Archivo de la categoría: Geomorfología

Procesos geológicos que dan forma al paisaje.

Reconstruyendo el paisaje a partir de un puñado de arena

Autores – Gabriel Castilla y Davinia Díez Canseco

Cuando nos detenemos a contemplar un paisaje, ya sea en el campo o en una fotografía, hay una pregunta que surge casi de manera espontánea: ¿cómo se formó el relieve que observamos? Intuimos que las llanuras, valles y montañas debieron originarse por la acción lenta pero continuada durante mucho tiempo del agua, el hielo o el viento; agentes que pueden arrancar materiales de un sitio para reubicarlos en otros. La experiencia nos induce a pensar que las rocas que configuraban el relieve primordial fueron disueltas o arrancadas, trituradas y transportadas lejos de allí.

La siguiente pregunta también surge por sí misma: ¿dónde fueron a parar todos estos materiales? Podemos deducir que viajaron hasta un lugar tranquilo donde el agua, el hielo o el viento perdieron su energía, depositándolos en forma de sedimentos (arcilla, limo, arena o grava) en una depresión del terreno o tal vez en el mar.

Y así, razonando paso a paso, construimos las nociones de erosión, transporte y sedimentación.

Figura 1. Cárcavas del río Adaja cerca de Blascosancho. En esta imagen se aprecian los tres procesos básicos que han modelado el paisaje: erosión, transporte y sedimentación. Foto: Gabriel Castilla.

Pero estas nociones son tan generales que apenas nos permiten conocer detalles sobre el tipo de rocas que formaban el relieve desaparecido, los procesos geológicos que actuaron o la distancia que recorrieron las partículas o clastos (minerales, fragmentos de roca y fósiles) antes de sedimentar. Para aclarar cómo se formó el paisaje y dónde fueron a parar los materiales que faltan es preciso detenerse antes en dos conceptos clave: selección y madurez.

Proceso de selección de materiales

Existe una relación directa entre los clastos que encontramos en un sedimento y la roca de la que proceden. En el caso del granito, la roca más abundante de la provincia de Ávila, tres son los minerales que lo constituyen: cuarzo, feldespato y mica.

Para saber más sobre el granito y su composición: Qué es el granito y cómo se forma.

Los tres minerales son liberados cuando el granito se ve alterado por procesos químicos (como la hidrólisis del feldespato) y físicos (fracturación por cambios de presión y temperatura).

Descubre más sobre la alteración del granito en: La formación de los suelos.

En los continentes la reubicación de estos minerales la realizan fluidos como el agua (ya sea líquida o en forma de hielo) y el viento. El viaje entre el lugar donde se produce la erosión y la zona de sedimentación puede ser muy agresivo, por lo que algunos minerales se pueden romper y alterar químicamente hasta desaparecer.

Figura 2. Arena próxima a la laguna de El Ejido, formada por la erosión del granito y el transporte del sedimento. Foto: Gabriel Castilla.

Los agentes de transporte realizan un doble proceso de selección:

  1. El primero tiene que ver con la composición, pues el agua altera y degrada químicamente el feldespato y la mica mientras que mantiene el cuarzo (por ser químicamente estable y mecánicamente resistente).
  2. El segundo es una selección por tamaños, pues cuanto más baja es la energía o la densidad del fluido (como el aire) su capacidad de erosión y carga es menor, por lo que solo puede transportar clastos de unos milímetros de grosor. Sin embargo, cuando la energía y densidad del fluido es alta (como le sucede al agua líquida, al hielo o al barro), su capacidad de transportar material de todos los tamaños es mayor. 
Figura 3. Tipos de selección en función de la capacidad de carga y del medio de transporte. La selección del viento es alta (dunas) mientras que la de los ríos es más baja. Gráfico tomado de Corbí, H. y Martínez-Martínez, J. (2015).

Madurez de los materiales

Los geólogos llamamos arena al sedimento formado por clastos de rocas disgregadas cuyo tamaño oscila entre los 0,06 y los 2 milímetros de diámetro.

Cuando el viaje de la arena ha sido largo solo sobreviven las partículas más duras, cuyos bordes se van desgastando. Podemos decir entonces que:

  • Una arena es madura cuando está formada por granos de cuarzo que presentan forma redondeada y un tamaño similar entre ellos.
  • Por el contrario, diremos que una arena es poco madura cuando contiene minerales blandos (micas y feldespatos), de aspecto anguloso y con tamaños muy desiguales.

Figura 4. El grado de redondez que muestran los granos de cuarzo son un indicador del desgaste que han experimentado durante su transporte. Gráfico extraído de Carta de sorting estándar. Australian Government, Geoscience Australia (www.ga.gov.au).

¿Qué información podemos deducir del estudio de la madurez de un sedimento?

  • Una arena madura nos habla de un relieve montañoso lejano, de llanuras y zonas tectónicamente tranquilas, de un transporte largo e intenso en el que pueden haber participado muchos procesos geológicos, entre ellos el viento.
  • Una arena poco madura nos habla de un relieve montañoso cercano y de un transporte enérgico pero corto, propio de zonas montañosas tectónicamente activas, donde son frecuentes los torrentes y pueden ocurrir episodios de alta energía como las llamadas «vejigas» (deslizamientos de ladera en zonas de alta pendiente).

Para saber más sobre las llamadas «vejigas» : Reconciliando la tradición oral de las “vejigas” con la geología y el estudio de los riesgos naturales parte 1 y parte 2 (el caso concreto de Venero Claro).

Figura 5. Muestra de arena, sobre papel milimetrado, tomada en una duna al Noroeste de El Oso. Podemos apreciar una selección media-alta con partículas finas, pero también cantos de unos 2 mm tanto de cuarzo redondeado como de feldespato anguloso. Podemos comparar esta muestra con arena del desierto del Sáhara que presenta clastos redondeados y sedimento con clastos angulosos de un río seco de Black Mountain en Alberta (Canadá). Foto: Gabriel Castilla.

De dónde viene la arena de las dunas de La Moraña

Las dunas de La Moraña están formadas por cuarzo (62,5%), feldespato (35%) y fragmentos de roca y micas (2,5%).  En algunas encontramos arena de grano muy fino y bien seleccionadas, mientras que en otras las arenas son más gruesas y están peor seleccionadas. Esto significa que el viento formó las dunas movilizando clastos de dos áreas de origen muy distintas:

  1. Las arenas maduras que se encontraban en las terrazas y llanuras de inundación de los ríos de la cuenca del Duero.
  2. Y los sedimentos menos maduros formados por la erosión rápida de relieves montañosos del Sistema Central.
Figura 6. Grano de cuarzo de una duna de la Moraña visto al microscopio electrónico de barrido (MEB) a diferentes escalas. Podemos apreciar bordes redondeados, escamas en la superficie y el “piqueteo” formado por el continuo choque con otros granos de cuarzo.
Fotos realizadas por Jaime Cuevas González en el MEB de la Universidad de Alicante.

Como hemos podido ver la arena tiene historias que contarnos, relatos que han quedado escritos en la composición, forma y selección de los granos que la conforman. Además, al observar detalladamente un grano de cuarzo de una de las dunas de La Moraña con un microscopio electrónico de barrido (MEB), podemos apreciar en su superficie rasgos producidos por la acción prolongada del viento que nos hablan de las condiciones climáticas de extrema aridez que azotaron esta región hace 11.600 años.

Para saber más sobre la evolución climática de La Moraña: Youger Dryas: cambios climáticos que condicionaron el paisaje abulense y la vida humana.

Completa lo que sabes sobre las dunas de La Moraña en: Un mar de dunas en La Moraña y Descubrir los cinturones de dunas de Ávila.

Fuentes de consulta

Humedales en tierras de labor

Texto y gráficos – Fina Muñoz

Imágenes – Gabriel Castilla

El paisaje que puede verse al dar un paseo por los alrededores de El Oso, en Ávila, es un relieve bastante llano con una red de drenaje apenas marcada por las curvas de nivel del terreno.

El agua de lluvia se acumula en pequeñas lagunas sin salida a ningún cauce o lago y se va desecando por infiltración lenta junto a ciclos diurnos de evaporación. En períodos de estiaje, el embalsamiento deja zonas encharcadas con agua que se va enriqueciendo en sales. Estas sales proceden de la propia lluvia y del lavado de los materiales de alrededor que arrastra sales disueltas.

Lagunas endorreicas de La Moraña

A este tipo de humedal lo denominamos habitualmente como lagunas endorreicas (fig. 1). Es decir, son cuencas continentales donde la superficie del terreno corta al nivel freático y el aporte de agua se debe a la escorrentía superficial cuando llueve.

Figura 1: Modelo conceptual de la laguna endorreica de El Ejido, en el término municipal de Riocabado.

¿SABÍAS QUE…? La geografía española del interior de la península está salpicada por este tipo de lagunas. Algunas de las más conocidas: Villafáfila (Zamora), Gallocanta (Aragón), Pétrola (Albacete) o del Hito (Cuenca).

En el caso de la Moraña, la interacción con las aguas subterráneas es mínima o nula. La tendencia natural de estas lagunas es a la colmatación con los sedimentos (Martín et al., 2010), que acabarán rellenando la cuenca.

La laguna del Ejido, en Riocabado

La etimología latina del nombre de la laguna del Ejido (exitus: salida) se relaciona con un terreno colectivo, indiviso, sin posibilidad de venderse o heredarse situado en las afueras de un pueblo. En las sucesivas series cartográficas de la Dirección General del Instituto Geográfico y Catastral de los años 1941, 1989 y 2015 se pueden ver ligeros cambios de los límites (Fig. 2) de la laguna del Ejido.

Fig. 2. Cartografía de la laguna del Ejido en los años señalados. (Fuente: CNIG)

Sin embargo, en las diferentes ortoimágenes del Instituto Geográfico Nacional de los años 1956, 2000 y 2015 (Fig. 3) se aprecia cómo los terrenos de la laguna siempre se han mantenido sin arar y el perímetro apenas si ha variado.

Fig. 3. Ortoimagen de la laguna del El Ejido en los años señalados. (Fuente: CNIG)

Desecación por drenaje

Al igual que en otras zonas húmedas de España, los humedales de La Moraña han sufrido una modificación a cargo de manos humanas. Un claro ejemplo son los canales excavados por debajo de la superficie freática para drenar los terrenos encharcados y ganar terrenos agrícolas. De la misma manera, en los bordes de los caminos que sirven de vías de acceso se drenan los campos alrededor de la laguna del Ejido (figura 4). Los canales con trazados rectilíneos como el Arroyo de los Collados o el Reguero de San Juan aprovechan líneas de máxima pendiente hacia los puntos más deprimidos de la topografía para facilitar así la evacuación del agua.

Figura 4. Canal de drenaje y aguas encharcadas al borde del camino cerca de la laguna del Ejido, en Riocabado.

Cómo se mantiene el agua en un sustrato arenoso

En este humedal el régimen natural de inundación depende tanto de las condiciones climáticas como de la relación entre las rocas que hay en profundidad. Como si fuera el fondo impermeable de una piscina que retiene el agua, el sustrato arenoso dunar empapado sobre el que se asientan las lagunas está contenido en un vaso de rocas de baja permeabilidad: las areniscas arcillosas del Mioceno. Esta capa situada por debajo de las arenas dunares frena el drenaje rápido de las aguas estancadas en la superficie (ver fig. 1).

Las arenas dunares conforman el acuífero de Los Arenales que se sitúa entre el sur del Duero y el Sistema Central con casi una extensión de 7600 km2 (IGME, 1999) y un espesor no superior a los 20 m (Navarro et al, 1993). Tienen mayor porosidad y son más permeables que las areniscas arcillosas del Mioceno que no transmiten el agua con facilidad.

Para saber más sobre el mar de dunas de La Moraña.

Qué pasa cuando se desecan las lagunas

Al desaparecer el humedal, las plantas que aparecen en algunos sectores son halófilas (Martín et al, 2010), es decir, tienen afinidad por un sustrato salino, depositado por el agua que ha sido evaporada. Tras largos períodos sin lluvia, estos suelos arcillosos quedan cuarteados con grietas de retracción y un tapizado vegetal ya deshidratado (fig. 5 y 6). Entre la población local, estas zonas son denominadas saladares o salobrales.

Figura 5. Grietas de desecación en suelo areno-arcilloso.
Figura 6. Tapiz de algas secas en el saladar, cerca de El Oso (Ávila).

En el Geolodía 2019 veremos, además del funcionamiento de las lagunas endorreicas, cómo en la zona se abastecen de agua potable sin que ello afecte al hábitat natural de las aves en la laguna de El Oso. ¡No te lo pierdas!

Recursos docentes relacionados

RECURSO DIDÁCTICO. Temas y prácticas de hidrogeología e hidrología superficial

RECURSO DIDÁCTICO. Serie documental que repasa cuestiones fundamentales del agua subterránea

Referencias

Younger Dryas: cambios climáticos que condicionaron el paisaje abulense y la vida humana

Autor (texto y gráficos) – Javier Pérez Tarruella

Hace 18.000 años nuestro planeta se encontraba inmerso en el último máximo glacial. La nieve caída sobre los continentes no llegaba a fundirse en verano, formándose grandes acumulaciones de hielo. Y como el agua de precipitación no retornaba al océano el nivel del mar descendió hasta 125 metros por debajo del actual.

18.000 años es un parpadeo en términos geológicos. Y es que el periodo en el que le ha tocado vivir a nuestra especie (el Cuaternario) se caracteriza por un clima que cambia rápidamente (fig. 1).

Figura 1. Variación climática en los últimos 500.000 años. A grandes rasgos se diferencian 5 glaciaciones y 5 periodos interglaciales, en el último de los cuales nos encontramos ahora. En este artículo nos centraremos en la transición de la última glaciación al presente Interglacial (la ¨Última Terminación»). Datos de Lisiecki & Raymo (2005).

Estos cambios climáticos, que a grandes rasgos dan lugar a una glaciación y un periodo interglacial cada 100.000 años aproximadamente, son debidos a:

Estos factores astronómicos siempre han existido, pero el hecho de que hayamos llegado a tener casquetes de hielo en ambos polos (algo rarísimo en la Historia de la Tierra) ha hecho mucho más vulnerable y cambiante al sistema climático.

El enfriamiento súbito del Younger Dryas

Estos cambios no siempre son graduales. Si estudiamos en detalle el final de la última glaciación vemos que, cuando parecía que se retiraba definitivamente, dio un último coletazo hace unos 12.000 años con el llamado Younger Dryas (también conocido como Dryas Reciente o Joven Dryas).

Este enfriamiento súbito del clima fue el responsable de la aparición del mar de dunas de La Moraña, y es que la precipitación en Ávila disminuyó al reducirse la evaporación del Atlántico Norte por las bajas temperaturas.

Para saber más sobre el mar de dunas de La Moraña.

La hipótesis más aceptada durante mucho tiempo sobre el origen de este cambio climático fue la del vaciado del Lago Agassiz. Este lago se formó por el deshielo del casquete glaciar de Norteamérica, cerca de los Grandes Lagos, alcanzando un tamaño similar al de la Península Ibérica (figura 2). En un determinado momento este lago vertió sus aguas al Atlántico, deteniendo las corrientes oceánicas y enfriando especialmente el Atlántico Norte.

Figura 2. El Lago Agassiz y las posibles vías de vertido de sus aguas al océano.

¿Sabías que…? La película Ice Age 2 está basada en la hipótesis del Lago Agassiz. Los protagonistas viven junto a una presa de hielo que retiene el agua del deshielo acumulada en el Lago Agassiz y deben escapar antes de que se rompa y el lago se vacíe de golpe, es decir: ¡antes de que comience el Younger Dryas!

El final del Younger Dryas y el inicio de la agricultura

Como se observa en la figura 3, a pesar de que los factores astronómicos aumentaban la insolación de verano sobre el hemisferio norte, el clima se enfrió y con ello disminuyó la precipitación.

Sin embargo, más destacable que el enfriamiento del Younger Dyas fue su final. Y es que ese calentamiento y deshielo que se habían visto frustrados remontaron rápidamente, con una subida del nivel del mar de más de 40 mm/año durante unos siglos y un calentamiento de más de 7ºC en Groenlandia para ese periodo.

Figura 3. Gráfica que muestra 5.000 años de evolución climática, incluyendo el Younger Dryas. La temperatura y la precipitación en el Atlántico Norte disminuyeron en este periodo, a pesar del aumento de la insolación. El enfriamiento finalizó de golpe, provocando la fusión masiva de glaciares y un aumento brusco del nivel del mar.

Los registros arqueológicos muestran que el inicio de la agricultura y las civilizaciones complejas (el Neolítico) coincide con el final del Younger Dryas, el calentamiento que dio paso al presente Interglacial. Ahora, gracias a unos sondeos en el Mar Muerto, en el entorno de Mesopotamia o “Cuna de la Civilización”, sabemos que esta coincidencia es exacta.

Estos sondeos indican que el espesor de las capas de sedimento en la cuenca del Mar Muerto se incrementa a partir del fin del Younger Dryas. La incipiente actividad agrícola y el pastoreo provocarían un aumento de la erosión y por tanto el incremento de la sedimentación observado en la zona.

Por una parte, parece que un cambio ambiental tan brusco obligó a modificar el modo en que obteníamos el alimento; y por otra parte, la relativa estabilidad climática del Interglacial nos permitió perfeccionar la técnica hasta llegar a los tractores que hoy aran La Moraña.

Quizá sin el Younger Dryas no habría surgido este nuevo paradigma de vida de nuestra especie, o quizá hubiese aparecido 2.000 años. En cualquier caso, fue un evento que nos invita a preguntarnos cuánto han condicionado los cambios climáticos la historia de la Humanidad.

¿Sabías que…? Otra de las hipótesis utilizadas para explicar el cambio climático del Younger Dryas es el impacto de un meteorito en Groenlandia. Esta hipótesis se lanzó en 2007 y en 2018 se descubrió bajo el casquete glaciar de Groenlandia un enorme cráter de impacto de 30 km de diámetro. Los cálculos sugieren que un meteorito de 1 km impactó contra la Tierra hace entre 10.000 y 2 millones de años, de momento es el único sospechoso que tenemos como culpable cósmico del Younger Dryas. Además, se han encontrado evidencias de impacto en más de 60 yacimientos de todo el planeta. Sin embargo, estos cambios tan abruptos son habituales en el transcurso de los periodos glaciales, y en su mayoría son explicados por la propia dinámica del sistema climático sometido a la vulnerabilidad de los glaciares.

Referencias

Un mar de dunas en La Moraña

Autor (texto, gráficos e imágenes) – Gabriel Castilla Cañamero

En aquellas regiones del planeta donde el ambiente es tan seco que la vegetación apenas puede subsistir, los suelos quedan desprotegidos y expuestos a la acción del viento. El viento actúa arrancando del suelo materiales sueltos, principalmente arena y limo, que pueden viajar largas distancias. Cuando el viento se frena, bien porque disminuye su intensidad o bien porque se topa con un obstáculo, entonces se forma una duna. Una duna es, en definitiva, un montículo de arena que es transportado por el viento.

Figura 1. Esquema de una duna.

Aunque solemos asociar las dunas con lugares cálidos como el desierto del Sahara, lo cierto es que también son frecuentes, aunque menos conocidas, las dunas en desiertos fríos como el Gobi o la Antártida. De hecho las dunas son tan frecuentes en ambientes fríos que se han identificado hasta en las llanuras heladas de Marte y Plutón.

Tipos de dunas

El tamaño y la forma de una duna dependen de la dirección y velocidad del viento, la disponibilidad de arena y la cantidad de vegetación presente. En base a estos factores podemos clasificar las dunas en cuatro tipos:

  1. Las de tipo barján tienen forma de media luna y sus cuernos apuntan en dirección al viento.
  2. Las de tipo seif presentan crestas rectas que se disponen longitudinalmente siguiendo la dirección del viento dominante.
  3. Las de tipo transversal son montículos alargados con crestas onduladas perpendiculares a la dirección del viento.
  4. Y por último las de tipo parabólico, que tienen forma de U con sus brazos apuntando en sentido opuesto al viento.
Figura 2. Principales tipos de dunas.

Dunas parabólicas de La Moraña

Las dunas parabólicas son frecuentes allí donde el terreno está parcialmente cubierto por vegetación que fija la arena de los brazos dejando que la parte central avance, siendo propias de zonas áridas frías en las que existe una cubierta vegetal. Este tipo de dunas son las que encontramos bajo los pinares de La Moraña abulense.

Como el viento es un fluido (similar a un río pero de aire) selecciona las partículas que puede mover según su tamaño y peso. Los granos de arena son arrancados del sustrato y desplazados a saltos (se dice que se desplaza por saltación) cerca del suelo, mientras que las partículas más livianas pueden ser elevadas varios metros formando nubes de polvo. El proceso por el cual el sustrato va perdiendo su material más fino y dejando al descubierto los fragmentos rocosos de mayor tamaño se conoce como deflacción.

Figura 3. Superficie erosionada por deflacción (izquierda) y canto pulido por abrasión (derecha) cerca de El Oso.

El resultado es un pavimento de rocas pulidas por la abrasión que ejerce el continuo piqueteo de los granos de arena que impactan sobre ellas. En aquellos lugares donde la deflacción es especialmente fuerte (normalmente en la cara de barlovento de las dunas parabólicas) se pueden formar depresiones que ocasionalmente pueden contener agua.

Bajo los pinares que conforman el paisaje de La Moraña abulense encontramos los restos de lo que en su día fue un extenso mar de arena cuyos restos aún se extienden por las provincias de Valladolid y Segovia. En esta comarca encontramos dunas parabólicas que se formaron por vientos provenientes del Oeste, así como dunas parabólicas semicirculares abiertas que tienen su origen en vientos procedentes del Suroeste. Allí donde la deflacción fue más intensa aún se aprecian depresiones con forma de artesa que ocasionalmente pueden retener una lámina de agua de poca profundidad (la laguna de El Ejido, en el término municipal de Riocabado, es un claro ejemplo – Figura 4).

Figura 4. Campo de dunas parabólicas al Norte de El Oso.

Cuándo se formaron las dunas

Las dataciones mediante termoluminiscencia (TL) señalan que este mar de arena se formó hace unos 11.600 años, coincidiendo con el evento de enfriamiento climático global conocido como Joven Dryas, también conocido como Dryas Reciente o Younger Dryas en inglés.

¿Sabías que…? Este nombre hace referencia a la planta de flor Dryas octopetala que en la actualidad crece en la rocalla de zonas árticas pero que en aquella época se podía encontrar en la fría y extensa tundra que cubrió toda Europa durante la última glaciación.

¿Qué desencadenó el cambio climático que hace 11.600 años transformó La Moraña en un mar de dunas? ¿Cómo era aquel paisaje y qué animales y plantas lo habitaban? Estas son algunas de las preguntas que intentaremos responder en el próximo #Geolodía19.

Referencias

Herramientas para descubrir los cinturones de dunas de Ávila

Autor – Javier Elez

Con la llegada de la revolución digital todos tenemos más herramientas para explorar el mundo, también los geólogos. Desde el punto de vista de la geología, temática principal de este blog, queremos destacar dos que nos permiten, por ejemplo, descubrir que el norte de Ávila está cubierta de dunas.

Satélites y Sistemas de Información Geográfica (SIG)

En primer lugar, las imágenes y datos de todo tipo obtenidas de nuestro planeta por los diversos satélites existentes. Y en segundo lugar los programas informáticos que nos permiten manejar estos datos, tanto consultarlos y visualizarlos como operar con ellos, y que se denominan de forma genérica Sistemas de Información Geográfica (SIG).

Para los que no lo veáis claro, echad un vistazo a Google Earth y pensad en cómo es posible imaginarse el planeta con este detalle sin tener las herramientas adecuadas… Difícil, ¿verdad?

Hoy queremos poneros un ejemplo de la aplicación de las no tan nuevas ya tecnologías de satélite al conocimiento de nuestro planeta.

Las dunas de la Moraña

En Ávila existen dunas con unas formas súper delicadas conservadas prácticamente intactas desde hace unos 11.500 años. ¿Lo sabías?

Estos depósitos eólicos desérticos se agrupan en cinturones de dunas que tienen longitudes kilométricas y formas muy elaboradas. Como todas las dunas, eran movidas por los vientos dominantes en su momento. Pero, ¿dónde están ahora? Pues escondidas en el paisaje.

Para desenmascararlas necesitamos de los datos que nos proporcionan los satélites y un poco de software.

  • Los datos que vamos a utilizar son datos de elevación (altimetría) de alta resolución obtenidos mediante tecnología LIDAR. Los tenemos de forma gratuita para todo el territorio nacional en el Centro Nacional de Información Geográfica.
  • Para cocinar estos datos utilizamos un Sistema de Información Geográfica (SIG), que es el software que nos va a permitir realizar cálculos con los datos de elevación. El cocinado es sencillo: calculamos lo que se denomina modelo de elevaciones sombreado, que es una simulación de las sombras que haría el sol sobre el modelo del terreno que suponen los datos de elevación. El resultado es espectacular, mira la Figura 1.
Figura  1. Desliza la barra para ver el modelo sombreado a la izquierda y la fotografía de satélite a la derecha. Verás cómo las dunas solo se ven a simple vista con el primero. La zona es la cabecera del rio Arevalillo, al norte de El Oso, y abarca entre otras a la localidad de Cabizuela.

Si hacemos zoom en las dos dunas bien definidas abajo a la izquierda del cinturón veremos esto:

Figura 2. Las bonitas dunas de Cabizuela con más detalle. La elevación que tienen sobre el fondo prácticamente plano llega a ser de unos 12 m máximo.
Figura 3. Foto en el campo y desde el sur de las mismas dunas de Cabizuela. Encima de ellas quedan las zonas de pinares, donde no se puede cultivar nada más. Como ves, a simple vista no son nada evidentes.

Aquí va un video 3D realizado a partir de los datos del modelo de elevación junto con el modelo de elevaciones sombreado. En él hemos exagerado en la vertical para que se vea mejor el relieve, otro truco que se puede hacer con estos datos.

Estos cinturones de dunas no solo se encuentran aquí en la Moraña abulense, sino que se extienden a lo largo de toda la zona sur de la meseta castellano-leonesa y se reconocen fácilmente también en Segovia (Tierra de Pinares) y Valladolid.

Busca tú las dunas con Iberprix

Si quieres buscar tú mism@ las dunas, te dejamos aquí un visor online muy sencillo que te ahorrará todo el trabajo de manipulación de datos.

Se llama Iberpix, es un producto gratuito que ofrece el Instituto Geográfico Nacional de España y es extremadamente sencillo de usar.

Abajo a la derecha encontráis un botón rojo con un símbolo de «capas», pincháis y os aparecen pestañas.

Desmarca todas y marca solo la de “Relieve” y podrás ver un modelo de elevaciones sombreado de toda España.

Dadle al zoom ya que tiene muy buena resolución…

En próximos artículos os contamos cómo se forman las dunas y qué información nos aportan sobre el clima y el paisaje en el que se formaron, justo aquí, en la Moraña abulense.

¿Te atreves a decir desde dónde soplaba el viento dominante hace 11.500 años…?

Actividades docentes relacionadas

HERRAMIENTA. Observación de la superficie de España mediante Iberpix

HERRAMIENTA. Herramienta de software QGIS

PRÁCTICA. Análisis geomorfológico mediante Iberpix 4 del Instituto Geográfico Nacional

RECURSO DIDÁCTICO. Web de descarga gratuita de los datos geográficos necesarios para cualquier proyecto

Reconciliando la tradición oral de las «vejigas» con la geología y el estudio de los riesgos naturales I

Autor – Javier Élez

Muchos habréis escuchado el relato de nuestros mayores cuando contaban que había «vejigas» llenas de agua en el interior de la montaña que «explotaban» y movían enormes cantidades de agua y piedras, en ocasiones causando daños a poblaciones y propiedades.

Sin embargo, y tal como apunta Alberto Martín en el comentario que nos hizo llegar en Facebook, la montaña -el Sistema Central en la zona de Ávila- está constituida fundamentalmente por granito. El granito es un material muy poco dado a generar grandes cavidades en su interior, en las condiciones atmosféricas actuales se disuelve muy despacio. Es difícil entender cómo en una roca fundamentalmente impermeable se puede acumular agua en grandes cantidades y que por algún tipo de sobrepresión termine explotando y provocando una inundación.

Desde la geología podemos contaros algunos de los fenómenos naturales que suceden en las zonas de alta montaña desde un punto de vista científico y que esperamos que reconcilie esta tradición oral de las «vejigas» con la ciencia moderna.

Este intento de reconciliación viene de lejos. Los naturalistas trataron de explicar ya hace años estos fenómenos.

Nicolás de la Fuente Arrimadas escribe en 1926 en su “Fisiografía e historia del Barco de Ávila”:

“Obsérvase también en estas sierras otro importante fenómeno de destrucción: las vejigas o vejigones. Aparecen después de grandes nevadas y lluvias, las cuales se infiltran entre las rocas que tienen cubiertas sus hoquedades sólo por terrenos modernos; se depositan allí, van lentamente socavando el bloque granítico más inferior a estas aguas infiltradas, y por su gran peso, y haciendo mucha presión, rompen, lanzan a lo mejor en un día claro, todo el bloque, produciendo un estampido que las gentes del país distinguen bien del trueno; precipitanse las aguas desde la cima o sitios de la vejiga y todo lo destruyen, arrancando peñascos, árboles y prados, y dejando barrancadas como la que se observa al N. E. del Tormal o Cabeza del Muladar. Resulta una gran hoquedad en el sitio en que se rompe la vejiga, socavada desigualmente en el granito, hasta de 90 metros de profundidad, por acumularse en algunas, como en el vejigon de Amar de la Torre (Escorial) sus 300 000 quintales de agua, y arrastrando peñas de más de 400 quintales de peso”.

Para dimensionar bien lo que describe Nicolás de la Fuente hay que saber que:

  • Un quintal español equivale a prácticamente 46 kg. Por tanto, 300.000 quintales de agua equivalen a 13.802 toneladas de agua.
  • Además, una peña de 400 quintales equivale a 18,4 toneladas y esto son unos 7 m3 de granito más o menos.

Poca broma…

Las «vejigas» de las que nos habla la tradición oral no son cavidades de agua en el interior de la montaña que explotan. Sin embargo, tienen una explicación relativamente sencilla y como veréis bastante lógica desde el punto de vista de la Geología y en el contexto de dinámicas de alta montaña.

Cómo se desencadena

Una sucesión de acontecimientos tipo (inspirada en los trabajos de Bodoque y colaboradores de 2007 y Villanueva y colaboradores de 2011), sería:

1.Llueve de forma muy importante y rápida (o nieva) sobre las partes más altas de la montaña. Se produce lo que se denomina un evento torrencial de elevada magnitud.

2. En las zonas de mayor pendiente y donde el granito no está descarnado, la ladera de la montaña todavía puede tener una cubierta compuesta por una cierta vegetación sobre un manto de alteración de bastante espesor y que suele incorporar bloques grandes de granito, a veces con un canchal encima. Es una zona muy porosa y aquí es donde el agua se infiltra y se acumula.

3. La alta pendiente y el peso adicional del agua hacen que una parte de la ladera de la montaña se desequilibre gravitacionalmente y se deslice cuesta abajo. La masa deslizada está compuesta fundamentalmente por el manto de alteración junto con un volumen importante de agua infiltrada.

4. La masa de material que se desliza es por tanto una amalgama de agua y rocas. Además, el agua que contiene hace de lubricante para que el manto de alteración deslice sobre el granito menos alterado que se encuentra por debajo. Como la pendiente es muy alta, el material deslizado incrementa mucho su velocidad y se comporta como un flujo hiperconcentrado (flujo no newtoniano en términos físicos), una pasta de barro, agua y rocas en la que la mayor parte son los sólidos.

5. El material cae cuesta abajo de forma muy rápida, encauzándose en alguno de los regueros existentes y arrasando todo a su paso.

6. Cuando la pendiente disminuye ladera abajo, el flujo pierde velocidad y termina parándose. Los bloques mayores se quedan aquí, lo que incluye a los de «400 quintales de peso». Es en ese momento cuando el agua empieza a escapar de la masa deslizada. La cantidad de agua es muy importante y aunque se ha frenado por la pérdida de pendiente sigue teniendo bastante velocidad con lo que arrastra la arena y el barro (los materiales más ligeros) y continúa avanzando cuesta abajo arrasando de nuevo todo a su paso, como los árboles que va encontrando.

7. Este volumen de agua enorme termina inundando las zonas más bajas, arrastrando troncos de árboles y moviéndose hasta encontrar un cauce mayor aguas abajo en donde encauzarse.

Animación simplificada del funcionamiento de una «vejiga» o flujo hiperconcentrado en relación con deslizamientos gravitacionales.

Para saber más sobre cómo se produce la alteración del granito: Las formas del granito: el berrocal

La tradición y la explicación

Al final un deslizamiento en la zona alta provoca una inundación en las zonas más bajas de la montaña.

Comparando con la tradición oral de las «vejigas», podemos explicar la cantidad de rocas que se mueven y su gran tamaño, ya que caen cuesta abajo por zonas de mucha pendiente. También la marca clara del lugar donde «revienta» la «vejiga», que es donde queda la cicatriz del deslizamiento gravitacional inicial. El estampido sería el ruido de los bloques de granito de gran tamaño golpeándose entre ellos y contra el suelo mientras caen cuesta abajo a toda velocidad.

Este proceso también explica una característica observada por los habitantes de la Sierra y es que el fenómeno de las «vejigas» a veces se produce incluso un par de días después de las lluvias fuertes. El agua acumulada durante la lluvia desequilibra una zona en la ladera pero ésta, según el caso, puede llegar a tardar un tiempo en caerse.

Para te hagas una idea, hay deslizamientos gravitacionales de ladera disparados por un terremoto que tardan semanas y hasta meses en moverse después de que hayan sido desequilibrados por la energía sísmica liberada.

¿Conoces casos de «vejigas»?

Para que todos podamos conocer un poco más sobre este fenómeno os invitamos a que nos contéis esas tradiciones orales de las que hablamos en este artículo.

SEGUNDA PARTE. Continúa leyendo la segunda parte de este artículo, donde se explica el caso de Venero Claro, en Navaluenga, y otros casos documentados: Reconciliando la tradición oral de las «vejigas» con la geología y el estudio de los riesgos naturales II: el caso de Venero Claro

Recursos utilizados

Reconciliando la tradición oral de las «vejigas» II: Venero Claro y otros casos

Autor – Javier Elez

Para contextualizar estos casos es necesario leer la primera parte de esteartículo sobre qué son las «vejigas» y su explicación científica: Reconciliando la tradición oral de las «vejigas» con la geología y el estudio de los riesgos naturales I (PRIMERA PARTE)

El caso de Venero Claro en Navaluenga

De todo el proceso geológico sucedido en Venero Claro tenemos registro fotográfico y evaluación científica moderna gracias a Andrés Díez Herrero, geólogo e investigador del área de Riesgos Geológicos del Instituto Geológico y Minero que junto con un equipo multidisciplinar de colaboradores han caracterizado y estudiado uno de estos flujos hiperconcentrados en relación con movimientos de ladera a los que la tradición oral denomina «vejigas».

Este caso sucedió en 1997 en el arroyo Cabrera, junto a la localidad abulense de Navaluenga y a día de hoy los trabajos publicados sobre este evento son considerados de referencia a nivel internacional en el estudio de los Riesgos Naturales relacionados con inundaciones súbitas.

Secuencia de fotografías de 1997 tomadas por Andrés Díez justo después de la avenida

Vista general de la cuenca fluvial del arroyo Cabrera en la Sierra del Valle (Sierra de Gredos oriental). La parte más alta está a 1923 m de altura y la parte más baja, donde desemboca el arroyo Cabrera en el río Alberche, a 735 m. La línea en color claro evidencia el lugar por el que se encauzó el flujo hiperconcentrado. El deslizamiento inicial se produjo en la parte más alta. Andrés Díez Herrero.

Fotografía 1: Vista general de la cuenca fluvial del arroyo Cabrera en la Sierra del Valle (Sierra de Gredos oriental). La parte más alta está a 1923 m de altura y la parte más baja, donde desemboca el arroyo Cabrera en el río Alberche, a 735 m. La línea en color claro evidencia el lugar por el que se encauzó el flujo hiperconcentrado. El deslizamiento inicial se produjo en la parte más alta.

Cicatriz del deslizamiento en primer plano. El lugar donde se inicia el deslizamiento inicial y perspectiva hacia abajo en la que se ve también en colores claros el lugar por el que se encauzó el flujo hiperconcentrado. Imagen de Andrés Díez Herrero.

Fotografía 2: Cicatriz del deslizamiento en primer plano. El lugar donde se inicia el deslizamiento inicial y perspectiva hacia abajo en la que se ve también en colores claros el lugar por el que se encauzó el flujo hiperconcentrado.

Aspecto de la zona arrasada por la avenida. Prácticamente toda la vegetación de la rivera, en un ancho muy reducido, ha sido completamente desmantelada.  Imagen de Andrés Díez Herrero.

Fotografía 3: Aspecto de la zona arrasada por la avenida. Prácticamente toda la vegetación de la rivera, en un ancho muy reducido, ha sido completamente desmantelada.

Fotografías de los depósito con los bloques mayores en una zona con menos pendiente. Atención a la persona que hace de escala en las fotos, que da una idea del diámetro de varios metros de algunos bloques. Imagen de Andrés Díez Herrero.

Fotografía 4: Fotografías de los depósito con los bloques mayores en una zona con menos pendiente. Atención a la persona que hace de escala en las fotos, que da una idea del diámetro de varios metros de algunos bloques.

Panorámica, arriba a la izquierda la zona en donde se depositaron los bloques mayores, abajo y a la derecha el lugar por donde se inició la inundación. Imagen de Andrés Díez Herrero.

Fotografía 5: Panorámica, arriba a la izquierda la zona en donde se depositaron los bloques mayores, abajo y a la derecha el lugar por donde se inició la inundación.

Aspecto del puente de Trampalones tras la riada, un poco aguas abajo del punto de la fotografía 4. Los troncos son de árboles de tamaño considerable. Y el puente es lo que está debajo y detrás del montón de árboles…  Imagen de Andrés Díez Herrero.

Fotografía 6: Aspecto del puente de Trampalones tras la riada, un poco aguas abajo del punto de la fotografía 4. Los troncos son de árboles de tamaño considerable. Y el puente es lo que está debajo y detrás del montón de árboles…

Depósito de árboles arrastrados por la riada en el puente de la Colonia de Venero Claro, ya cerca de la desembocadura con el río Alberche. Imagen de Andrés Díez Herrero

Fotografía 7: Depósito de árboles arrastrados por la riada en el puente de la Colonia de Venero Claro, ya cerca de la desembocadura con el río Alberche.

Para comprender bien el fenómeno hay que hacer un esfuerzo por visualizar que hay más de un kilómetro de desnivel desde el punto en el que se inicia el desprendimiento y la desembocadura del arroyo en el río Alberche. Todo ese diferencial de cota (energía potencial) hace que la masa deslizada tenga un nivel de energía enorme.

Además, al encauzarse cuesta abajo por uno de los valles existentes concentra su actividad en una extensión espacial muy limitada a lo ancho del valle. La zona denudada (erosionada) es muy larga como se aprecia en la fotografía 1, pero tiene pocas decenas de metros de ancho: el Venero Claro.

Otros casos históricos

Además del evento de arroyo Cabrera en Navaluenga, en la literatura específica sobre el tema hay otras de estas “vejigas” estudiadas.

Una de ellas sucedió en el arroyo de Jubaguerra en enero de 1996 (en el valle del Jerte en Cáceres; publicado por Pedraza y colaboradores en 2004).

Por tanto, hasta el momento tendríamos identificados cuatro de estos fenómenos en el Sistema Central sumando los dos que describe Nicolás de la Fuente Arrimadas en su “Fisiografía e historia del Barco de Ávila” (ver primera parte de este artículo):

  • NE del Tormal o Cabeza del Muladar, muy cerca de Bohoyo (Ávila), previo a 1926.
  • Amar de la Torre, en El Escorial (Mádrid), previo a 1926.
  • En el Arroyo Jubaguerra, ya en el valle del Jerte (Cáceres), en 1996.
  • Arroyo Cabrera, en Navaluenga (Ávila), en 1997.

Estos cuatro no pueden ser los únicos. Este fenómeno se debe haber producido a lo largo de todo el Sistema Central  de forma relativamente habitual.

Por ejemplo, muy cerca del pueblo de El Raso, en Ávila, encontramos un Arroyo de la Vejiga. También en la localidad de Miraflores de la Sierra, ya en la provincia de Madrid pero igualmente en una zona de montaña con fuerte desnivel, se encuentra el Arroyo de la Vejiga, que justo desemboca en el pueblo. Estos topónimos no pueden ser casuales aunque es posible que sean tan antiguos que ya nadie recuerde por qué se les puso ese nombre.

¿Conoces casos de «vejigas»?

Para que todos podamos conocer un poco más sobre este fenómeno os invitamos a que nos contéis esas tradiciones orales de las que hablamos en la primera parte de este artículo.

Os pedimos que nos hagáis participes a todos de las historias sobre las vejigas que cuentan vuestros mayores o que oísteis de pequeños para poder recopilarlas y que no se pierdan y pueda quedar un pequeño registro escrito sobre ellas.

Riada de Navalmoral de la Sierra 1929

Carlos del Peso nos envía la noticia publicada de una vejiga que causó cuatro muertos hacia 1929 en Navalmoral de la Sierra.

Recursos utilizados

Geomorfología del Valle Amblés

Textos y gráficos: Javier Élez – Imágenes: Gabriel Castilla y Javier Élez

El valle de Amblés aparece como una gran llanura elevada (unos 1.100 metros sobre el nivel del mar), de forma alargada y relieve muy plano que contrasta con las cumbres circundantes: la Sierra de la Paramera al sur y la de Ávila al norte. Para explicar este contraste tenemos que saber que escondida en el valle se encuentra una cuenca sedimentaria poco conocida, la cuenca de Amblés. Te la presentamos…

20180407_175126_Richtone(HDR)
Vista parcial del valle de Amblés desde el cerro de Ulaca con la Sierra de Ávila al fondo.

La cuenca sedimentaria de Amblés

Una cuenca sedimentaria es una depresión en la corteza terrestre que tiene un origen tectónico y en la que se acumulan sedimentos.

Los límites de la cuenca sedimentaria de Amblés vienen definidos por un conjunto de fallas bastante complejo que se localizan en los cambios de relieve tan importantes que encontramos entre el valle plano y las alineaciones montañosas al norte y al sur.

panoramica
Panorámica de parte del Valle de Amblés visto desde el cerro de Ulaca, con la Sierra de Ávila al fondo.

Fracturación y paisaje: fallas y diaclasas

En la llanura encontramos sedimentos (fundamentalmente arcillas y arcosas) con relieves prácticamente planos que están en contacto por fallas con los granitos, más antiguos y ligeramente sobreelevados sobre el fondo del valle y que dan formas de erosión con más aristas y más relieve. La zona donde acaban los granitos y empiezan los sedimentos sería el límite de la cuenca y el lugar donde se encuentran las fallas.

La cuenca de Amblés estuvo activa durante parte del Terciaro. Mientras las fallas iban generando hueco, este se rellenaba con los sedimentos provenientes de las sierras adyacentes. Cuando las fallas dejaron de actuar, el hueco (la depresión tectónica) se rellenó completamente. El relieve plano es el testigo de ese proceso de relleno completo que denominamos colmatación.

Corte Cuenca de Amblés
Corte geológico Norte-Sur esquemático de la cuenca de Amblés y la sierra de la Paramera.

A día de hoy, y como no hay más hueco que rellenar, los sedimentos aportados lateralmente desde las sierras de la Paramera y Ávila son arrastrados por el río Adaja.

Las estimaciones realizadas a partir de estudios geofísicos (Garzón Heydt et al ., 1981) apuntan a que el espesor del relleno sedimentario sería cercano a los 1.000 metros.

Para saber más

Garzón Heydt, G., Ubanell, A.G. y Rosales, F. (1981). Morfoestructura y sedimentación terciarias en el valle de Amblés (Sistema Central Español). Cuadernos de Geología Ibérica 7, p. 655-665.

Arqueoastronomía: el paisaje como recurso en el Castro de Ulaca

Texto e imágenes – Gabriel Castilla Cañamero

Los geólogos somos naturalistas y nuestro trabajo consiste en reconstruir la historia de la Tierra y explorar los recursos que nos ofrece. Para ello estudiamos tanto el registro geológico como las huellas que la erosión y la tectónica imprimen en el paisaje. Los geólogos somos, en definitiva, contadores de historias; relatos que tratan sobre cómo era la naturaleza en el pasado y cómo se comporta en la actualidad.

Un recurso natural es todo aquel bien material (agua, rocas, suelo) y servicio (cobijo, transporte) que proporciona la naturaleza y contribuye tanto a la supervivencia como al desarrollo de una sociedad. La naturaleza se transforma en recurso por medio de una valoración cultural o económica que realiza una comunidad. Así, por ejemplo, hoy consideramos que un paisaje puede ser un recurso natural cuando este posee valores educativos o estéticos que atraen el turismo y potencian la economía de una región.

El valor del paisaje en la antigüedad

Pero, ¿qué valor podía tener un paisaje similar en la antigüedad? Los paisajes ofrecen puntos de referencia que permiten establecer vínculos entre las comunidades humanas, el entorno natural que habitan y el cosmos.

La observación de la salida y puesta del Sol, la Luna o las estrellas más brillantes respecto a puntos de referencia en el horizonte (montañas, rocas, valles, oquedades), permitieron a las sociedades antiguas establecer calendarios con los que ajustar la explotación de los recursos naturales del entorno a los ciclos biológicos vinculados a las estaciones.

Hasta no hace mucho tiempo nuestros hábitos alimenticios estaban condicionados por la reproducción o migración de ciertos animales, la floración de plantas comestibles y la cantidad de agua disponible en ríos y manantiales. La explotación de los recursos energéticos dependían de las oscilaciones en la temperatura ambiental, la existencia de material combustible y la cantidad de horas de luz del día. El transporte terrestre, fluvial y marítimo estaba vinculado a la dirección e intensidad de los vientos, las corrientes y la temperie. Además, para viajar largas distancias era necesario aprender a orientarse según la posición de ciertas estrellas y el Sol en el horizonte.

Fue así que la posición que ocupan los astros respecto a puntos de referencia del paisaje se convirtió en un recurso natural esencial para el bienestar de los seres humanos en el pasado.

Arqueometría y arqueoastronomía

La Arqueometría es un campo interdisciplinar entre las Ciencias Naturales y las Ciencias Humanas, que tiene como objetivo desarrollar técnicas y métodos especializados para poderlos aplicar a obtener información sobre aspectos culturales, históricos o medioambientales del pasado (Maniatis 2002).

Una de estas disciplinas es la Arqueoastronomía, el campo de investigación encargado de estudiar la manera en que las sociedades de épocas pasadas se relacionaban con el cosmos, y su objetivo último es obtener datos que después serán usados para fundamentar hipótesis sobre las relaciones que las antiguas sociedades tuvieron con la bóveda celeste y con el paisaje circundante (Cerdeño et al, 2006). La recogida de estos datos requiere la participación de especialistas de diversas disciplinas: físicos, topógrafos, matemáticos, arqueólogos y geólogos, entre otros.

Arqueoastronomía en el Castro de Ulaca

En el caso del Castro de Ulaca estos estudios se han centrado en dos aspectos fundamentales:

  1. Explorar y determinar la orientación de estructuras arquitectónicas respecto a los ortos y ocasos de astros de especial interés.
  2. El análisis del horizonte que rodea el castro para comprobar la existencia de marcadores de algún evento astronómico.

En investigaciones similares (Mejías et al, 2015) el papel de los geólogos ha consistido en:

  • Aportar información sobre cómo era el horizonte del paisaje y el medio ambiente en la época en que el castro fue habitado.
  • Valorar el origen natural o artificial (acción antrópica) de ciertos rasgos que pueden ser de especial interés para las orientaciones (como piedras caballeras, fracturas).
  • Estudiar las rocas y minerales empleados en la construcción de los edificios más importantes, lo que nos dará información sobre el estado de conservación, posibles modificaciones, datación y singularidad de las edificaciones o estructuras que son motivo de estudio.

El lugar de mayor interés arqueoastronómico en Ulaca es el altar de sacrificios, por tratarse del centro social y religioso del castro (Figura 1).

Figura 1
Figura 1. Altar de Ulaca visto desde la piedra caballera conocida como Canto de la Mula.

El calendario que se emplea como referencia para el mundo celta, incluidos los vetones, es el encontrado en Coligny (Francia) en 1897, fechado hacia el siglo II d. C. (Cossard, 2010). Se trata de un calendario lunisolar que divide el año en dos partes:

  1. La oscuridad, ritualizada en la festividad de Samhain, que señalaba el comienzo del año a mediados del otoño (1 de noviembre).
  2. La luz, ritualizada en mitad de la primavera en la festividad de Beltaine (1 de mayo).

Un exhaustivo estudio realizado por Manuel Pérez Gutiérrez (2010) ha puesto de manifiesto la existencia de múltiples alineaciones de interés entre el altar y el horizonte del castro (Figura 2).

Figura 2
Figura 2. Orientación del altar hacia la Sierra de la Paramera.

Entre ellas caben destacar las relacionadas con los principales relieves de la Sierra de la Paramera (Figura 3 y 5) y con una piedra caballera próxima conocida como «Canto de la Mula» (Figura 4 y 5).

Figura 3
Figura 3. Detalle de los principales relieves de la Sierra de la Paramera. Durante el solsticio de verano, momento del año con mayor número de horas de luz, la Luna alcanza su mínima altura sobre el horizonte (apenas 5º) a su paso sobre el Risco del Sol.
Figura 4
Figura 4. Piedra caballera conocida como Canto de la Mula vista desde el altar. El Sol se pone tras ella hacia el 10 de mayo (festividad celta de Beltaine), y la Luna hace lo mismo coincidiendo con el solsticio de invierno, el día del año con menos horas de luz.
Figura 5
Figura 5. Principales alineaciones entre el altar de Ulaca y el paisaje circundante

En ambos casos se han hallado evidencias de alineaciones vinculadas tanto al seguimiento de las principales festividades celtas como a la observación de los solsticios de invierno y verano por parte de los habitantes de Ulaca hace más de 2.000 años.

Para saber más

Pilancones Vs Marmitas de gigante

Textos y fotografías de Jaime Cuevas

Las formas circulares que se encuentran con frecuencia en las zonas altas de las regiones graníticas son los pilancones y pueden ser confundidos con las marmitas de gigante, aunque son estructuras que tienen orígenes distintos.

pilancones
Conjunto de pilancones en la parte alta de un domo granítico.

Tal y como explicábamos en este artículo previo, las marmitas son formas de erosión asociadas a canales fluviales, con una elevada relación profundidad/anchura y fondos curvos o cónicos. Por el contrario, los pilancones suelen tener relaciones de profundidad/anchura menores y además mostrar fondos generalmente planos. De hecho, los pilancones están más cerca de parecerse a una paella (o paellera) que a un perol o marmita.

Formación inicial: irregularidades

Al contrario que en el caso de las marmitas de gigante, que hay que buscarlas en los valles, para la formación de los pilancones se necesita una superficie horizontal que esté bien expuesta a los agentes meteorológicos (los altos de los lanchares o los domos graníticos son zonas ideales), donde el agua puede quedar retenida en pequeñas irregularidades de la roca horizontal.

irregularidades
Irregularidades sobre una superficie horizontal del granito, suficientes para retener un poco de agua y comenzar el proceso de formación de los pilancones.

Profundización: meteorización química

Una vez retenida el agua, comienzan a actuar procesos de meteorización química que van haciendo más profunda y ancha la irregularidad. Esta situación genera un sistema de realimentación, ya que a mayor tamaño más agua es retenida y, por tanto, habrá mayor meteorización química.

En el caso de los granitos, esta meteorización afecta con mayor intensidad a las micas y feldespatos, creando así un residuo de granos de cuarzo que quedarán retenidos como sedimento en el fondo del pilancón.

sedimentos
Sedimento de tamaño arena retenido en el fondo de un pilancón. Este sedimento procede del mismo pilancón y es generado por los procesos de meteorización que afectan al granito.

Esta primera fase continúa hasta que se alcanza un tamaño en el que los granos de sedimento puedan moverse libremente por el fondo del pilancón incipiente, dando lugar a la aparición de los procesos de meteorización física.

Crecimiento de la estructura: meteorización física

Con ayuda de las lluvias intensas que remueven el fondo arenoso comienza un efecto de «molienda» (abrasión mecánica) que acelera el crecimiento de la estructura.

Hay que destacar también el papel de la gelifracción, ya que la congelación de la lámina de agua retenida en los pilancones produce un notable efecto de micro-roturas en las paredes que facilita la incorporación de granos de sedimento al fondo, así como el aumento del diámetro de la estructura.

gelifraccion
Modelo detallado del efecto de la gelifracción o crioclastia sobre paredes cuando se congela la lámina de agua retenida en el pilancón. Autor: David Domínguez Villar en Análisis morfométrico de pilancones: consideraciones genéticas, evolutivas y paleoambientales (2007).

Estos procesos de meteorización física justifican los fondos planos de los pilancones y el hecho de que sean generalmente más anchos que profundos, llegando a unirse unos con otros para formar geometrías muy llamativas.

pilancones-unidos
Pareja de pilancones que se han unido debido a su crecimiento horizontal preferente.

Otra diferencia importante entre las marmitas de gigante y los pilancones, es que las primeras necesitan tiempos de formación muy cortos (ya que se asocian a regímenes de aguas turbulentas de mucha energía), mientras que para la formación de los pilancones los procesos son mucho más lentos y en ocasiones suelen hacer falta varios miles de años.

pilancon-marmita