapa de localización de los tres lugares de interés geológico en las inmediaciones de Arévalo (Ávila).
Dos de ellos son de interés geomorfológico, sedimentológico y estratigráfico y se encuentran en campos de dunas pleistocenas del último episodio glacial hace unos 10.000 años. Son formaciones geológicas de arenales naturales, donde en algunos puntos aún se pueden observar antiguas canteras para la extracción de áridos. Estas formaciones de dunas son importantes para los estudios paleoclimáticos ya que constituyen registros de una época con un clima en la región de Ávila muy distinto al actual.
Vista de los frentes de la cantera abandonada del LIG Dunas eólicas cuaternarias de Arévalo (DI127). Tomada de info.igme.es/ielig/
Parte anterior del peto de Titanochelon bolivari encontrado en Arévalo (Ávila) y expuesto en la Sala de las Tortugas, en la Universidad de Salamanca. Hernández-Pacheco, 1917.
Se trata de un programa de participación ciudadana en el que cualquier persona puede “apadrinar” un LIG que le resulte interesante y que pueda visitar con frecuencia.
Desde la página web del IELIG se puede participar mediante un formulario de datos básicos y con el compromiso de visitar regularmente el LIG para comprobar su estado.
El objetivo es crear un vínculo entre los participantes de esta iniciativa y los LIG que han elegido, de forma que tengan un canal de comunicación con el IGME para informar de incidencias que puedan amenazar su integridad.
El proyecto de participación ciudadana Apadrina una Roca está promovido por el IGME para el cuidado y protección de los lugares de interés geológico.
En esta panorámica general podemos ver tres elementos del paisaje que narran las historias que han ocurrido en este lugar a lo largo del tiempo geológico.
Desde esta panorámica vemos 3 elementos del paisaje que narran las historias que han ocurrido aquí a lo largo del tiempo geológico. Imagen de Gabriel Castilla.
El primer elemento son los arroyos, torrentes y procesos de erosión que modelan rápidamente el paisaje y que hacen preguntarnos si un romano vería el mismo entorno que vemos ahora.
El segundo elemento es el relieve cercano formado por materiales geológicos del periodo Mioceno (14 millones de años), cuando esta zona fue habitada por antiguos vertebrados que dejaron sus restos en yacimientos paleontológicos como el que acabáis de ver. Estos fósiles, junto con las calcretas, permiten dibujar un entorno de clima y paisaje muy distinto al actual. ¿Qué tipo de paisaje vieron estos antiguos mamíferos?
El tercer elemento son las montañas que hay al fondo, que permiten descifrar otras historias que emergen desde lo más profundo del tiempo. De allí son las rocas que en otro tiempo fueron sedimentos de océanos, se enterraron bajo cordilleras para luego volver a la superficie, incluso algunas que antes fueron magmas en el interior de la corteza.
Esta fue la última parada del Geolodía 22 de Ávila en Villaflor.
El desafío final
Además de sintetizar todos los elementos del paisaje que el público asistente había recorrido, aquí debían resolver el ‘desafío final’, acertar la frase oculta siguiendo las pistas recogidas durante su exploración del laberinto.
Las pistas recogidas en cada parada geológica
La frase oculta
Mapa central de la guía de campo. En él se indican el área de juego y la posición aproximada de las paradas geológicas. Además, se facilita un espacio para pegar cada una de las pistas recogidas durante la exploración del laberinto y el acertijo final que el público asistente tendrá que adivinar basándose en las pistas.
Este 11 de diciembre queremos celebrar el Día Internacional de las Montañas visitando el macizo del Montsec, un lugar emblemático del Prepirineo para los amantes de la Geología.
El macizo se levanta entre dos depresiones, la cuenca de Tremp al norte y la cuenca de Àger al sur; haciendo de divisoria natural entre dos comarcas leridanas: La Noguera y el Pallars Jussà.
Foto 1. Vista general del macizo del Montsec con las principales cimas al fondo. Imagen de Gabriel Castilla.
El macizo del Montsec está formado por rocas de laera Mesozoica (unos 250 millones de años de antigüedad), que contienen fósiles tanto de organismos marinos como de dinosaurios.
Foto 2. Vista panorámica del Montsec de Ares (1307 m de altitud) desde el Montsec de Rubies (1667 m). Ambas cimas se encuentran separadas por el acantilado de Terradets. Imagen de Gabriel Castilla.
El macizo del Montsec es un espléndido ejemplo de relieve tectónico formado por un gran cabalgamiento.
Foto 3. Fotografía de larga exposición del Montsec de Ares. Los trazos blancos son partículas de polvo y humedad desplazadas por el viento. Imagen de Gabriel Castilla.
El cabalgamiento del Montsec es un pliegue que ha sufrido una presión tan intensa que se ha roto y se ha desplazado horizontalmente (en este caso unos 7 kilómetros) respecto del lugar donde originalmente se encontraban las capas dispuestas horizontalmente. La serie sedimentaria ha «cabalgado» sobre sí misma y se ha duplicado en la vertical. Con el paso del tiempo el relieve es erosionado, formándose los valles y acantilados que lo perfilan.
Foto 4. Acantilados del Montsec de Rubies, cuya cima supera los 1600 m de altitud. Imagen de Gabriel Castilla.
Con el lema #MountainsMatter (#LasMontañasImportan), la ONU dedica este día al «turismo sostenible en las montañas». Descubre más sobre qué ver y cómo vivir estas montañas en la web del Geoparc Orígens.
Texto, gráficos y fotografías – Ana Isabel Casado Fotografías y modelo 3D- Javier Elez
Cuando miramos el paisaje que nos rodea, tenemos delante de nuestros ojos una postal del viaje que estamos haciendo, la instantánea de «cómo son las cosas» en este momento.
Pero observando un poco más, podemos hacernos preguntas y pensar de qué manera se ha llegado a formar este paisaje, como sucede en el abanico aluvial de la Garganta de Santa María, en Candeleda, Ávila (fig. 1).
Fig.1: El río Garganta de Santa María a su paso por el puente de la Barranca (Candeleda, Ávila). En el momento de la fotografía, el río no lleva una gran fuerza, al contrario que cuando recibe aportes extra de agua (por ejemplo con el deshielo en las montañas de Gredos). Aún así, vemos grandes bloques de granito que han sido transportados por el agua hasta el lugar en el que se encuentran ahora. Por ello, podemos deducir que el agua transportó esos grandes bloques en momentos de mayor energía, formando el abanico aluvial de Candeleda. Fotografía de Javier Élez.
No nos cuesta imaginar que esa corriente de agua, que se oye como un susurro, aumentará su caudal en momentos de avenidas torrenciales (por tormenta o tras el deshielo) teniendo la fuerza necesaria para mover grandes bloques de piedra desde las montañas.
Así bajaba el río el 07/03/2013, tras unos días de intensa lluvia junto con el deshielo de la nieve acumulada en las cumbres de Gredos. Vídeo de Luis Blázquez.
Estos bloques de piedra se irán fragmentando y redondeado al chocar unos con otros según se desplazan aguas abajo (fig. 2).
Fig. 2: Bolos redondeados aguas abajo del río Garganta de Santa María, en Candeleda, Ávila. Imagen de Ana Isabel Casado.
El agua erosiona, transporta y sedimenta
El agua es una trabajadora incansable. A veces con menos fuerza y otras con más. Manteniendo en suspensión arcillas (partículas tres veces más pequeñas que el diámetro de un pelo humano) o empujando grandes bloques. O mejor dicho, todo al mismo tiempo.
A grandes rasgos, se pueden diferenciar cuatro formas de transporte del sedimento en el curso fluvial en función de su tamaño, su forma y la energía del agua (fig. 3):
Las partículas más pequeñas (habitualmente con formas laminares), las que estudiamos mejor con ayuda de los microscopios, son capaces de viajar en el agua en suspensión.
Las de tamaño intermedio, las que vemos a simple vista y nos caben en la palma de la mano, pueden moverse por saltación gracias a pequeños choques con el fondo o con otros clastos (rocas o fragmentos de roca). Esto les permite continuar su movimiento hacia delante cuando aparentemente se iban a depositar.
Con este mismo tamaño, o incluso algo más grandes, hay piedras que pueden rodar por el lecho del río gracias a que se van desgastando y van tomando formas cada vez más esféricas.
Las rocas más grandes, por lo general también las más angulosas, se mueven por arrastre pegadas al fondo del río.
Fig. 3: Representación esquemática de las formas de transporte de sedimento por corrientes fluviales. Existe una relación directa entre el tamaño del material que se transporta y la energía del agua del río. No es necesaria demasiada energía para mover sedimentos de pequeño tamaño como las arcillas ya que se encontrarán en suspensión en el agua. Partículas algo mayores se mueven por saltación, siendo necesaria más energía para que esto se produzca. Si la energía aumenta, también se pueden mover bloques mayores que, dependiendo también de su forma, pueden moverse por rodadura si son más redondeados (como si fuera un balón) o por arrastre pegados al fondo cuando tienen una forma más aerodinámica (cantos planos rodados). Figura de Ana Isabel Casado.
Cuando el río baja cargado de agua, se lleva consigo todo aquello que es capaz de mover, tanto lo grande como lo pequeño, no hace distinción. Es lo que se conoce como sedimento no seleccionado.
Según va perdiendo energía va dejando a su paso las rocas más pesadas, con las que ya no puede cargar. Por eso, cuanto más aguas arriba, más grandes son las piedras. Y es aquí donde se generan las zonas diferenciadas del abanico.
Y es que no hay que olvidar que:
El río erosiona arrancando el material a la montaña.
El río transporta moviendo el sedimento con la energía del agua.
El río también sedimenta, soltando la carga que lleva en su viaje cuando ya no tiene fuerza para transportarla más.
Paleocanales, los canales antiguos
Cuando el río se encauza, tiene un espacio que va desde el lecho hasta la superficie del agua que se conoce como espacio de acomodación (fig. 4) y que no es otra cosa que el hueco del que dispone para fluir.
Este espacio puede disminuir o rellenarse de sedimento y no dejar hueco para el agua, que debe buscar zonas más bajas por las que discurrir.
Fig. 4: El espacio de acomodación es el «hueco» que existe desde el lecho hasta la superficie del agua. Este espacio puede disminuir porque el caudal de agua sea menor y se puede ir rellenando progresivamente hasta desaparecer. En ese momento el agua buscará nuevos caminos por los que le resulte más fácil circular (generalmente con topografías más bajas), cambiando su curso. Figura de Ana Isabel Casado.
Estos procesos de relleno de canales fluviales y búsqueda de nuevos canales laterales, que en Candeleda suceden desde el Pleistoceno (2,5 millones de años), hacen que se sucedan lóbulos de sedimento de manera radial desde el ápice, como ya vimos en la entrada sobre qué es un abanico aluvial.
En Candeleda se pueden reconocer al menos 7 canales anteriores al canal actual, numerados desde el más antiguo (canal 0) al más moderno (canal 6).
En la fig. 5 se muestran estos canales coloreados en escalas de verdes en el modelo 3D del abanico aluvial de Candeleda.
Sobre el mapa geomorfológico del abanico, se ha representado la paleogeografía de los distintos depósitos que han existido en el pasado y que aún podemos reconocer.
Vemos que el canal principal migró de Este a Oeste (canales 0, 1 y 2) y posteriormente de Oeste a Este (canales 3, 4, 5 y 6) hasta ubicarse donde se encuentra activo actualmente.
Fig. 5: Modelo 3D del abanico de Candeleda con la posición de sus paleocanales (canales antiguos) numerados del 0 al 6 y el canal actualmente activo en color verde más claro. En la leyenda se pueden ver sus edades tentativas y sus relaciones temporales, ordenados del más antiguo (abajo) al más moderno (arriba) como indica la flecha rosa. Modelo 3D de Javier Élez.
Sabiendo cuál es la dinámica de este tipo de sistemas, podemos deducir que el abanico se ha formado por la sucesiva acumulación de bolos cuando el canal principal del río ha ido cambiando de posición.
Lo que vemos en el paisaje son los sedimentos de los paleocanales, los antiguos canales del río Garganta de Santa María, que el río fue abandonando hasta llegar al canal que vemos ahora activo (fig. 6).
Fig. 6: Paleocanal que aún conserva su morfología de canal a pesar de estar colonizado por plantas. Fotografía: Ana Isabel Casado.
Así que no debemos olvidar que, en los sistemas de abanicos aluviales, los lóbulos y sus canales cambian mucho de posición.
En la postal que vemos en este momento el canal del río parece estático pero, como hipotéticamente diría Galileo, «y sin embargo se mueve«.
¿Sabías que…
El prefijo Paleo- proviene de la palabra griega palaios (παλαιο) y significa «antiguo» o «muy viejo»? Es un prefijo que se utiliza muchísimo en Geología. Por ejemplo, en Paleontología, que etimológicamente significa «estudio de lo antiguo». Así que cuando leemos una palabra con el prefijo paleo- ya sabemos que nos define algo propio de tiempos pretéritos, no actual. En esta entrada se han explicado qué son los paleocanales (canales antiguos, que no funcionan actualmente como canales) y paleorrelieves (la forma que tenía la superficie del terreno en la antiguedad propia del sistema sedimentario que estaba funcionando en ese momento). Otros ejemplos de palabras con el mismo prefijo son: paleolago, paleoantropología, paleosistema, paleolítico, paleobotánica…
Bibliografía
Dabrio, C.J. y Hernando, S. (2003). Estratigrafía. Colección Geociencias. Facultad de Ciencias Geológicas UCM, Madrid. ISBN: 84-600-9887-7