Archivo de la categoría: Métodos de datación

Diversos métodos de datación, en qué se fundamentan y qué aplicaciones tienen.

Dataciones uranio-plomo con circones: una ventana al pasado remoto de la Tierra

Autores – Gabriel Castilla Cañamero, Iván Martín-Méndez y Enrique Merino Martínez

Allí donde se manifiesta el mineral, la eternidad habla.

Michel Onfray. Estética del Polo Norte, 2015

A finales de febrero de 1896, el químico Henri Becquerel realizó un experimento curioso: colocó un paquete de sales de uranio junto a una placa fotográfica envuelta en papel negro y las guardó en el cajón de un escritorio. Días después, descubrió que las sales habían dejado unas manchas borrosas en la placa, como si algún tipo de rayo invisible capaz de atravesar los objetos hubiera dejado su huella (Figura 1). Intrigado por la naturaleza de este fenómeno, compartió el hallazgo con una investigadora de doctorado de origen polaco llamada Marie. En junio de 1903, Marie defendió su tesis doctoral titulada: Investigaciones sobre sustancias radiactivas, en la que demostraba que ciertos elementos, como el uranio, emiten energía de forma constante. Pocos meses después, Bequerel, Marie y su esposo Pierre Curie fueron galardonados con el Premio Nobel de Física por el descubrimiento de la radiactividad espontánea.

Figura 1. Plancha fotográfica de Henri Becquerel que fue expuesta a la radiación emitida por el uranio a finales de febrero de 1896. Este tipo de descubrimiento, totalmente casual pero de gran valor científico, se conoce como serendipia. En la imagen se aprecia la forma de una cruz de Malta que se encontraba guardada en el mismo cajón, entre la placa fotográfica y las sales de uranio. Fuente: Archivo Becquerel/Wikipedia Commons.

Apenas un año después, el físico Ernest Rutherford descubrió que los elementos químicos radiactivos se transforman en otros a lo largo del tiempo: el uranio (U), por ejemplo, se convierte lentamente en plomo (Pb). Esta transformación, denominada desintegración radiactiva, ocurre a velocidad constante y predecible (Figura 2). Rutherford sugirió al químico Bertram Boltwood una idea revolucionaria: la posibilidad de usar esta descomposición radiactiva para calcular la edad de una roca midiendo la proporción de los dos elementos presentes en ella. En 1907, Boltwood aplicó por primera vez este principio al binomio uranio-plomo en una serie de muestras de rocas y estimó que algunas de ellas podían tener hasta 2.200 millones de años de antigüedad. Así, en apenas una década, el estudio de la radiactividad dio origen al método de datación radiométrica y permitió cuantificar el tiempo geológico con precisión numérica.

La imagen muestra una gráfica con fondo amarillo claro que representa cómo cambia la cantidad de un elemento radiactivo con el tiempo. El eje vertical indica la velocidad del proceso, mientras que el eje horizontal representa el tiempo.

Sobre la gráfica hay una curva descendente de color naranja, que empieza alta y desciende con una pendiente cada vez más suave. Esta curva representa un proceso de descomposición radiactiva de tipo exponencial, en el que la cantidad de sustancia radiactiva se reduce con el tiempo.

A lo largo de la curva hay cuatro cuadrados que simbolizan la proporción de elemento radiactivo restante:

Al inicio, el cuadrado está totalmente rojo: representa el 100 % del elemento radiactivo.

Más adelante, un segundo cuadrado aparece dividido en dos mitades, una roja y una blanca, indicando que queda el 50 % del material radiactivo. Este punto está marcado como “Vida media”, que es el tiempo que tarda en desintegrarse la mitad del material.

Luego aparece un cuadrado con solo una cuarta parte en rojo: indica que queda el 25 % del elemento.

Finalmente, un cuadrado con una pequeña porción roja representa el 12,5 % restante.

La gráfica muestra visualmente que al principio la desintegración es rápida, pero después se vuelve más lenta. Aunque nunca llega exactamente a cero, la cantidad de material radiactivo se reduce progresivamente a lo largo del tiempo.

Figura 2. Como se puede apreciar en la gráfica, la descomposición radiactiva es un proceso de tipo exponencial. En rojo tenemos la cantidad de elemento radiactivo presente en cada momento: primero disminuye muy rápido y luego más lentamente hasta llegar a cero. La vida media o período de semidesintegración es el tiempo que tarda un conjunto de átomos en quedar reducido a la mitad. Como podemos ver en la Tabla I, algunas desintegraciones son tan lentas que tienen vidas medias más largas que la vida del Universo. Adaptado de Anguita (1988).

La idea era prometedora, pero…  

Pese a la promesa del método, los pioneros de la datación tuvieron que salvar tres grandes obstáculos:

1º. Falta de conocimiento sobre los isótopos: Rutherford y Boltwood desconocían la existencia de los neutrones en el núcleo de los átomos y por tanto el papel que juegan los isótopos en el proceso de desintegración.

2º. Dudas sobre lo que se databa exactamente: Existían serias dudas sobre si las dataciones obtenidas señalaban la edad de cristalización de los minerales, la edad de formación de las rocas, o simplemente la antigüedad de los elementos químicos que los forman. Tampoco estaba claro si se podía aplicar este método a rocas ígneas, metamórficas y sedimentarias por igual.

3º. Limitaciones técnicas: A los problemas de índole teórico, había que sumarle las dificultades técnicas; aislar y medir con suficiente precisión pequeñas cantidades de elementos en las rocas requería de instrumentos que aún no existían.

El papel de los isótopos.

Los elementos químicos están formados por átomos, los cuales, a su vez, están compuestos por electrones, protones y neutrones. Sin embargo, estos últimos no fueron descubiertos hasta 1932, cuando el físico James Chadwick los identificó. En los elementos químicos, el número de protones define su identidad; el número de neutrones, en cambio, puede variar. Hoy sabemos que muchos elementos químicos poseen isótopos, es decir: variantes de un mismo elemento que difieren en el número de neutrones presentes en el núcleo. En la naturaleza existen dos tipos de isótopos: los estables y los inestables (o radiactivos), y son estos últimos los que se pueden emplear en las dataciones.

En el caso del uranio, la Tabla Periódica de los Elementos indica que su número atómico es 92, lo que significa que en estado natural posee 92 electrones y 92 protones, además de un número variable de neutrones que define sus tres isótopos:

1.- El Uranio-234 (234U) con 92 protones y 142 neutrones.

2.- El Uranio-235 (235U), que tiene 92 protones y 143 neutrones.

3.- El Uranio-238 (238U), que posee 92 protones y 146 neutrones.

En términos prácticos, esto quiere decir que en 1 gramo de uranio están presentes los tres isótopos en distinta proporción. El más abundante en la naturaleza es el 238U que representa el 99,2 % de la masa de cualquier muestra que tomemos al azar, y le siguen el 235U con un 0,7 % y el 234U con menos de un 0,1 %.

Los tres isótopos de Uranio (U) son radiactivos, pero los dos primeros se usan comúnmente en geocronología porque se desintegran a isótopos estables de plomo (Pb): el 238U se transmuta por descomposición radiactiva en 206Pb, un proceso cuya vida media es de  4.470 millones de años (Figura 3), mientras que el 235U se transforma en 207Pb en un tiempo medio de 700 millones de años.

La imagen muestra un diagrama en forma de red de recuadros conectados por flechas, que representa la serie radiactiva de desintegración del uranio-238 hasta llegar al plomo-206, pasando por diversos elementos intermedios.

Los elementos están organizados en un eje con dos dimensiones:

En sentido horizontal, se indica el número atómico (de 81 a 92), con los nombres de los elementos correspondientes (como talio, plomo, bismuto, uranio, etc.).

En sentido vertical, se representa el peso atómico, de mayor a menor.

Cada recuadro contiene el símbolo químico del elemento seguido de un número en superíndice, que indica el isótopo (por ejemplo, U²³⁸ para el uranio-238 o Pb²⁰⁶ para el plomo-206).
Las flechas negras entre recuadros indican la dirección de la desintegración de un isótopo en otro.

El proceso comienza con el uranio-238 (U²³⁸), que se desintegra en torio-234 (Th²³⁴), y este a su vez en protactinio-234 (Pa²³⁴), y continúa pasando por radio (Ra²²⁶), radón (Rn²²²), polonio (Po²¹⁸, Po²¹⁴, Po²¹⁰), bismuto (Bi²¹⁴, Bi²¹⁰), talio (Tl²¹⁰) y diferentes isótopos de plomo (Pb²¹⁴, Pb²¹⁰), hasta llegar finalmente al plomo-206 (Pb²⁰⁶), que es estable y marca el fin de la cadena de desintegración.

Entre los elementos intermedios destaca el polonio-214 (Po²¹⁴), señalado en el pie de figura como el más inestable de todos, ya que tiene una vida media de menos de un segundo. El nombre "polonio" fue elegido por Marie Curie en homenaje a su país natal, Polonia.

En conjunto, la figura muestra cómo, a lo largo del tiempo, un elemento radiactivo como el uranio se transforma de forma espontánea en otros elementos, liberando radiación en el proceso, hasta convertirse finalmente en un elemento estable.

Figura 3. Secuencia de trasmutaciones que llevan del uranio-238 al plomo-210. El polonio-214 (que debe su nombre a la tierra natal de Marie Curie)  es el isótopo más inestable de la serie, con una vida media de menos de un segundo. Adaptado de Anguita (1988).

El triunfo de la datación mediante uranio-plomo

El binomio uranio-plomo es ideal para datar rocas antiguas debido a su larga vida media. De hecho fue empleado por el geólogo norteamericano Clair Patterson para alcanzar uno de los hitos más importantes en geología: establecer por primera vez la edad absoluta de la Tierra.

¿Cómo lo hizo?

A su director de tesis, el geoquímico Harrison Brown, se le ocurrió la idea de que, en lugar de centrarse en medir la cantidad de uranio presente en una roca antigua, sería más sencillo detectar la presencia de isótopos de plomo acumulado como producto de su desintegración. Esta técnica, conocida hoy como método de acumulación o datación plomo-plomo, permitió abordar el problema desde una nueva perspectiva, evitando errores debido a la pérdida o ganancia de uranio.  Pero, ¿dónde encontrar muestras de roca a priori tan antiguas como la propia Tierra? Patterson asumió acertadamente que los planetas se formaron como resultado de un proceso de acreción de partículas a partir de una nebulosa de gas y de polvo, y que los meteoritos que en la actualidad impactan contra la Tierra son los escombros supervivientes de aquel proceso. O sea: se propuso datar estos “ladrillos sobrantes” para estimar cuándo comenzó a formarse la edad del “edificio planetario”.

Aislar una suficiente cantidad de minerales presentes en meteoritos (rocas de origen extraterrestre y, por tanto, ya de por sí escasas), que contuvieran algo de uranio, pero sobre todo plomo, fue una tarea ardua. Además, debía asegurarse que estas muestras no estuvieran contaminadas por agentes externos, como el plomo procedente de la combustión de gasolina. Este desafío requirió siete años de meticuloso trabajo y llevó al diseño y a la creación  del primer laboratorio de geoquímica esterilizado del mundo (hoy en día denominados “Salas Blancas” – Figura 4-).

La imagen en color muestra a un hombre mayor, descalzo, sin camisa y con los pantalones remangados hasta media pantorrilla, limpiando el suelo de un laboratorio con una mopa o escurridor de goma. Se trata del científico Clair Patterson, reconocido por su trabajo sobre la datación de la Tierra y por alertar sobre la contaminación por plomo.

El laboratorio tiene un aspecto ordenado, con muebles de madera clara, una campana de extracción a la derecha, y varias tuberías y cables visibles bajo la encimera. Encima de un dispensador de papel, hay una caja azul y amarilla con la etiqueta "Saran Wrap" (una marca de film plástico). En el suelo parece haber una película plástica transparente que el científico está limpiando cuidadosamente.

Esta escena refleja el nivel extremo de limpieza que Patterson mantenía en su laboratorio para evitar cualquier mínima contaminación externa, especialmente de plomo, ya que su trabajo requería mediciones ultrasensibles. Gracias a estas medidas, fue pionero en establecer uno de los primeros laboratorios de ambiente limpio (clean room) en el mundo.

Figura 4. Clair Patterson limpiando su laboratorio para evitar la contaminación. Fuente: Archivos y Colecciones Especiales del Instituto Tecnológico de California (Caltech Archives CCP145.5-7).

Finalmente, en 1953, las muestras fueron analizadas con la ayuda de un (entonces novedoso) espectrómetro de masas, un instrumento que permite separar con mucha precisión los elementos que constituyen un mineral. ¿El resultado? Patterson calculó la edad de la Tierra en 4.550 millones de años, con un margen de error de más o menos unos 70 millones de años, (¡menor del 2% a pesar de los medios disponibles en ese momento!). En líneas generales este valor continúa siendo válido en la actualidad.

El circón: una trampa para el uranio

A medida que avanzaba el conocimiento sobre la vida media de las transmutaciones radiactivas de los isótopos y mejoraba la precisión de la espectrometría de masas, surgieron nuevos métodos de datación radiométrica, útiles para datar diferentes tipos de rocas y minerales (Tabla I). A pesar de ello, el método uranio-plomo sigue siendo el más fiable para calcular la edad de rocas muy antiguas, y la principal razón es que hoy disponemos de una técnica mucho más depurada gracias al papel que desempeña un mineral con propiedades extraordinarias: el circón. 

La tabla presenta cuatro métodos de datación radiométrica utilizados para determinar la antigüedad de las rocas. Está organizada en cuatro columnas:

Elemento padre (el isótopo radiactivo original),

Elemento hijo (el producto estable tras la desintegración),

Vida media (tiempo que tarda en desintegrarse la mitad del elemento padre), y

Observaciones sobre su uso geológico.

Los datos incluidos son los siguientes:

Samario-147 se desintegra en Neodimio-143, con una vida media de 106 000 millones de años. Se utiliza principalmente en rocas metamórficas antiguas.

Rubidio-87 se convierte en Estroncio-87, con una vida media de 47 000 millones de años. Este método puede aplicarse a cualquier tipo de roca.

Uranio-238 se transforma en Plomo-206, con una vida media de 4 510 millones de años. Es considerado el método más preciso para datar rocas.

Potasio-40 se desintegra en Argón-40, con una vida media de 1 300 millones de años, y es el método más comúnmente usado.

Esta tabla permite comparar la aplicabilidad y precisión de distintos métodos de datación radiométrica, clave para entender la historia geológica de la Tierra.

El circón (silicato de zirconio: ZrSiO4) es un mineral accesorio de pequeño tamaño que cristaliza  a partir de magmas procedentes del manto superior o de la base de la corteza terrestre, por lo que es un mineral muy común en rocas ígneas, como el granito (Figura 5). Durante su formación tiende a incorporar diversos elementos que reemplazan parcialmente el circonio (Zr) en su estructura cristalina, tales como uranio, torio, titanio y elementos de las tierras raras; pero rechaza fuertemente el plomo durante su crecimiento. Una vez cristalizado, retiene estos elementos, principalmente el uranio, del que puede llegar a tener entre 100 y 1000 ppm (partes por millón). Y puesto que rechazó el plomo durante la cristalización, cualquier plomo que aparezca posteriormente dentro de su estructura se debe exclusivamente a la desintegración radiactiva. Es decir, se puede asumir que todo el 206Pb y 207Pb presentes cuando se analiza una muestra tiene su origen en la descomposición radiogénica del uranio.

La imagen está dividida en dos partes.
A la izquierda, se muestra una fotografía en color de una roca ígnea, de aspecto rugoso y granular. Es un granito procedente de Pakistán. En su superficie se observan cristales alargados y brillantes de color rojo oscuro, señalados con flechas blancas. Estos cristales son circones de tamaño centimétrico, minerales extremadamente duros y resistentes que suelen contener pequeñas cantidades de uranio y plomo, lo que los hace muy valiosos para la datación geológica.

A la derecha, se presenta una imagen en blanco y negro aumentada de un solo cristal de circón visto con lupa o microscopio. El cristal tiene forma alargada y ligeramente achatada, con bordes irregulares y una superficie que muestra zonas oscuras y claras, indicando variaciones internas en su estructura. Este ejemplar es mucho más pequeño que los de la izquierda, con un tamaño submilimétrico.

La comparación entre ambas imágenes muestra cómo los circones pueden variar en tamaño, desde algunos milímetros hasta varios centímetros, y resalta su utilidad tanto en observaciones macroscópicas como en estudios microscópicos.

Figura 5. Circones centimétricos (flechas) cristalizados en un granito procedente de Paquistán (izquierda) y aspecto de un ejemplar de tamaño submilimétrico visto con una lupa (derecha). Fuente: colección Gabriel Castilla y Wikipedia Commons.

Además, el circón es durísimo y resiste altas temperaturas, presiones y procesos geológicos como el metamorfismo o la erosión, lo que le permite conservar su firma isotópica incluso después de miles de millones de años. Puede crecer (recristalizar) en rocas metamórficas en condiciones de alta presión y hasta 900 ºC de temperatura, permitiendo datar el evento (o los eventos) en el que volvió a integrar uranio en su estructura (que posteriormente volverá a transformarse en plomo). Igualmente, su gran dureza le permite sobrevivir intacto a ciclos de erosión, transporte y sedimentación, manteniéndose “químicamente estable” en forma de grano detrítico en el interior de rocas sedimentarias, y permitiendo datar la edad máxima de deposición de esas rocas.

La imagen está dividida en dos partes.
En la parte superior aparece un texto informativo sobre el hecho de que la roca más antigua de la Tierra podría haberse encontrado en la Luna.

El texto explica que en 2019 se anunció que una muestra traída por la misión Apolo 14 de la NASA contenía un fragmento de la antigua corteza terrestre. Los científicos creen que esta roca se formó a unos 160 km de profundidad en la Tierra y que fue expulsada al espacio por el impacto de un asteroide, aterrizando finalmente en la Luna. La muestra, que pesa casi 9 kilos, es un tipo de roca llamado brecha, compuesta por fragmentos de diferentes rocas fundidas y compactadas por el calor de los impactos que moldearon la superficie lunar.

La datación de los cristales de circón contenidos en la muestra indica que esta roca se formó hace 4.011 millones de años. Aunque se han encontrado cristales de circón más antiguos (de hasta 4.374 millones de años) en la Tierra, esos se han preservado en rocas erosionadas, mientras que esta muestra lunar conserva el contexto original.

En la parte inferior del cartel se muestra una fotografía en blanco y negro de la roca lunar, etiquetada como “14321,46”. Es una roca rugosa, de color oscuro, y se encuentra sobre una superficie lisa. A la izquierda, una escala vertical marca 2 centímetros. Una flecha blanca apunta a un fragmento incrustado en la roca, señalado como el clasto (trozo) que se habría formado originalmente en la Tierra.

Fuente de la imagen: JPL-NASA.

Receta para analizar un circón

1º. Se realiza un estudio de campo y se recolectan las muestras de roca de interés.

2º. Las rocas son molidas y tamizadas. El polvo grueso de roca obtenido es lavado y separado por gravedad para concentrar los minerales más pesados.

3º. Los concentrados de minerales pesados se seleccionan y extraen con un separador magnético.

4º. La purificación final se logra separando a mano cada circón. Como no miden más de 1mm esta tarea se realiza con ayuda de una lupa binocular y pinzas finas.

5º. Los circones se pegan en cinta de doble cara y se montan en moldes, que son rellenados con una resina.

6º Cuando la resina ya está consolidada, se pule para que la parte central de los minerales quede expuesta y se pueda analizar.

En la actualidad los circones se analizan química e isotópicamente mediante varias técnicas derivadas de la espectrometría de masas, principalmente dos:

(1) La microsonda iónica de alta resolución (Super High-Resolution Ion Micro-Probe, también conocida como SHRIMP).

(2) El espectrómetro de masas de plasma acoplado inductivamente y ablación láser (LA-ICP-MS, siglas de Laser Ablation Inductively Coupled Plasma Mass Spectrometer).

Estas técnicas permiten estudiar con gran precisión partes muy concretas de un cristal, vaporizan los átomos de uranio y plomo que surgen de un punto seleccionado (Figura 7). Los datos que se obtienen se procesan y se corrigen para ser usados en los cálculos de relaciones isotópicas de U-Pb (y Th) y estimación final de edades.

Figura 7. Circón procedente del gneis de Acasta (Canadá). Los pequeños círculos que se observan fueron producidos por haces de iones que vaporizaron partes del cristal para establecer la relación de uranio y plomo en esos puntos concretos. Ha sido datado en unos 4.000 millones de años. Adaptado de York (1993).

Una gráfica para datarlos a todos

Cuando se forma un circón (cristaliza por debajo de los 900 º C), el sistema uranio-plomo se reinicia. A medida que pasa el tiempo los isótopos de plomo creados por la descomposición radiactiva del uranio quedan atrapados y se concentran. Si nada lo perturba, datarlo es muy sencillo: solo habrá que situar las concentraciones de plomo respecto al uranio inicial sobre una gráfica, la llamada curva de concordia, que se construye relacionando las cantidades de isótopos de plomo que se forman a partir de los dos principales isótopos de uranio (Figura 8a).

La imagen muestra una gráfica científica conocida como curva de concordia, utilizada en geocronología para fechar rocas mediante la comparación de las proporciones de isótopos de uranio y plomo.

El eje horizontal representa la relación entre Plomo-207 y Uranio-235, mientras que el eje vertical representa la relación entre Plomo-206 y Uranio-238.

Ambos sistemas se basan en la desintegración radiactiva natural del uranio en plomo a lo largo del tiempo.

La curva que recorre la gráfica comienza en el origen (punto inferior izquierdo, marcado como “HOY” en rojo) y asciende hacia la derecha hasta alcanzar el punto más alto a la derecha, marcado como “ORIGEN” en rojo (correspondiente a una antigüedad de 4.5 Ga, es decir, 4.500 millones de años).

A lo largo de esta curva hay varios puntos negros marcados con etiquetas de edad, como:

1.5 Ga (1.500 millones de años),
2 Ga, 2.5 Ga, 3 Ga, 3.5 Ga, 4 Ga, hasta 4.5 Ga.

Estos puntos representan proporciones de isótopos que corresponden a edades concretas, calculadas a partir de las vidas medias conocidas de los isótopos U-235 (más rápida) y U-238 (más lenta). Por ejemplo:

A los 704 millones de años, la cantidad de Uranio-235 se ha reducido a la mitad, por lo que la relación Pb/U es 1.

A los 1.408 millones de años, solo queda una cuarta parte del Uranio-235, así que la relación Pb/U es 3, y así sucesivamente.

Esta gráfica permite comparar las proporciones de isótopos medidos en una muestra y deducir su edad, siempre que no haya habido pérdida de elementos. Si un punto medido cae fuera de la curva, puede indicar que el sistema ha sido alterado.

Figura 8a. Curva de concordia para el sistema uranio-plomo. El hecho de conocer con precisión las vidas medias de los dos principales isótopos del uranio nos permite construir una gráfica con proporciones plomo/uranio muy concretas para los 4.550 millones de años de historia de la Tierra. En una roca de 704 millones de años, el 235U está en su vida media por lo que habrá una relación Pb/U = 1. En una roca de 1.408 millones de años solo quedará un átomo de 235U por cada tres átomos de 207Pb, por lo que la relación Pb/U = 3, y así sucesivamente. En el caso del 238U la descomposición es más lenta, por eso en ese eje de la gráfica las relaciones adoptan valores menores que 1. Los puntos negros sobre la curva señalan las edades para esas proporciones en giga años (Ga), es decir miles de millones de años (1Ga = 1000.000.000 años).

Es muy raro que a lo largo de los miles de millones de años de la historia de la Tierra un circón no se vea alterado por cambios de presión y temperatura en su entorno. Cuando esto sucede, pueden escapar isótopos de plomo, por lo que las dataciones ya no caerán exactamente sobre la curva de concordia. Es decir, se abre y distorsiona el sistema isotópico. Es aquí cuando toma sentido datar muchos circones con el fin de establecer diversos niveles de pérdida de plomo y con ellos establecer una recta de discordia, recta que cortará la curva de concordia en dos puntos, lo que proporcionará información sobre la edad del circón y sobre el supuesto momento en que se produjo el episodio de metamorfismo que alteró la química del mineral (Figura 8b).

La imagen muestra un diagrama de concordia, como el de la Figura 8a, utilizado en geocronología para fechar rocas a partir de la desintegración radiactiva del uranio en plomo.

El eje horizontal indica la proporción entre Plomo-207 y Uranio-235.

El eje vertical muestra la proporción entre Plomo-206 y Uranio-238.

La curva de concordia (línea verde) representa las proporciones que se obtendrían si una muestra no ha perdido ni ganado material desde su formación.

En este gráfico, aparecen además tres puntos azules marcados como M1, M2 y M3, que representan tres muestras distintas de cristales de circón procedentes de una misma roca antigua. Estos tres puntos no caen sobre la curva, sino que están alineados sobre una línea recta azul más clara llamada recta de discordia.

Esta recta de discordia se traza cuando una roca ha sufrido algún proceso que ha modificado sus proporciones originales de plomo y uranio, por ejemplo, un episodio de metamorfismo (aumento de presión y temperatura que no llega a fundir la roca).

La recta intersecta la curva de concordia en dos puntos clave:

El punto superior, marcado como 3.2 Ga (3.200 millones de años), indica la edad original de formación de la roca que contiene los circones.

El punto inferior, marcado como 2 Ga (2.000 millones de años), señala el momento en que se produjo la alteración metamórfica, que causó una pérdida de plomo en los cristales.

Este tipo de análisis permite reconstruir la historia térmica de una roca y saber tanto cuándo se formó como cuándo fue modificada por eventos posteriores.

Fuente: Adaptado de York (1993) y elaboración propia.

Figura 8b. Diagrama de concordia para tres muestras de circones (M1, M2 y M3) de una roca antigua que ha experimentado una alteración por metamorfismo (cambio de presión y temperatura pero sin llegar a fundir). La recta de discordia intersecta la curva “por arriba” en 3.2 Ga, revelando la edad de la roca que contiene las tres muestras, y “por abajo” en 2 Ga, señalando el momento en que se produjo el episodio de alteración metamórfica que desencadenó la pérdida de plomo. Adaptado de York (1993) y elaboración propia.

La imagen muestra un recuadro de fondo gris con texto blanco que aborda el tema:
¿Cuál es el circón más antiguo?

El texto informa que en 2007 se anunció el descubrimiento de circones detríticos, es decir, granos de circón que han sobrevivido a la erosión de las rocas originales que los contenían. Estos granos, similares a los granos de cuarzo en arena de playa, fueron hallados en Jack Hills, Australia Occidental, y tienen una antigüedad estimada de 4.252 millones de años.

Se explica que estos circones son los microdiamantes naturales más antiguos conocidos en la Tierra. Sin embargo, este récord fue superado en 2014, cuando se anunció el hallazgo de un circón Hádico (del eón Hádico, el más antiguo de la historia terrestre), con una antigüedad de aproximadamente 4.400 millones de años.

El texto plantea una pregunta clave:

“¿Por qué se conservan los granos más resistentes pero no las rocas a las que pertenecieron?”

Esta cuestión subraya la importancia de los circones como testigos de las primeras etapas de la historia geológica de la Tierra, ya que no se han conservado rocas completas de ese periodo, pero sí estos cristales extremadamente resistentes que permiten reconstruir parte de esa historia temprana.

Nuevos avances en datación U-Pb

El circón sigue siendo el mineral insignia para la datación geocronológica, por su resistencia y fiabilidad. Sin embargo, los nuevos avances en la precisión de los métodos instrumentales y analíticos han permitido que, además del circón, actualmente se pueden datar otros minerales mediante el método uranio-plomo. Algunos de los más utilizados son:

Monacita (CePO4): rica en uranio y torio, y común en rocas metamórficas y graníticas. Es menos resistente al metamorfismo que el circón, pero muy útil en geología regional para datar procesos metamórficos.

Xenotima (YPO4): similar a la monacita pero con itrio en lugar de cerio. También incorpora uranio y se encuentra en rocas ígneas y metamórficas.

Titanita (o esfena, CaTiSiO5): contiene uranio en cantidades moderadas, siendo más susceptible a pérdidas de Pb que el circón. Se emplea en rocas ígneas y metamórficas, siendo importantes en rocas pobres en circón.

Baddeleyita (ZrO2): se encuentra en basaltos y gabros antiguos, y rocas mantélicas donde el circón es raro o ausente.

Bibliografía consultada.

Allégre, C.J.; Manhès, G. y Göpel, C. (1995). The age of the Earth. Geochimica et Cosmochimica Acta, Vol. 59 (8), pp.1445-1456.

Anguita, F. (1988). Origen e Historia de la Tierra. Editorial Rueda.

Bellucci, J.J. et al. (2019). Terrestrial-like zircon in a clast from an Apollo 14 breccia. Earth and Planetary Science Letters 510, pp. 173-185.

Bryson, B. (2003). Una breve historia de casi todo. Edición especial ilustrada. RBA Editores.

Casado, M. J. (2006). Las damas del laboratorio. Editorial Debate.

Greshko, M. (2019). La posible roca más antigua de la Tierra se recogió en la Luna. National Geographic. Versión on-line.

Guo, J-L. et al. (2000). Significant Zr isotope variations in single zircon grains recording magma evolution history. Proceedings of the National Academy of Sciences, Vol. 117 (35), pp. 21125-21131.

Harley, L. y Kelly, N.M. (2007). Zircon- Tyny but Timely. Elements, 3 (1).

Mennekem, M. et al. (2007). Hadean diamonds in zircon from Jack Hills, Western Australia. Nature 448 (7156), pp. 917-920.

Naipauer, M. (2021). Circones, los relojes de la Tierra. Ciencia Hoy, Vol. 30, n. 176, pp. 51-57.

Patterson, C. (1956). Age of meteorites and the Earth. Geochimica et Cosmochimica Acta, Vol. 10, pp.230-237.

Valley. J. W. et al. (2014). Hadean age for a post-magma-ocean zircon confirmed by atom-probe tomography. Nature Geoscience 7, pp. 219-223.

Wilde, S.A.; Valley, J.W.; Peck, W.H. y Graham, C.M. (2001). Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago. Nature, 409 (6817), pp.175-178.

York, D. (1993). Protohistoria de la Tierra. Investigación y Ciencia, 198 (marzo), pp.40-47.

Organizando la historia de la Tierra

La historia de la Tierra está grabada en las piedras y la Geología nos enseña a ver en ellas fotos instantáneas del momento en el que se formaron (figura 1). Y lo primero que nos podemos plantear es: ¿Cuándo se formó esta instantánea?

Figura 1: Cuando miramos una piedra, como la caliza de la foto, con ojos geológicos, lo que esta piedra nos devuelve es una instantánea de cómo era el ambiente y la propia Tierra cuando se formó.
Figura 1: Cuando miramos una piedra, como la caliza de la foto, con ojos geológicos, lo que esta piedra nos devuelve es una instantánea de cómo era el ambiente y la propia Tierra cuando se formó.

La escala de tiempo en Geología es muy amplia, mucho más que la nuestra propia, la escala humana. Mientras que para los seres humanos 100 años puede parecer una eternidad, en Geología ese tiempo a penas rascaría la superficie. ¡Hablamos de periodos de tiempo que se miden habitualmente en millones de años!

Por ejemplo, entre las dos fotos del Gran Cañón del Colorado de la figura 2 han pasado más de 150 años, pero vemos que la geología de ese paisaje no ha cambiado en todo este tiempo.

Figura 2. A la izquierda podemos ver una fotografía del Gran Cañón del Colorado de 1871 (de John K. Hiller) y a la derecha otra fotografía (de Alan Hull) del cañón en la actualidad, casi desde el mismo punto. Podemos comprobar como entre una fotografía y otra no existen diferencias apreciables en cuanto a la geología del paisaje, a pesar de haber pasado más de 150 años entre una fotografía y otra.
Figura 2. A la izquierda podemos ver una fotografía del Gran Cañón del Colorado de 1871 (de John K. Hiller) y a la derecha otra fotografía (de Alan Hull) del cañón en la actualidad, desdecasi el mismo punto en el mirador de Toroweap (Tuweep, Arizona). Podemos comprobar como entre una fotografía y otra no existen diferencias apreciables en cuanto a la geología del paisaje, a pesar de haber pasado más de 150 años entre ellas.

El tiempo en Geología es un parámetro escurridizo. Te puede venir bien leer este post para introducirte en el concepto: Cómo se entiende el tiempo en Geología.

Escala humana vs. Escala geológica. Organización/División del tiempo

Hoy en día disponemos de relojes y calendario muy precisos, incluso con exactitud atómica (solo se desajustan 1 segundo cada 300 millones de años). Pero antes de inventar todo tipo de medidores de tiempo solo disponíamos de las señales que ofrece la naturaleza para intentar contabilizarlo.

Cuando el ser humano quiso contabilizar el tiempo, lo dividió en función de los cambios que observaba en la naturaleza: la caída de las hojas de los árboles, el aumento de las horas de sol… Cambios que nos permiten agrupar el tiempo (como vimos en el altar del Castro Vetón de Ulaca o en distintos calendario solares o climáticos como el de la Figura 3).

Figura 3. Ejemplo de calendario solar o climático. El calendario solar chino divide el año en 24 etapas en base a la posición del Sol y a factores cíclicos del clima y de los seres vivos. Cada una de las etapas comprende 15 días, por lo que dos juntas forman un mes y cada tres meses una estación del año. Este calendario se sistematizó en el año 104 a.C. https://confuciomag.com/wp-content/uploads/2016/12/10_calendario_chino.pdf
Figura 3. Ejemplo de calendario solar o climático. El calendario solar chino divide el año en 24 etapas en base a la posición del Sol y a factores cíclicos del clima y de los seres vivos. Cada una de las etapas comprende 15 días, por lo que dos juntas forman un mes y cada tres meses una estación del año. Este calendario se sistematizó en el año 104 a.C. https://confuciomag.com/wp-content/uploads/2016/12/10_calendario_chino.pdf

De igual manera que nuestras antepasadas y antepasados organizaron el tiempo por los cambios que tenían asociados, en Geología organizamos el tiempo de la Tierra buscando marcadores de cambios a nivel planetario (en la composición de la atmósfera o la formación de súper-continentes, por ejemplo) que nos permita esta agrupación.

Ese modo de dividir el tiempo de la Tierra por hitos se parece también a la forma en que dividimos la Historia de la humanidad (Figura 4). En Historia, las edades están limitadas por hitos históricos como la caída del Imperio Romano de Occidente o el primer viaje de Cristóbal Colón a América. De esa forma, cada edad histórica tiene su propia duración porque cada edad ha mantenido unas condiciones sin cambios durante un intervalo de tiempo diferente. Este mismo criterio es el empleado en la organización del tiempo geológico, cada división tiene su propia duración.

Figura 4. La división del tiempo en Historia está marcada por hitos que cambiaron el curso de los acontecimientos y no por periodos fijos de tiempo. Esto mismo sucede con la división del tiempo en la Escala Geológica.
Figura 4. La división del tiempo en Historia está marcada por hitos que cambiaron el curso de los acontecimientos y no por periodos fijos de tiempo. Esto mismo sucede con la división del tiempo en la Escala Geológica.

Y al igual que sucede en Historia, cuanto más nos alejamos hacia atrás en el tiempo, menos «resolución» o detalle tenemos de esos cambios.

Este tipo de organización cobra aún más sentido cuando manejamos cantidades de tiempo tan grandes que son inimaginables. ¿Y dónde encontramos las pruebas de esos cambios en la historia de la Tierra? En el registro geológico, que es como la agenda de nuestro planeta donde nos ha dejado apuntada parte de su historia en esas instantáneas que son las piedras (figura 5).

Figura 5. Los límites entre periodos geológicos se establecen mediante eventos que alteraron el desarrollo de la Tierra. Estos eventos han quedado registrados en las rocas de la Tierra, como si fueran la agenda o el diario donde nuestro planeta ha apuntado algunas de sus actividades más importantes
Figura 5. Los límites entre periodos geológicos se establecen mediante eventos que alteraron el desarrollo de la Tierra. Estos eventos han quedado registrados en las rocas de la Tierra, como si fueran la agenda o el diario donde nuestro planeta ha apuntado algunas de sus actividades más importantes

Aquí te dejamos el enlace a la Tabla Cronoestratigráfica Internacional en castellano que está continuamente en revisión, actualización y mejora; y que supone una de las grandes contribuciones de la Geología a la Sociedad.

La jerarquización del tiempo geológico

El tiempo geológico se organiza de manera jerarquizada, como podemos ver en la Figura 6:

  • Los eones abarcan varias eras.
    • Las eras abarcan varios periodos.
      • Los periodos abarcan varias series, etc.

Cada una de estas divisiones son unidades temporales geológicas.

Figura 6. Esquema de la jerarquización de las distintas unidades geológicas que componen la Tabla del tiempos geológico.
Figura 6. Esquema de la jerarquización de las distintas unidades geológicas que componen la Tabla del tiempos geológico.

Recuerda que cada unidad tiene su propia duración.

El uso de unas u otras unidades dependerá del tipo de investigación o representación que se quiera realizar:

EÓN es la unidad de mayor intervalo de tiempo geológico.

Existen 4 eones, de más antiguo a más moderno:

  • Hádico (desde el origen del Sistema Solar hasta hace 4000 Ma).
  • Arcaico (desde hace 4000 Ma hasta hace 2500 Ma).
  • Proterozoico (entre 2500 y 539 Ma).
  • Y Fanerozoico (desde hace 543 Ma hasta la actualidad).

Es habitual que Hádico, Arcaico y Proterozoico se agrupen en una unidad informal llamada Precámbrico (lo de antes del Cámbrico).

¿Qué es lo que cambió de unos eones a otros para diferenciarlos entre sí? Algo tan propio de la Tierra como la aparición de la vida, y los cambios que ésta produjo en el planeta (figura 7).

  • Al comienzo, en el eón Hádico, no había vida y se producían bombardeos continuos de meteoritos siendo la Tierra una bola de material fundido.
  • Ya en el Arcaico, el bombardeo termina y aparecen las primeras formas de vida, pero la atmósfera terrestre es aún reductora, con gran cantidad de gases de efecto invernadero.
  • En el Proterozoico, con los continentes ya bien desarrollados, la actividad biológica de bacterias y cianobacterias cambia la composición de la atmósfera aumentando la presencia de oxígeno.
  • Los nuevos cambios favorecieron que se produjeran la explosión de la vida que marca el comienzo del cuarto eón en el que nos encontramos, el Fanerozoico.
Figura 7. División del tiempo geológico en Eones (Hádico, Arcaico, Proterozoico y Fanerozoico) según el desarrollo de continentes y la evolución de la vida.
Figura 7. División del tiempo geológico en Eones (Hádico, Arcaico, Proterozoico y Fanerozoico) según el desarrollo de continentes y la evolución de la vida.

Salvo el Hádico, del que no tenemos registro geológico, el resto de eones se dividen en ERAS. Las distintas eras están delimitadas por el inicio de distintos ciclos orogénicos de creación (y posterior desmantelamiento) de grandes cadenas montañosas por movimientos de los continentes. Por ejemplo, el Fanerozoico lo integran tres eras geológicas: Paleozoica, Mesozoica, y Cenozoica (figura 8).

Figura 8. División de la eón Fanerozoico en las eras Paleozoico, Mesozoico y Cenozoico en función de la tectónica continental.
Figura 8. División de la eón Fanerozoico en las eras Paleozoico, Mesozoico y Cenozoico en función de la tectónica continental.

Las eras a su vez se dividen en PERIODOS. Los periodos a su vez en SERIES y las series en PISOS. Estas otras divisiones están marcadas por cambios en los organismos, en las condiciones climáticas y/o en las condiciones geológicas.

Eón > Era > Periodo > Serie > Piso

Conclusión

Con esta entrada solo queremos dar una visión de cómo medimos el tiempo geológico y el funcionamiento de la potente herramienta que es la Tabla del Tiempo Geológico, una de las grandes aportaciones de nuestra ciencia.

Todo lo que ha sucedido en nuestro planeta queda englobado en ese concepto temporal. Y el tiempo no se detiene, así que esto no acaba aquí…

Algunos ejemplos de Tablas del Tiempo Geológico (en castellano)

Versión de 2023 de la Tabla Cronoestratigráfica Internacional en castellano publicada por la International Commission on Stratigraphy (ICS).
Tabla del Tiempo Geológico, trabajo con carácter pedagógico dirigido a alumnos iniciados en las Ciencias Geológicas, de Ángel Caballero García de Arévalo para el CSIC - Instituto Andaluz de Ciencias de la Tierra (IACT).
Tabla del Tiempo Geológico, trabajo con carácter pedagógico dirigido a alumnos iniciados en las Ciencias Geológicas, de Ángel Caballero García de Arévalo para el CSIC – Instituto Andaluz de Ciencias de la Tierra (IACT).

Referencias

Prácticas y recursos sobre la escala de tiempo geológico

La datación relativa en geología

Autoría: Pablo Melón y Ana Isabel Casado

En el laberinto de Villaflor estás en un sistema de drenaje donde el agua “corta” el sedimento como si fuera un cuchillo y se lo lleva, dejando ver cada capa. Ahora, están todas las capas pero… ¿habrá sido siempre así?

Presta atención a lo que ves para poder interpretar cómo se relacionan unas capas con otras y ordenar los componentes del laberinto de más antiguo a más moderno, utilizando la datación relativa.

Para entender lo que te rodea tienes que fijarte bien. ¿Hay cosas que se repiten? ¿Todo tiene el mismo color? Gráfico de Ana Isabel Casado.
Para entender lo que te rodea tienes que fijarte bien. ¿Hay cosas que se repiten? ¿Todo tiene el mismo color? Gráfico de Ana Isabel Casado.

La datación relativa es un método de datación empleado en geología en el que se ordenan los eventos de más antiguo a más moderno sin asignarles edades concretas. Estos son los principios en los que se basa:

Esta fue una de las paradas geológicas en la actividad Geolodía 22 en Villaflor, el domingo 8 de mayo de 2022.
Este es el juego que se propuso al público asistente a la actividad. En él debían colocar correctamente cada evento según el principio de datación relativa explicado en la parada geológica. ¡La mayoría tuvieron un 10!

Este contenido formó parte de la actividad Geolodía 2022 de Ávila.

Los otros «relojes de arena». Método de datación por OSL

Texto y gráficos – Ana Isabel Casado Gómez

Los clásicos relojes de arena cronometran el tiempo en función de lo que tarda en pasar la arena que contienen por su estrecha cintura. Pero existe otro tipo de «relojes en la arena» que nos permiten contar el tiempo gracias a su estructura cristalina y a la luz, proporcionándonos un práctico método de datación: la Luminiscencia Ópticamente Estimulada u OSL.

El método de datación por OSL, por su acrónimo en inglés (Optically Stimulated Luminescence), se emplea principalmente en materiales sedimentarios detríticos (como la arena y los limos de las dunas de La Moraña).

Este método tiene un rango de aplicación de entre 6 y 800.000 años, aunque no para de optimizarse y se han llegado a datar sedimentos de 1,5 Ma (Bartz et al., 2019).

Esta técnica se desarrolló ante la necesidad de datar de manera directa los sedimentos, sin utilizar materia orgánica a la que aplicarle la datación por Carbono-14, ya que no siempre se encuentran restos biológicos en los sedimentos. Además, el límite de datación del Carbono-14 es menor (60.000 años) y es a veces insuficiente.

Cómo funciona

Para la datación por OSL se utiliza el cuarzo. Esto supone una gran ventaja frente a otras técnicas ya que el cuarzo es uno de los minerales más duros, resistentes y abundantes de la superficie terrestre.

Con el método de luminiscencia ópticamente estimulada se data el último momento en que un material de origen sedimentario estuvo expuesto a la luz solar, el momento de su sedimentación y enterramiento.

¿Qué le sucede al cuarzo cuando recibe luz solar? ¿Y cuando se entierra y deja de recibir esa luz?

Cuando los sedimentos se encuentran en la superficie, la radiación solar visible «limpia» el cuarzo eliminando cualquier electrón que pudiera encontrarse atrapado en su estructura, esto se conoce como blanqueamiento. (Figs. 1.A).

Al enterrarse el sedimento y dejar de estar radiado por el Sol, el cuarzo comienza a recibir un débil flujo de partículas radiactivas (alfa α, beta β y gamma γ) provenientes de elementos radiactivos que forman parte de otros minerales del propio sedimento (como el torio, el uranio y el potasio-40 de la biotita, la circonita, el apatito o el esfeno, o el potasio-40 de los feldespatos blancos y rosas).

La consecuencia de esta radiación natural propia del sedimento es la acumulación progresiva de electrones en trampas dentro de la estructura cristalina de los cuarzos: cuanto más tiempo permanezcan los cuarzos enterrados y protegidos de la luz, más electrones acumularán en su estructura (Figs. 1.B).

Fig. 1. Esquema de los procesos radiactivos que tienen lugar en los sedimentos, tanto a macroescala como a microescala. A) Cuando el cuarzo es radiado por la luz solar y su estructura está libre de electrones. B) Cuando el cuarzo queda enterrado y afectado por otras radiaciones que no son la solar, acumulando electrones en su estructura cristalina.

¿Cómo se recogen las muestras en el campo?

Para poder emplear este método con éxito, es necesaria una recogida muy meticulosa de las muestras en el campo. Para ello:

  1. Se introduce un tubo metálico dentro del sedimento (Fig. 2A) para proteger la muestra de la luz, y evitar así la pérdida de los electrones acumulados en los cuarzos. El tubo se coloca perpendicular a la superficie del afloramiento y se introduce en el sedimento. Se extrae un testigo dejando un agujero cilíndrico en el sedimento.
  2. Posteriormente, con un taladro de corona circular (Fig. 2B), se extrae el sedimento que hay alrededor de la muestra para hacer medidas sobre este sedimento en el laboratorio.
  3. Por último, se introduce un dosímetro en el agujero y se toman medidas de radiación gamma (γ) in situ (Fig. 2C).
Fig. 2. Fotografías del proceso de recogida de muestras para datación por OSL. A) Detalle de la extracción de la muestra. Una persona sujeta el tubo metálico mientras que otra lo golpea con una maza hasta conseguir introducirlo en el sedimento y extraer la muestra protegida de la luz. B) Recogida del sedimento colindante a la muestra para medir la humedad, los elementos radiactivos y la radiación beta (β) del sedimento. C) Dosímetro midiendo la radiación gamma (γ) en el interior del sedimento. Fotografías: AI Casado.

¿Y qué hacemos con las muestras en el laboratorio?

Una vez en el laboratorio, los granos de cuarzo se separan del resto de minerales. Esto se hace en un cuarto oscuro (como los de revelado de fotografías en papel) empleando una tenue luz roja cuya radiación no interfiere con los electrones atrapados en la estructura del cuarzo (Figs. 3A).

Separados los cuarzos, se exponen a una radiación visible controlada semejante a la radiación visible solar. Al iluminar los cuarzos, los electrones que habían quedado atrapados en su estructura durante su enterramiento emiten una señal luminiscente que permite contabilizar cuántos electrones se han acumulado (esta cantidad de electrones se conoce como paleodosis) (Figs. 3B).

Fig. 3. Esquema de los procesos radiactivos que tienen lugar en los sedimentos, tanto a macro como a microescala, en el laboratorio. A) Cuando el cuarzo es radiado por una tenue luz roja. B) Cuando se radia con una luz similar a la solar, permitiendo contabilizar los electrones atrapados en su estructura cristalina.

La datación

¿Y cómo sabemos cuántos años suponen los electrones contabilizados?

Como cada sedimento es diferente, hay que evaluar en el laboratorio cuál es la dosis de radiación natural del sedimento tomado alrededor de la muestra (Fig. 2B) conociendo la radiación gamma (γ) y midiendo la humedad, los elementos radiactivos y las partículas beta (β).

Con todos estos datos, se puede evaluar cuántos electrones puede generar cada muestra en un año (dosis anual).

Al dividir la dosis acumulada en la muestra de manera natural, la paleodosis, (que se ha obtenido contabilizando los electrones atrapados en el cuarzo en el paso anterior) entre la dosis anual obtenida experimentalmente, se puede conocer cuántos años hace que se produjo la sedimentación de la muestra.

  • De esta forma, si los cuarzos han recibido poca dosis cada año (dosis anual) y han acumulado muchos electrones (paleodosis), la edad es alta.
  • Si la dosis anual que recibían los cuarzos era muy grande, aunque haya acumulados muchos electrones tendrán una edad baja.

Por eso es necesario medir la dosis anual de cada muestra.

Resumiendo…

La datación por OSL o datación por Luminiscencia Ópticamente Estimulada se emplea para conocer la edad del momento de sedimentación de un depósito que contenga granos de cuarzo (Fig. 4).

La radiación solar mantiene los cuarzos superficiales «limpios» de cualquier otra radiación que pudieran acumular durante la erosión y el transporte.

Cuando se produce la sedimentación, los cristales de cuarzo enterrados que ya no reciben radiación solar comienzan a recibir una radiación débil procedente de elementos radiactivos de los minerales que los rodean, y acumulan electrones en su estructura.

Los cristales de cuarzo se «llenan» de electrones de manera gradual, a un ritmo constante en el tiempo (dosis anual).

Y es el contaje de esos electrones lo que determina la paleodosis, con lo que se puede calcular cuánto tiempo ha pasado desde que quedaron enterrados y dejaron de recibir luz solar.

Cuando se iluminan de nuevo esos cuarzos con una radiación visible similar a la solar, los electrones atrapados en el cuarzo se liberan emitiendo una señal luminiscente.

Midiendo esos electrones y la dosis anual del sedimento, se puede saber cuántos electrones estaban atrapados en el cuarzo y calcular la edad en que se produjo la sedimentación.

Fig. 4. Gráfica resumen de la acumulación de radiación beta (β) en el cuarzo en función del tiempo y de las condiciones de exposición a la luz (modificado de Aitken, 1998)

¿Sabías que… el feldespato también tiene la capacidad de albergar electrones en trampas de su estructura cristalina, por el mismo proceso que el cuarzo? Para la datación con feldespatos el procedimiento es similar al OSL, pero se emplea radiación infrarroja para estimular la luminiscencia. En ese caso, se denomina IRSL o Luminiscencia estimulada por infrarrojos.

Referencias

Dendrocronología: contando anillos

Texto y gráficos – Ana Isabel Casado

Fotografías – Gabriel Castilla

La palabra dendrocronología proviene del griego antiguo:

  • dendro- significa “árbol
  • -crono- significa “tiempo
  • –logía significa “estudio

Por lo que dendrocronología quiere decir literalmente “estudio del tiempo de los árboles”.

Y es que este método de datación se basa en el crecimiento de los árboles (y algunos arbustos leñosos) para poder contar el tiempo. La edad máxima que se ha llegado a datar con este método es de 10.000 años.

Los anillos de los árboles

Los árboles que viven en zonas con clima estacional crecen generando un anillo cada año, como si fueran las capas de una cebolla. De esta manera, la capa más externa del tronco se está generando en el año actual y el centro se formó en su primer año de crecimiento.

1 anillo = 1 año

Al poder obtener un valor numérico de años, se considera un método de datación absoluta (permite precisar la edad concreta).

Pero, además, los anillos de los árboles nos aportan mucha información de las condiciones en las que han vivido los árboles en cada momento, no solo los años que tienen (Fig. 1).

Fig. 1: Esquema de la sección del tronco de un pino. El desarrollo de los árboles se produce generando anillos año a año. Estos anillos registran las condiciones en las que se ha desarrollado el árbol. Sus anillos de épocas lluviosas son anchos mientras que los de épocas secas son estrechos. También se pueden ver cicatrices si el árbol sufrió alguna lesión, por un incendio o los golpes de las piedras de una avalancha, por ejemplo.

En cada anillo se pueden diferenciar dos zonas:

  • Zona ancha y clara: se corresponde con el crecimiento de primavera/principios del verano, cuando las lluvias y los aportes de nutrientes son mayores y el árbol se desarrolla más.
  • Zona estrecha y oscura: se forma con el crecimiento de finales de verano y el final del crecimiento por ese año. Su color oscuro y su poco grosor son la consecuencia de una menor disponibilidad de agua y nutrientes por parte del árbol.

Además, el tamaño de los anillos de unos años a otros varía en función de si fueron años lluviosos y cálidos (anillos amplios) o si hubo sequías y frío (anillos angostos). Los árboles de la misma zona tendrán un desarrollo del grosor de sus anillos similar ya que vivirán en las mismas condiciones ambientales.

¿Cómo podemos estudiar los anillos de los árboles sin tener que talarlos?

Cuando se realiza un estudio mediante los anillos de los árboles, se necesitan muestras de distintos individuos e incluso de distintas especies para poder llegar a una conclusión global. Con el fin de NO dañar a los árboles en este tipo de estudios, se utiliza un utensilio llamado barrena Pressler.

Esta barrena se introduce girándola manualmente en el árbol gracias a que está provista de un tornillo con filos en su punta (Fig. 2).

Según penetra la barrena en el árbol va generando un testigo cilíndrico que queda dentro de la propia barrena. De esta manera, podemos extraer del árbol testigos de unos 0,5 cm de diámetro y de largo variable (15-20 cm suele ser suficiente).

Fig. 2: Esquema del funcionamiento de la Barrera Pressler para obtener testigos de los anillos de los árboles. La barrena se introduce en el tronco haciéndola girar de manera manual a la vez que se presiona, gracias al tornillo afilado que posee en la punta. Al ir penetrando la barrena, corta perpendicularmente los anillos del árbol de fuera hacia dentro obteniéndose el registro completo del desarrollo del árbol. Lo que se consigue es un testigo cilíndrico donde se ven las secciones de los anillos como si fuera el «código de barras» del árbol.

En estos testigos se pueden observar los grosores de los anillos y tener así el registro completo de los años de vida del árbol sin dañarlo (Fig. 3). El pequeño orificio que queda en el tronco se cubre con cera para evitar posibles bacterias e insectos que pudieran perjudicar al árbol.

Fig. 3. Testigo de pino obtenido con una barrena Pressler.

¿Y cómo podemos datar hasta 10.000 años de antigüedad con los árboles?

Para poder datar mediante este método es necesario tener un registro de madera lo más continuo posible.

Partiendo de testigos de árboles vivos que nos ayuden a situarnos en el tiempo, se hacen coincidir los anillos de los primeros años de vida de los árboles con los últimos años registrados en la madera arqueológica de construcciones (como puentes e iglesias) hechas con árboles de la zona (Fig. 4).

Siendo capaces de encontrar este solapamiento del código que forman los anillos de los árboles en maderas cada vez más antiguas, se puede llegar a completar el patrón de crecimiento de los anillos de los árboles con restos de troncos conservados en el registro sedimentario, como en los sedimentos de dunas o de lagunas.

La fecha más antigua que se ha llegado a contabilizar mediante este método es de aproximadamente 10.000 años, coincidiendo con el comienzo del Neolítico (cuando las sociedades humanas pasaron a ser agrícolas-ganaderas y se valían de la madera para hacer sus construcciones).

Fig. 4: Para poder contar anillos/años que permitan hacer dataciones arqueológicas e incluso geológicas, es necesario tener un registro continuo del patrón de crecimiento de los anillos de los árboles de esa zona. Se parte de madera de árbol actual, donde se tienen localizados los años a los que pertenecen sus anillos. Se busca la coincidencia de los primeros años de vida del árbol con madera arqueológica de construcciones de la zona (de construcciones antiguas como iglesias). Esta misma metodología se repite sobre madera cada vez más antigua hasta llegar a emplear restos de madera conservados en sedimentos como dunas o depósitos lacustres. Con toda esa información, se obtiene el registro continuo del desarrollo de los anillos de los árboles de esa zona (líneas marrones sobre testigo blanco).

Una vez se ha obtenido el patrón de crecimiento de los árboles de una zona, se pueden datar tanto restos leñosos (de manera directa) como eventos en los que se ve implicada la madera. Para ello, hay que hacer coincidir los anillos de los restos de madera que se quiere datar con el del patrón de crecimiento de los anillos de la zona.

Por ejemplo, si se encuentra un tronco en los sedimentos de un lago (Fig. 5), podremos comparar los anillos del tronco encontrado con los anillos del registro de la zona, obteniendo una edad para ese tronco. Pero, además, como ese tronco está dentro de un depósito sedimentario, podemos decir que la sedimentación fue posterior al tronco, obteniendo así una datación relativa del momento de la sedimentación.

Fig. 5: Ejemplo de datación dendrocronológica. Conociéndose la relación de los anillos de los árboles en cada momento, se compara ésta con los restos de troncos encontrado en los sedimentos de relleno de un lago. Se obtiene que el árbol vivió al menos entre los años 1250 y 1310. Además, como su enterramiento fue posterior a la muerte del árbol, podemos saber que el sedimento donde se encuentran éstos troncos se depositó posteriormente al año 1310.

Para realizar la datación mediante los anillos de los árboles, se identifica el patrón de crecimiento de los restos de árboles que se quieren datar en el registro dendrocronológico de la zona donde se han encontrado.

¿Cómo es el código de los anillos de los árboles de Ávila de los últimos años?

El factor que más condicionará la anchura de los anillos de los árboles es la disponibilidad de agua, principalmente la lluvia.

En la Figura 6 podemos ver el registro de lluvias del centro de la Península de los últimos años. Para que sea más fácil de diferenciar, se han coloreado en verde las barras correspondientes a los años más lluviosos y en rojo las de los años más secos.

Al observar los anillos de un testigo de pino, somos capaces de reconocer algunos de los años en función del grosor de su anillo correspondiente:

  • Años más lluviosos y por tanto anillos más anchos (años 1972, 1997 y 2010).
  • Y años más secos con anillos más estrechos (años 1954, 1983 y 2005).
Fig. 6: Registro de las precipitaciones del centro de la Península Ibérica desde 1940 a 2018. Se han marcado de color verde los años más lluviosos y de color rojo los más secos. Cuando se compara el registro de lluvias con los anillos de crecimiento de un pino de la zona, se puede comprobar cómo es posible identificar dichos años porque los anillos más anchos se corresponden con los años lluviosos y los anillos estrechos con los años más secos. Este patrón de crecimiento de los anillos será similar en los árboles que se han desarrollado en esta misma zona.

¿Sabías que… el árbol apodado Matusalen era el árbol vivo más viejo del mundo, con 4850 años. En 2016 se descubrió un árbol aún más viejo, se estima que tiene unos 5067 años. Ambos árboles perteneces a la especie Pino longevo (Pinus longaeva) y se encuentran en el Bosque Nacional de Inyo, en las Montañas Blancas de California (Estados Unidos) pero su ubicación exacta no se ha desvelado para evitar su destrucción?

Ejemplar de Pino longevo (Pinus Longaeva) en las Montañas Blancas de California (Estados Unidos). Imagen: Rick Goldwater Wikimedia Commons.

¿y sabías que… en 2022 se ha datado el árbol más antiguo de la Unión Europea y que está en España? Se trata de una hembra de Cedro canario (Juniperus cedrus) en el Parque Nacional del Teide (Tenerife), a 2100 m de altitud. Como el cedro no es un buen árbol para datar por dendrocronología porque sus anillos no tienen cohesión, se ha datado por Carbono 14 y tiene 1481 años.

Ejemplar de Cedro canario (Juniperus cedrus) datado en 1481 año, siendo el árbol más viejo de la Unión Europea.

¿Sabías que… existe en la Sierra de Cazorla (Jaén) un bosque de árboles milenarios? Se trata de un bosque de Tejos Milenarios (Taxus baccata) y se cree que muchos de ellos tienen más de 1000 años.

El tejo milenario (Taxus baccata), en la Sierra de Cazorla (Jaén), es el árbol más viejo de España.

En la provincia de Ávila (España) hay algunos ejemplares de árboles con solera, como la llamada «encina milenaria» del castro vetón de la Mesa de Miranda, en Chamartín, o el ejemplar de castaño conocido como «El Abuelo», en el castañar de El Tiemblo.

¿Quieres saber más sobre métodos de datación?

Método de datación por radiocarbono (o Carbono-14)

Organismos que colonizan los granitos: la liquenometría

Estudio de la evolución paleoclimática a partir de las turberas

El análisis de los pigmentos minerales. Espectroscopía Raman

Referencias

Método de datación por radiocarbono (o Carbono-14)

Texto y gráficos – Ana Isabel Casado Gómez

Puedes escuchar el contenido de esta entrada aquí:


La técnica conocida como «Carbono 14» es un método de datación absoluta que se basa en el carbono que se encuentra en muestras de origen biológico como los fósiles o el carbón.

Los seres vivos dependemos del carbono para nuestra existencia, ya que forma parte de nuestro organismo constituyendo moléculas (ADN, colágeno, queratina…) y tejidos, tanto orgánicos como inorgánicos (plumas, pelo, huesos, conchas…). Los seres vivos obtenemos este carbono de la naturaleza mediante la ingesta de alimentos o, en el caso de las plantas, con la fotosíntesis.

Isótopos de carbono

El carbono es un elemento que se encuentra en la naturaleza como tres posibles isótopos (fig. 1):

  • El Carbono-12 tiene 6 protones y 6 neutrones, 12 partículas subatómicas en su núcleo.
  • El Carbono-13 tiene 6 protones y 7 neutrones, 13 partículas subatómicas en su núcleo.
  • El Carbono-14 tiene 6 protones y 8 neutrones, 14 partículas subatómicas en su núcleo.

La diferencia entre un isótopo y otro es el número de neutrones que posee, ya que todos tienen los mismos protones y los mismos electrones. El nombre de los distintos isótopos de carbono viene dado por la suma de los protones y los neutrones que hay en su núcleo.


Figura 1. Los tres isótopos de carbono, tanto estables como inestables (radiactivos) con sus respectivos número de protones, neutrones y electrones;  y su abundancia en la naturaleza.

El Carbono-12 y el Carbono-13 son estables y se mantendrán inalterables, mientras que el Carbono-14 es inestable (radiactivo) lo que hace que no se mantenga en el tiempo.

La abundancia natural de estos isótopos es de 98,89% de Carbono-12; 1,10% de Carbono-13 y solo 1,0×10-10 % de Carbono-14.

Para el método de datación por Radiocarbono, lo que se compara es la proporción de los isótopos Carbono-12 y Carbono-14 en la muestra.

Proporción Carbono-12 / Carbono-14 en restos biológicos

La proporción entre estos dos isótopos de carbono es la misma en una planta viva (que toma el carbono del CO2 de la atmósfera) que en un herbívoro (que toma el carbono de las plantas) y que en un carnívoro (que toma el carbono de los herbívoros que lo tomaron de las plantas). Luego, la proporción entre los distintos isótopos de carbono presente en los organismos vivos es la misma que existe en la atmósfera (fig. 2).

Figura 2. Esquema de la proporción de isótopos de Carbono-12 y Carbono-14 tanto en la atmósfera como en los organismos vivos. Esta proporción es la misma en todos los casos, ya que se transmite de unos organismos a otros mediante la cadena alimenticia a partir de los organismos vegetales que lo toman de la atmósfera.

En el momento que un organismo muere, la proporción entre sus isótopos de carbono comienza a cambiar. La cantidad de Carbono-12 se mantiene igual que cuando estaba vivo pero la cantidad de Carbono-14 disminuye debido a la inestabilidad de este isótopo.

Lo que le sucede al Carbono-14 es que, al ser inestable, transforma uno de sus neutrones en un protón en lo que se conoce como proceso de decaimiento, convirtiéndose en un isótopo de Nitrógeno-14 que sí que es estable. El Carbono-14 es lo que se denomina el isótopo padre, y el Nitrógeno-14 es el isótopo hijo (fig. 3).

Figura 3. El Carbono-14 sufre un proceso de decaimiento por el que uno de sus neutrones se transforma en un protón, convirtiéndose en Nitrógeno-14. El isótopo original se denomina isótopo padre mientras que el producto del decaimiento se llama isótopo hijo.

La cantidad de Carbono-14 de un resto orgánico se reduce de manera exponencial, formando una curva. El Carbono-14 tarda 5.730 años en reducir a la mitad su cantidad en la muestra, lo que se conoce como semivida o periodo de semidesintegración (fig. 4).

Esto significa que 5.730 años después de haber muerto el organismo, sus restos tendrá la mitad de Carbono-14 que cuando vivía; y que cuando pasen otros 5.730 años (a los 11.460 años de haber muerto) el resto tendrá la mitad de la mitad del Carbono-14 original o, lo que es lo mismo, un cuarto del Carbono-14 original.

Figura 4: cuando el organismo muere, la cantidad de Carbono-14 disminuye de manera exponencial mientras que la de Carbono-12 se mantiene en el tiempo. Cada vez que la cantidad de Carbono-14 (isótopo padre) se reduce a la mitad al transformarse en Nitrógeno-14 (isótopo hijo), se consume una semivida, lo que supone 5.730 años.

Llegará un momento en que todo el Carbono-14 original del resto biológico se haya transformado en Nitrógeno-14, el isótopo padre se agota y solo existe isótopo hijo. La datación por radiocarbono deja de ser posible. Este, por ejemplo, es el caso de los dinosaurios que vivieron hace más de 65 millones de años y cuyos fósiles no conservan isótopos de Carbono-14.

De esta manera, gracias a la proporción entre el isótopo de Carbono-12 y el de Carbono-14 en el resto biológico podemos conocer cuánto tiempo ha pasado desde que el organismo murió hasta la actualidad, siempre que no haya sido hace más de 60.000 años aproximadamente, que es la edad máxima que podemos datar por este método.

¿SABÍAS QUE…? El método de datación por Carbono-14 solo se puede emplear para restos de organismos que murieron antes de 1950 ya que, debido a la proliferación de las pruebas de armas nucleares a partir de la década de los 50 del siglo pasado, los porcentajes de isótopos radiactivos de la atmósfera se han visto gravemente alterados.

Algunos ejemplos

  • En el Geolodía 2019 en El Oso vimos cómo se ha aplicado este método para datar restos vegetales encontrados dentro de los sedimentos de las dunas, lo que nos permite aproximar la edad de las propias dunas.

¿Quieres saber más sobre métodos de datación?

Estudio de la evolución paleoclimática a partir de las turberas

Autor – Pablo Melón Jiménez

Las turberas son humedales ácidos en los cuales se produce la acumulación de materia orgánica como turba.

La turba es un material de color pardo oscuro, aspecto terroso y poco peso, constituido por restos vegetales en estado de descomposición que se utiliza fundamentalmente como combustible y como abono orgánico.

Musgo Sphagnum sp. presente en las turberas

Las turberas son en realidad pequeñas cuencas lacustres de origen glaciar en las que la velocidad de acumulación de la materia orgánica es mayor que la velocidad de descomposición de la misma.

Este proceso condiciona que el agua que vierte en las lagunas no entre en contacto con la materia orgánica y de forma progresiva se produce una reducción en la concentración de oxígeno, dando lugar a zonas en las que se produce la descomposición de la materia orgánica por parte de bacterias anaeróbicas. Este proceso de anoxia produce una reducción importante de los nutrientes en la turbera, que es aprovechado fundamentalmente por los musgos del género Sphagnum sp., que proliferan en aguas pobres en nutrientes frente a otros organismos.

El polen: un registro de la evolución del clima y la vegetación

Desde la antigüedad, las turberas han servido como combustible (de hecho forman parte de la clasificación de los carbones; turba<lignito<hulla<antracita) y para fertilizar campos de cultivo.

Pero además, en los últimos tiempos, se ha comprobado la eficacia de este tipo de ambientes como guardianes del registro palinológico, es decir, del polen y esporas provenientes de distintas plantas y hongos. El estudio de este tipo de registros ha permitido en el caso de los castros vetones, y en particular del castro de Ulaca, hacer una aproximación a la evolución paleoclimática y de la vegetación de la zona en relación a sus pobladores. Los registros de sedimentos encontrados en vasijas y otros restos arqueológicos recuperados de los castros vetones han permitido analizar la evolución de los terrenos en que habitaron dichos pueblos, gracias también a la datación por carbono-14.

Para saber más del método de datación por carbono 14: Método de datación por radiocarbono (o carbono 14)

Los pueblos vetones emprendieron durante la Segunda Edad del Hierro (s. VI a I a.C.) un extenso proceso de explotación del paisaje que dio lugar, tras la deforestación continuada, a la generación de nuevas zonas de pastos y tierras de cultivo (Sáez, J.A.L., Merino, L.L., & Díaz, S.P., 2008).

Este registro se puede observar por la reducción de los pólenes de especies como la encina, el roble melojo y el fresno y el aumento progresivo de la presencia de algunos palinomorfos de carácter antrópico (condicionados por la presencia humana) como Cichorioideae y Cardueae, que explican la antropización del paisaje (la transformación que ejerce el ser humano sobre el medio).

Grano de polen observado en el Microscopio Electrónico de Barrido (SEM).

¿SABÍAS QUE…? La aparición de algunas esporas de hongos coprófilos (aquellos que tienen afinidad por los excrementos animales) indica no solo que los vetones eran un pueblo con amplia dedicación ganadera, sino que además convivían con el ganado in situ.

¿Quieres saber más sobre métodos de datación?

Organismos que colonizan los granitos: la liquenometría

Autor – Javier Elez

¿Te has fijado alguna vez en la gran cantidad de seres vivos que colonizan las rocas que ves en tus paseos por el campo? Es habitual encontrar, por ejemplo, una gran variedad de musgos y líquenes tapizando los granitos.

Los musgos son plantas no vasculares, mientras que los líquenes son organismos simbiontes complejos en los que colaboran hongos, algas y levaduras, según publicó la revista Science hace un par de años.

img-20171228-wa0001460469250.jpg

Estos últimos, los líquenes, se estudian en varios campos e incluso existe una rama de la Botánica denominada Liquenología. Pero, ¿para qué se utilizan los líquenes en Geología?

Los líquenes y la geología

En geología se emplea una técnica de datación denominada liquenometría.

Algunas especies de líquenes nos permiten estimar con bastante precisión el tiempo que ha pasado desde que una superficie queda expuesta y los líquenes comienzan a colonizarla hasta la fecha en la que se realiza la datación. Según pasa el tiempo, la colonia va creciendo en diámetro y este crecimiento se puede medir.

Esta técnica se puede utilizar con éxito para datar superficies de hasta 5.000 años. Evidentemente, cuanto más atrás en el tiempo, mayor puede ser el margen de error.

¿En qué situaciones pueden quedar expuestas nuevas superficies para ser colonizadas por líquenes? En riadas, en caídas de bloques y de construcciones por terremotos, en movimiento de masas rocosas por glaciares, deslizamientos de ladera, etc.

cantera
En esta cantera de granito abandonada los líquenes comenzaron a proliferar sobre las superficies expuestas con el cese de la actividad de extracción.

Esta técnica de datación se emplea en el estudio de los procesos geológicos activos en campos como la geología del Cuaternario, estudios relativos a la variación del clima a lo largo de los últimos miles de años y los riesgos geológicos.

Algunas de las aplicaciones prácticas de la liquenometría son:

  • El estudio de la evolución temporal del retroceso de un glaciar. Y por tanto, las variaciones climáticas que se dieron en el pasado.
  • La datación y estudio de los efectos de grandes terremotos del pasado, de los que en muchas ocasiones no queda un registro documental.
  • Evolución de grandes deslizamientos o de zonas con importantes desprendimientos de roca por inestabilidad gravitacional.
  • Estudio de grandes riadas y sus periodos de retorno.
  • Como te puedes imaginar, también se utiliza con éxito en otras ramas del conocimiento como la Arqueología.

Cómo se realiza la datación liquenométrica

Simplificando mucho, la obtención de una edad se realiza estimando una curva de crecimiento climático en función de la localización geográfica en la que se encuentran y relacionando esta curva con el diámetro de la colonia.

Estos cálculos son relativamente complejos y se tienen en cuenta parámetros tales como la especie en concreto de liquen, la cantidad de insolación que le llega a la colonia en función de su localización (solana-umbría), la elevación a la que se encuentra, si se halla en una superficie plana o inclinada, etc.

¿SABÍAS QUE…?

Para calibrar la curva de crecimiento de las colonias de líquenes también se miden de forma sistemática en los cementerios cercanos a la localidad de estudio.

Las lápidas son superficies de piedra expuestas en las que está marcada la fecha de primera exposición y por tanto se sabe cuándo comienza la colonización por líquenes.

© Textos de Javier Elez.

© Fotografías de Gabriel Castilla y Javier Elez.

¿Quieres saber más sobre métodos de datación?